
AN OBJECT-ORIENTED APPROACH FOR HIERARCHICAL STATE MACHINES

WILLIAM MALLOUK 1

ESTEBAN CLUA2

1 Wet Productions LLC

william@wetproductions.com

2Departamento de Informática – PUC-Rio / VisionLab
esteban@inf.puc-rio.br

 __
Abstract
Finite State Machines have been widely used as a tool for developing video games,
especially as pertains to solving problems related to AI, input handling, and game
progression. In this paper, we introduce a practical technique that can highly
improve the productivity of development of Finite State Machines in video games.
This technique consists of adapting concepts of OOP for use with Hierarchical
Finite State Machines in an entirely visual system. An open source implementation
of the technique that can be used as middleware in most games is also provided.
Keywords: Artificial Intelligence, Hierarchical State Machines

__

 1 Introduction
FSM (Finite State Machines) is a technique that
appears in many different forms and is used in
major game titles such as Quake, Fifa Soccer,
and Warcraft. In fact, FSM is the most popular
approach for AI algorithms used in games [4]. In
this paper, we demonstrate how Hierarchical
Finite State Machines can be combined with
Object-Oriented Programming techniques to
obtain productivity and HFSM reuse. We also
provide an open-source implementation of the
technique as middleware that can be used in
nearly any game.

 1.1 Previous Works
Although our approach to Finite State Machines
is original, many of the ideas were inspired by
[4] and [5]. Particularly, the implementation of
the visual system for designing state machines
is based on the ideas introduced in [2]. Our
visual state machine XML parser, VDX2HSM,
is an improved version of the tool created by the
referenced author. See section seven of this
article for more details on it.

 2 Hierarchical Finite State Machines In
Games
We recall from [1] and [4] the idea of Finite
State Machines and Hierarchical State
Machines as used in games. An HFSM is a FSM
in which states can be decomposed into other
FSMs [4], as depicted in Figure 1.

Figure 1. Hierarchical Finite State Machine

Stand Still

KeyPress :
Forward

Move
Forward

KeyRelease :
Forward

Composite
State

Transition

Transition
condition

State

KeyPress: Forward

Walk Run

KeyPress : A

KeyRelease : A

Move Forward

Sub-States
of Move Forward

In the figure above, the decomposition of
the state Move Forward is shown. In HFSMs,
each sub-state is capable of being a composite
state as well, forming a tree of state machines.
This approach is convenient, especially when
the state machine being modeled is huge and,
therefore, presents the potential for confusing
representation.

3 Object Oriented Approach
This paper introduces an hybrid system, where
HFSMs are merged with concepts of OOP to
create the Object-Oriented Hierarchical State
Machines technique. Particularly, we adapted
the concepts of Class Hierarchy, Inheritance,
Class, Method, and Data Abstraction for use
with HFSMs in an entirely visual system. In this
paper, we assume that the reader is familiar with
these concepts. Other related works are
presented in [1] and [6].

4 Object Oriented Hierarchical State
Machines
Object-Oriented Hierarchical State Machines,
also known by the acronym, OOHSM, the result
of combining Hierarchical State Machines with
the Object-Oriented Programming concepts
mentioned above.

The OOHSM technique consists of the
following elements combined with each other:
State Machine, Base Machine, Sub Machine,
Abstract State, Abstract State Machine, and
Concrete State Machine. We will see that each
of these elements is analogous to an OOP
element as we define them and provide
examples of use in the next subsections.

To simplify the task of defining these
elements, we have used properties of the UML
(Unified Modeling Language) class diagram
notation [7] because of its semiotic.

4.1 State Machine
Using our new notation, we visually redefined
state machines. Figure 2 contains a state
machine with two states represented using our
new notation.

For the sake of simplicity, we can omit the
details of the sub-states of a composite state, as

was done with the Move Forward composite
state of figure 3. Note that a state machine can
have as many composite states as necessary.

Stand Still

KeyPress : Backward

Move
Backwards

KeyRelease :
Backward

CharacterBehavior

Figure 2. A State Machine

CharacterBehavior

Swim

Hit Water

Hit Ground

Stand Still

KeyPress : Forward

Move Forward

KeyRelease : Forward

Figure 3. Composite State with omited Sub-States

4.2 Base Machine and Sub Machine
In OOHSM, state machines can inherit
properties from other state machines, forming an
inheritance hierarchy that is similar and
analogous to OOP inheritance. In Figure 4, the
state machine CharacterBehavior is a super-
machine of PaladinBehavior, and the state
machine PaladinBehavior is a base machine of
CharacterBehavior.

The difference between sub-machines and
sub-states should be clear. Each composite state
has one or more sub-states, and each state
machine can have one or more sub-machines.

From the definitions above, it becomes
aparent that a state machine is analog to a class,
and that a composite state is analog to a method.

In some programming languages we can also
compare an object with OOHSM instance,
which is the terminology that will be used in the
implementation of this work, which will be
discussed later this article.

Figure 4. OOHSM Inheritance

4.3 Abstract State
An Abstract State is an undefined composite
state. Throughout this paper, a dotted circle,
such as the one in figure five, will be used to
describe abstract states. The concept of abstract
state is analogous to that of abstract or virtual
method in OOP.

Figure 5. Abstract State Notation

4.4 Abstract State Machine
A state machine containing at least one abstract
state is called an abstract state machine.
Abstract state machines cannot be instantiated
or used directly because at least one of its
composite states is undefined. Abstract state

machines can be used when extended by state
machines that contain the definitions for the
abstract states contained therein. A sample
abstract state machine is illustrated in figure 6.

EntityAI

Swim

Hit Water

Hit Ground

Stand Still

No one is near

Walk Around

Found someone

Figure 6. Sample Abstract State Machine

4.5 Concrete Machine
A concrete machine is defined as an OOHSM
that has no Abstract States. The state machines
shown in figures 2 and 3 are examples of
concrete state machines. Concrete state
machines are analogous to concrete classes in
OOP.

In figure 7, we present an instantiable, and
concrete state machine based on the EntityAI
abstract state machine shown in figure 6.

Figure 7. An inherited abstract state machine

Swim

Stand Still

KeyPress : Forward

Move
Forward

KeyRelease : Forward

CharacterBehavior

KeyPress : Backward

Move
Backwards

KeyRelease : Backward

Move
Forward

PaladinBehavior

EntityAI

Swim

Hit Water

Hit Ground

Stand Still

No one is near

Walk Around

Found someone

Swim

FighterAI

The FighterAI state machine shown above
has only one composite state called Swim. The
Swim composite state is the definition for the
abstract compound state Swim, which, in turn, is
declared in the abstract state machine EntityAI.
FighterAI inherits all the concrete states from
EntityAI and provides an implementation for the
Swim abstract state. Therefore, FighterAI is a
concrete state machine, and it can be used or
instantiated.

5 Notation Details
The Unified Modeling Language provides a
graphical representation of class that permits us
to visualize an abstraction regardless of the
programming language being used. The UML
class element is a description of a “set of objects
that share the same attributes, operations,
relationships, and semantics.” [7] Also, class
diagrams provide several types of relationships
such as dependencies, refinement, associations,
and generalizations.

The notation used in this paper borrows
elements from the Unified Modeling Language
and from the standard state machine notation
that is used by many authors, including [3]. We
also introduced two new elements: the
composite state symbol and the abstract state
symbol. The diagram shown in figure 8 labels
all the elements used throughout this paper.

The UML Class symbol was used to
represent a state machine, as discussed in
section 4.1. Abstract state machine names are
written in italics. Concrete state machine names
are written in normal text. Generalization was
the only relationship type borrowed from the
UML and it is used to model inheritance.

Elements that were borrowed from the
standard state machine notation are state,
transition, and transition condition.

Finally, the newly introduced symbols are
the abstract state symbol and composite state

symbol. The latter is also used when overriding
composite and abstract states.

Figure 8. Notation details

6 Comparison With Other Techniques
Below we provide a comparison with Finite
State Machines and the State Design Pattern,
which are both related and relevant to this work.

6.1 Finite State Machines
One of the design goals of OOHSM is that all
properties pertaining to Finite State Machines
should also be applicable to them. More notably,
the following constraints are applicable to both
FSM and OOHSM.
– Operations are synchronized by discrete

clock pulses.
– There is a finite number of states that the

machine can attain (even though it is easier
to create an OOHSM with a large number of
states)

– At any given moment the machine is in
exactly one of its states. What the new state

AbstractBehavior

Abstract

Found FoodHungry

Look for Food

Not Hungry

State

Composite
State

Abstract State

Transition
condition

Transition

NPCBehavior

Wander

Generalization
(inheritance)

Concrete

Class
(State Machine)

Eat

Overriden
State

Overriden
Abstract State

Wander Eat

will be depends on the input, as well as what
the current state is.

– The machine is capable of output, through
user-defined functions.

– Finite State Machines are deterministic.
 OOHSM also suits the formal definition of
Finite State Machine provided by [3]: M = [S, I,
O, fs, fo] is a finite-state machine if S is a finite
set of states, I is a finite set of input symbols, O
is a finite set of output symbols, and fs and fo are
functions where fs:SxI→S and fo:S→S. The
machine is always initialized to begin in a fixed
starting state s0.
 OOHSM are in essence finite state machines,
with the difference that OOHSM provide
notational tools that give several advantages in
the design phase, allowing, for example, the
construction of very large state machines, and
reuse of these state machines, as it was
discussed above.

6.2 The State Design Pattern
The State pattern [11] is a behavioral software
design pattern used to represent the state of an
object. It is a solution to the problem of how to
make behavior depend on state. It consists of
defining a “context” class that presents a single
interface to the world, a State abstract class and
several subclasses of it, each of which defining a
different behavior.

The main difference between the State
Pattern and OOHSM is that in the pattern each
state should be modeled as a separate class, and
thus requires a separate implementation. In
OOHSM, states do not require implementation.
Each OOHSM state can have data or code
related to it, but none are mandatory.

Another difference is that the State pattern
does not specify where transitions should be
defined whereas OOHSM transitions should be
fully defined in OOHSM diagrams.

7 Sample Uses
Good examples of game genres that can take
advantage of OOHSM are Fighting Games and
RTS (Real-Time Strategy) Games. In many RTS
games, different unit types share the same AI
pattern repeatedly. The shared AI elements can
be defined in base machines, and the AI
elements that are specific for each unit type can
be defined in separate state machines that inherit
from the previously defined base machines.

We observed that in fighting games such as
Street Fighter, Tekken, and Dead or Alive,
multiple characters share the same set of basic
movements such as “kick,” “jump,” and
“punch,” as well as a set of character-specific
moves. We concluded that in these types of
fighting games, the shared moves can be defined
in base machines, and the character-specific
moves can be defined in sub-machines.

8 Benefits of using OOHSM
There are two main advantages for using
OOHSM at the implementation of games. These
advantages are described below:

- Reduced Development and Maintenance
Time: OOHSM can save development time
considerably when developing games that have
HFSM with repeated patterns. Taking the genres
defined in section five as examples, a great
amount of development time can be saved by
working only once on the behaviors for
characters and units as defined in base
machines. Maintenance can also be expedited
because every character or unit which inherits
from a state machine in a game can be updated
by changing that state machine alone.

- Ease of Use: As a result of using a visual
system to create the state machine diagrams, it
becomes easy for non-specialized personnel
(non-programmers) to create OOHSMs to
describe the behavior of characters in games.
This is especially important, because many
times game designers are responsible for the
definition of AI. A visual OOHSM system
obviates the need for additional programming,
even at scripting level.

9 Sample Implementation
A sample implementation of an Object-Oriented
Hierarchical State Machine Engine is provided
in form of a middleware written in C++, and it
can be obtained at [8]. The implementation is
distributed as a software library called Cadabra
OOHSM. Cadabra OOHSM is bundled into the
Cadabra 3D SDK, a 3D graphics and game
engine developed by the first author. The
Cadabra SDK and Cadabra OOHSM are both
open source under the LGPL terms.

The architecture of our solution is fully
Object Oriented. Figure 8. contains a high-level
class diagram describing the main components
and their relationships.

Figure 9. Cadabra OOHSM Class Diagram

Each state machine is used through one
or more a StateMachineInstance object.
StateMachineInstance is a lightweight object
that represents a particular StateMachine. This
allows, for example, the same StateMachine
object to be used with hundreds of NPCs at the
same time, with minimal memory consumption.
Each State of a StateMachine can carry as much
custom information as needed. Full access to
this data may be obtained through
StateEventListeners. StateEventListeners can be
attached to StateMachines, States, or
StateMachineInstances to handle events.
 The Cadabra OOHSM package also defines
a custom file format: .hsm. Each .hsm file stores
one Object-Oriented State Machine. Files of the
.hsm format can be generated by the

Serialization Framework contained in the
Cadabra OOHSM package.
 Files of the .hsm format can also be created
from diagrams made using diagram authoring
tools such as Dia [9] and Microsoft Visio [10].
In the distribution, a tool is included to convert
OOHSM diagrams created with Microsoft Visio
into .hsm files. This tool, called VDX2HSM,
parses xml data from the Visio vdx files and
uses the Serialization Framework to create .hsm
files. This idea is based on the work of Sunbir
Gil [2]. VDX2HSM integrates easily into build
processes, allowing VDX files to become direct
assets for games.

10 Summary
This paper introduces a simple method that can
be used to save development time in a variety of
game genres. Object-Oriented Hierarchical State
Machines are the result of combining object-
oriented programming concepts and hierarchical
finite state machines. It also provides a
middleware solution that can be used to visually
design OOHSMs and integrate them within
nearly any game.

11 Acknowledgements
The second author is grateful to both FINEP and
CAPPES for sponsoring aspects of his research.
He also wishes to express his gratitude to
VisionLab and to the Computer Science
department of PUC-Rio.

12 References
[1] Finite State Machine, en.wikipedia.org/wiki/
Finite_state_machine, last visited 28-08-2006.

[2] Gill, S. Visual State Machine AI Systems,
www.gamasutra.com/features/20041118/gill_01.shtml

[3] Gersting, J. Fundamentos Matemáticos para a Ciência
da Computação, Portuguese, p. 398, Fourth Edition.

[4] Baillie, P. Programming Believable Characters in
Computer Games, pp. 234-243.

[5] Jacobs, S. Visual Design of State Machines, Game
Programming Gems 5.

[6] The free dictionary of computing: http://foldoc.org/

[7] Booch, G; Rumbaugh, J. and Jacobson, I. The Unified
Modeling Language User Guide, pp 82, 1999, Adison-
Wesley.

[8] www.cadabra3d.org

[9] http://www.gnome.org/projects/dia/

[10] http://office.microsoft.com/visio/

[11] Gamma, E; Helm, R; Johnson R. and Vlissides J.
Design Patterns: Elements of Reusable Object-Oriented
Software, pp 231, 2001 Addison-Wesley.

	 1 Introduction
	 2 Hierarchical Finite State Machines In Games
We recall from [1] and [4] the idea of Finite State Machines and Hierarchical State Machines as used in games. An HFSM is a FSM in which states can be decomposed into other FSMs [4], as depicted in Figure 1.
	Figure 1. Hierarchical Finite State Machine
	This paper introduces an hybrid system, where HFSMs are merged with concepts of OOP to create the Object-Oriented Hierarchical State Machines technique. Particularly, we adapted the concepts of Class Hierarchy, Inheritance, Class, Method, and Data Abstraction for use with HFSMs in an entirely visual system. In this paper, we assume that the reader is familiar with these concepts. Other related works are presented in [1] and [6].
	Object-Oriented Hierarchical State Machines, also known by the acronym, OOHSM, the result of combining Hierarchical State Machines with the Object-Oriented Programming concepts mentioned above.
		The OOHSM technique consists of the following elements combined with each other: State Machine, Base Machine, Sub Machine, Abstract State, Abstract State Machine, and Concrete State Machine. We will see that each of these elements is analogous to an OOP element as we define them and provide examples of use in the next subsections.
		To simplify the task of defining these elements, we have used properties of the UML (Unified Modeling Language) class diagram notation [7] because of its semiotic.
	Using our new notation, we visually redefined state machines. Figure 2 contains a state machine with two states represented using our new notation.
	In OOHSM, state machines can inherit properties from other state machines, forming an inheritance hierarchy that is similar and analogous to OOP inheritance. In Figure 4, the state machine CharacterBehavior is a super-machine of PaladinBehavior, and the state machine PaladinBehavior is a base machine of CharacterBehavior.
	9 Sample Implementation
	10 Summary

	12 References

