
Ginga Game: A Framework for Game Development for the Interactive
Digital Television

Diego Cordeiro Barboza Esteban Walter Gonzales Clua

Universidade Federal Fluminense, Instituto de Computação - Media Lab, Brasil

Abstract

With the implantation of Brazilian’s Digital Television

System, a new software development platform has

been created. Applications for the Digital TV are an

important part of this new system, which aims, in

addition to higher image and sound quality, the

creation of an interactivity channel for the viewer.

Among all possible applications for this new

environment are the digital games, which every year

attract a growing audience worldwide. However, game

development isn’t a simple task, and doing so in a

limited platform such as digital receivers could be a

complicated process. So, this paper presents a

framework for game development for the Digital TV,

which allows the developer to focus on content

creation only, without concerns about technical issues

or common tasks related to game development.

Keywords: Ginga, Digital TV, frameworks, games

Authors’ contact:
dbarboza@ic.uff.br, esteban@ic.uff.br

1. Introduction

Brazilian Digital Terrestrial Television System

(SBTVD-T) has three guidelines, in addition to its

current analogue system: high-definition digital

broadcast (HDTV); digital broadcast for fixed, mobile

and portable reception; and interactivity [Brasil 2006].

 SBTVD-T’s interactivity channel allows the system

to be expanded through applications built over a

reference standard system. The main idea is to allow

the digital receiver (set-top box) to run different

applications, such as electronic guides, shopping

channels, bank and educational services, among others

[Barbosa and Soares 2008].

 Digital games are an interactive application type

that could help Digital TV become popular in the

country, since the national industry is in an expansion

and growing moment [Ferreira and Souza 2009].

In SBTVD-T, the Ginga middleware takes place

between applications and execution infrastructure

(hardware and operating system) [Ginga 2009]. For

this reason, applications for the Brazilian Digital TV

must be based on the Ginga middleware, using one of

its supported programming languages.

This paper’s main goal is to present a game

development framework for the SBTVD-T, using

Ginga-J (the procedural part of Ginga middleware that

uses the Java language). The framework presents an

application model and a set of classes that simplifies

game development for the Digital TV as well as

abstracts the process from a specific platform.

The idea is to use the framework to facilitate the

game development for the Digital TV to the process of

developing games to personal computers, except for

some certain limitations imposed by the platform

[ABNT 2008], such as hardware limitations concerning

memory and processing capacity, and input issues

related to the use of a remote control instead of mouse

and keyboard.

 The paper is organized as follows: section 2

presents some related publications to this paper’s

proposal. Section 3 presents the Ginga middleware and

its structure. Section 4 describes the Ginga Game, the

framework proposed in this paper, and also presents an

example of its application. The last section presents the

paper’s conclusions.

2. Related Work

There is some related work about game development

for the Digital TV. Among these papers, the following

could be highlighted: [Ferreira and Souza 2009], that

presents a different approach to Ginga Game, but with

similar purpose; [Lima 2007], that develops a

communication protocol for network games within

SBTVD-T; and [Junior et al 2009], that doesn’t use

Ginga-J, but makes an interesting study about game

development for the Digital TV using Ginga-NCL with

the Lua programming language.

 In its master degree dissertation, [Valente 2005]

presents the study about the development of a

framework for computer games. This work isn’t

directly related to game development for the Digital

TV, but has some interesting content about game

development frameworks architectures, which some of

them are used in this work.

3. Ginga Middleware

Ginga is the middleware for running applications on

the SBTVD-T. This platform was developed together

by the research laboratories Telemídia [Telemídia

2009] and LAViD [LAViD], from PUC-Rio and

UFPB.

 The Ginga middleware is subdivided into two

applications environments for Digital TV receivers and

allows the application development following two

distinct programming paradigms: the declarative

(Ginga-NCL) and the procedural (Ginga-J).

 The declarative environment allows the

programmer to define a set of tasks to be executed

without concerning who will perform these tasks and

how they will be performed. This way, it is needed

only the description of the desired results in a

declarative language, instead of an algorithm [Barbosa

and Soares 2008]. The SBTVD-T employs the NCL

(Nested Context Language) language in its declarative

environment [ABNT 2007] together with the Lua

language, for non-declarative applications.

The non-declarative environment, or the procedural

environment, requires the specification of each step to

be performed by the program. In this kind of

environment, the programmer has higher level of

control over the application and its execution flow, but

it’s also required a higher language and algorithm

knowledge [Barbosa and Soares 2008]. The Java

language is employed in the SBTVD-T’s procedural

environment.

Figure 1 exposes Ginga middleware’s architecture.

The Presenting is the subsystem responsible for

processing NCL documents, and the Execution

Machine is in charge of processing procedural

applications, i.e., Java Xlets [ABNT and CEET-

00:001.85 2008].

Figure 1 – Ginga middleware architecture [ABNT and

CEET-00:001.85 2008].

This paper’s scope doesn’t enclose the Ginga’s

declarative environment, focusing solely on Ginga-J.

For further information on application development

using Ginga-NCL, it is recommended [Barbosa and

Soares 2008].

3.1 Ginga-J

Ginga-J, the procedural environment for the Ginga

middleware, is currently under development and

doesn’t have an official implementation. On may/2008,

a draft version, without normative value, of Ginga-J

specification was released by ABTN (Associação

Brasileira de Normas Técnicas) and CEET-00:001.85

(Comissão de Estudo Especial Temporária de

Televisão Digital) [ABNT and CEET-00:001.85 2008].

This specification defines Ginga-J’s architecture and

execution environment, and is addressed to

applications and digital receivers developers.

 Ginga-J’s architecture is shown on Figure 2. In this

architecture, user’s applications (called Xlets) are

placed on the top level and must make use of Ginga-

J’s standard API (Application Programming Interface).

Resident Applications, on the other hand, may use non-

standard system resources, available from the operating

system or a particular implementation of Ginga. This

kind of application includes closed captions, system

messages, receiver’s menus, program guide, and others

[ABNT and CEET-00:001.85 2008].

Figure 2 – Ginga-J middleware architecture [ABNT and

CEET-00:001.85 2008].

 The Ginga-J’s reference implementation document

defines the Ginga-J API, a set of Java packages

included in Ginga-J. This API includes packages from

the following APIs:

 JavaTV [Sun 2009a]: an extension of Java

platform to add support for Digital TV

application development. It’s main goal is to

run applications abstracting the technologies

used on the broadcast.;

 DAVIC [DAVIC 1998]: is a set of

specifications aims to keep interoperability

between platforms involved on execution of

broadcasted audio and video;

 HAVi [HAVi 1999]: defines a home network

interoperability standard between audio and

video devices. HAVi packages’ also provides

resources for graphical users interface

creation, extending Java’s AWT 1.1 [Sun

1999];

 DVB [DVB 2009]: packages that extends

features from JavaTV, DAVIC and HAVi,

and includes other features, such as Xlets

communications, persistence, and others;

 Ginga Extensions: class set that includes

channel tuning control, media flow API, and

return channel API;

 ARIB STD B-23 [ARIB 2003]: API

compatible with japanese Digital TV standard

specifications;

 Ginga-J Definitions: packages that offer

functions to Ginga middleware-included

devices, such as multi-user interaction, and

the bridge with Ginga-NCL.

The full list of these packages is available from

[ABNT and CEET-00:001.85 2008].

Due issues related to copyrights costs, this

reference implementation of Ginga-J has not been

included in any digital receiver marketed in Brazil so

far.

In may/2009, the Board of the Forum of Brazilian

Digital Terrestrial Television System (Conselho

Deliberativo do Fórum do Sistema Brasileiro de TV

Digital Terrestre) decided [Fórum SBTVD 2009a] for

the implantation of JavaDTV [Sun 2009b] in the Ginga

middleware, instead of the previous published draft

[ABNT and CEET-00:001.85 2008]. This API is also

based on JavaTV and is very similar to the reference

implementation, but it replaces some proprietary

solutions.

The JavaDTV binaries are unavailable on the time

this papers is being writted and only its documentation

has been published [Fórum SBTVD 2009b].

This paper’s elaboration uses the reference

implementation so that it is possible to present a

functional version of the project. The framework’s

structure has been developed in a way that platform

specific details are isolated, making easier for the

migration process to be done when JavaDTV becomes

available.

3.2 Applications for the Digital TV

Applications for the Digital TV are called Xlets, just

like Java applications for the web and mobile are called

Applets and Midlets, respectively. An Xlet life-cycle is

shown in Figure 3. As soon as the application is loaded

to the set-top box, it will stay on the loaded state until

it’s started. Then it pass from the paused state to the

started state (where it is actually running), and may be

eventually paused and resumed again. Finally, the

application manager destroys the Xlet when it enters

the destroyed state [Burlamaqui et al 2008].

Figure 3 – The Xlet’s life-cycle [Morris 2005].

An important difference between an Xlet and an

Applet is the possibility to pause and resume an Xlet.

This is very important in a limited environment like the

digital receivers, where many applications could be

running at the same time and sharing the limited

available resources. This way, it’s possible to

temporary stop an application that is not visible and

release the resources to other applications [Morris

2005].

 A Digital TV application is, therefore, an

application that implements the Xlet interface provided

by JavaTV [Sun 2006]. The following are the public

methods of this interface:

 destroyXlet: signals the Xlet must be

finalized and enter in the destroyed state;

 initXlet: signals the Xlet must be initialized

and enter the paused state, which means

it’s ready to start providing a service;

 pauseXlet: signal the Xlet must stop

providing a service and enter it’s paused

state;

 startXlet: signals the Xlet must start

providing a service and enter it’s started

state.

The Xlet interface allows an application manager to

create, initialize, start, pause and destroy an Xlet. Due

its life-cycle, it’s possible that several different Xlets

are controlled at the same time by the application

manager, and the runtime environment chooses which

one should be active in a given time.

For the elaboration of this paper, while the

JavaDTV is unavailable, the reference implementation

[ABNT and CEET-00:001.85 2008] has been used.

Tests with the built applications were held with the

XleTView [Sveden 2004], an Xlet emulation software

that allows testing applications developed for the

Digital TV [Carvalho and Araújo 2009].

4. Ginga Game

Ginga Game is a Digital TV game development

framework proposed in this paper. Its goal is to provide

a structure that makes it easier to develop games for

the Digital TV and make this task more similar to the

development for personal computers.

 The purpose on the creation of a software

framework for game development is to avoid that

common tasks be implemented again every time a new

game is produced. [Valente 2005] presents a similar

approach, but focuses on the reuse of software

components for computer game development.

 Ginga Game provides an application model that

automatically performs several recurring tasks

concerning game development, such as resources

loading and component management, and allows the

developer to focus on its game specific code.

 This approach is similar to the models provided by

XNA [Microsoft 2009] and Unity 3D [Unity 2009], for

instance. These tools provide a complete game

structure and the developer must only write the code

that defines the behavior of its game components and

add them to the game scenes.

 Ginga Game is subdivided in three different Java

packages. This implementation was made in a way that

classes that need platform specific resources are in a

separate package from the classes that doesn’t have

this kind of dependency. So, the migration of Ginga

Game to another platform could be made just by doing

the required modifications in only one package, while

the others remain unchanged.

 The package GingaGame provides some abstract

interfaces that must be implemented in a platform

specific package. In this package are defined basic

concepts of the framework, such as game objects and

game components, scenes, and the application model

that manages these objects.

 The package GingaGame.GameComponent has a

set of ready to use components. These components

must be added to objects in a game scene. Among the

developed components are AnimatedSprite (that allows

the drawing of animated images), StaticSprite (for

drawing static images), and BoundingBox (for collision

checking using rectangles). More components will be

developed over time.

Lastly, the GingaGameJavaTV package encloses all

platform specific classes, in a JavaTV specific

implementation. An example of platform specific

resource is the window manager. JavaTV uses the class

HScene (from the HAVi package) to access the

application’s windows. These classes are put apart

from the remaining classes of the framework to make it

easy to change the execution platform, if it’s needed.

This way, only the platform specific code should be

modified, but the interfaces remain the same.

The UML Package Diagram for Ginga Game is

shown in Figure 4.

Figure 4 - Ginga Game Package Diagram.

4.1 How Ginga Game works

Games created with Ginga Game are made with a class

that extends the framework’s Game class. This is the

main class in the framework, and it works as a starting

point on the creation of new games, while it’s also

responsible for running the application model and the

component management.

A game can be decomposed into logical units called

scenes that are instances of the Scene class. Each scene

is independent from other scenes and could be

initialized and finalized at any moment by the game. It

may also hold several game components and objects

that are loaded and removed from the game at the same

time of the scene. This division allows a simpler game

organization, where each screen, stage or level can be

described as a scene.

A scene or the game can hold a game object

collection, where a game object is an instance of the

GameObject class. These entities interact with each

other and these interactions are what give life to the

game. Characters in an adventure game or cars in a

racing game, for instance, could be described as game

objects. A game object may be added to a scene or the

game (in this case, it will be a persistent object that

will not be destroyed when the scene is finalized). A

game object may contain one or more game

component.

The game components are instances of the

GameComponent class used to compose a game object.

For instance, a car object can be composed by wheels,

engine, lights and several other items. Each of these

items can be represented as a game component.

It’s up to the developer to use the components

available from the framework or create its own. The

GameObject and GameComponent classes can be

extended so the developer can create its own content.

This approach allows software reuse at various levels.

Depending on how the content was created, scenes,

objects and component can be easily reused in other

games. For example, a game options screen (a scene)

can be shared between games that have the same user’s

options. Likewise, an object used to account player’s

scores can also be the same in several different games.

Ginga Game has classes to manage game resources

and execute certain routine tasks. The Screen class is

responsible for drawing images and text into the game

screen, while the ContentManager class is employed to

load and manage resources, such as images and fonts.

User interface is made through the Input class that

must query the remote control keys’ state e provide this

information to the game components.

A collision manager verifies if a collision has

occurred between solid objects in a scene and notifies

the objects involved in the collision. This way, a solid

object doesn’t need to query if a collision has occurred

at any time, when it happens an event is triggered and

the object can treat it.

In future versions, more components will be

available and the common content will be more and

more separated from the specific content a game may

need.

A simplified UML Class Diagram for Ginga Game

is shown in Figure 5.

Figure 5 - Ginga Game Class Diagram.

4. Validation of the Ginga Game

To illustrate the development of a game with Ginga

Game, a simple quiz game has been elaborated. While

it’s a very simple game, it helps to illustrate the use of

the framework, since many of Ginga Game’s features

are employed.

The game works as follows: a question and four

answers are shown to the player. The answers appear

inside red, green, yellow and blue buttons, using the

colors of the remote control button’s to make the

process more intuitive. For each question the player

must press the correspondent button color that he

thinks is the right answer. A component accounts how

many right and wrong answers the player has given.

Figure 6 shows the game’s project, where it’s listed

its classes and images. Following is a brief description

of each class:

 Botão (Button): a game object that

represents one possible answer to the

question. A button is related to an image

(a StaticSprite) and to a text (the answer);

 Controle (Controller): the game object that

verifies if a remote control key was

pressed and tests if the right answer was

chosen. The controller tells the scoreboard

if the answer was correct or not and

requests a new question to the game;

 GingaGameQuiz: the application’s starting

point. This class creates the Xlet and a

game instance;

 Jogo (Game): an instance of the Game class

that is responsible for initializing the game

scenes, as well as the scoreboard (a global

object that controls the player’s score);

 Pergunta (Question): a game object that

represents a question in-game.

 Placar (Scoreboard): a global game object

created by the game, not a scene, that

controls player’s score;

 TelaDePergunta (Question Screen): each

question screen is a scene that contains a

question, a controller and four buttons. In

order to add more questions to the game,

it’s needed just to create more instances of

this class.

Figure 6 - Quiz Game classes.

This game exemplifies de use of Ginga Game’s

classes in a very simplified way. In the game the game

object, game component and scene concepts are used

to divide the game in smaller logical units.

Figure 7 shows a game screen on the XleTView

emulator. The area within the yellow lines are the

game itself (a question on the top, the answer options

on the right side using the colors of the remote control,

and a scoreboard on the lower-left corner) and the

remote control on the left side is provided by the

emulator.

Figure 7 – Sample game developed using Ginga Game.

New features could be easily added. A win screen,

for instance, can be created through a new scene that

could be loaded after the player answers some correct

questions.

5. Conclusion

The development of games for the Digital TV in

Brazil, using the Ginga middleware, either within the

procedural environment (Ginga-J) or the declarative

environment (Ginga-NCL) is possible and the appeal

the games have may help popularize the interactive

content on SBTVD-T.

 Software development auxiliary tools has great

importance and the creation of frameworks that allows

greater code reuse and reduces the needing to rewrite

code for common tasks may help to make the process

quicker and more intuitive.

 With the elaboration of Ginga Game, it’s expected

to make the process of creating games for the Digital

TV simpler, providing an environment that abstract the

execution platform and allows the developer to focus

only on the game’s logic. Through its structure, Ginga

Game proposes an environment that allows a high rate

of software component reuse, reducing the creation

time for new games, as previously created components

can be reused in new projects.

 Future versions of the framework could add current

unavailable features, such as sound and video

playback, as well as the integration with NCL

documents.

References

ABNT - Associação Brasileira de Normas Técnicas, 2007.

Televisão digital terrestre - Codificação de dados e

especificações de transmissão para radiodifusão digital -

Parte 2: Gimga-NCL para receptores fixos e móveis -

Linguagem de aplicação XML para codificação de

aplicações. Sistema Brasileiro de TV Digital Terrestre,

NBR 15606-2. Available from:

http://www.dtv.org.br/download/pt-

br/ABNTNBR15606_D2_2007Vc3_2008.pdf [Accessed

20 April 2009].

ABNT - Associação Brasileira de Normas Técnicas, 2008.

Televisão digital terrestre – Receptores. Sistema

Brasileiro de TV Digital Terrestre, NBR 15604.

Available from:

http://www.abnt.org.br/imagens/Normalizacao_TV_Digit

al/ABNTNBR15604_2007Vc_2008.pdf. [Accessed 20

April 2009].

ABNT - Associação Brasileira de Normas Técnicas and

CEET-00:001.85 - Comissão de Estudo Especial

Temporária de Televisão Digital, 2008. Televisão digital

terrestre - Codificação de dados e especificações de

transmissão para transmissão digital – Parte 4: Ginga-J -

Ambiente para a execução de aplicações procedurais

(VERSÃO DRAFT 05/2008). Available from:

http://www.openginga.org/00_001_85_006-4abnt_port-

DRAFT-05200.pdf [Accessed 23 April 2009].

ARIB, 2003. Application Execution Engine Platform for

Digital Broad Casting – ARIB STD-B23. Available

from: http://www.arib.or.jp/english/html/overview/

doc/6-STD-B23v1_1-E1.pdf [Accessed 21 June 2009].

Barbosa, S.D.J. and Soares, L.F.G. TV digital interativa no

Brasil se faz com Ginga: Fundamentos, Padrões, Autoria

Declarativa e Usabilidade. In T. Kowaltowski & K.

Brealtman (orgs.) Atualizações em Informática 2008. Rio

de Janeiro, RJ: Editora PUC-RIO, 2008. pp.105-174.

Brasil. Decreto n 5.820, de 29 de Junho de 2006. Implantação

do Sistema Brasileiro de Televisão Digital Terrestre -

SBTVD-T. DOU de 27/11/2006.

http://www.planalto.gov.br/ccivil_03/_Ato2004-

2006/2006/Decreto/D5820.htm [Accessed 23 June 2009].

Burlamaqui, A., Silva, I. R. M. and Bezerra, D. H. D., 2008.

Construção de programas Interativos para TV Digital

utilizando o Ginga. Available from:

http://gingarn.wikidot.com/local--

files/tvdiepoca08/capituloTVDIEPOCAFinal.pdf

[Accessed 23 June 2009].

Carvalho, S. R. C. and Araújo, V. T., 2009. Emuladores para

TV Digital – OpenMHP e Xletview. Available from:

http://www.tvdi.inf.br/upload/artigos/artigo7.pdf

[Áccessed 31 March 2009].

DAVIC, 1998. Digital Audio-Visual Concil Davic 1.4.

Available from: http://www.davic.org/down1.htm

[Accessed 20 June 2009].

DVB, 2009. Digital Video Broadcasting – Standards &

BlueBooks. Available from:

http://www.dvb.org/technology/standards/ [Accessed 21

June 2009].

Ferreira, D. A. and Souza, C. T., 2009. TuGA: Um

Middleware para o Suporte ao Desenvolvimento de Jogos

em TV Digital Interativa. Centro Federal de Educação

Tecnológica do Ceará. Available from:

http://code.google.com/p/tuga-

sdk/downloads/detail?name=TuGA_Middleware.Jogos.T

VDigital_v1.6.pdf [Accessed 21 May 2009].

Fórum SBTVD, 2009a. Fórum do Sistema Brasileiro de

Televisão Digital define o padrão para a interatividade.

Available from:

http://www.forumsbtvd.org.br/materias.asp?id=127

[Accessed 30 May 2009].

Fórum SBTVD, 2009b. Sun Microsystems entrega

especificações Java DTV para Ginga-J sem cobrança de

royalties. Available from:

http://www.forumsbtvd.org.br/materias.asp?id=74

[Accessed 12 June 2009].

Ginga, 2009. Available from: http://www.ginga.org.br/

[Accessed 20 June 2009].

HAVi, 1999. Technical Background – HAVi, the a/v digital

network revolution. Available from:

http://www.havi.org/pdf/white.pdf [Accessed 20 June

2009].

Junior, A. N. S., Souza, A. C. S., Santos, L. C. M., Sampaio,

R. L. and Raimundo, P. O., 2009. Desenvolvimento de

Jogos para o Sistema Brasileiro de TV Digital, I Santa

Catarina Games. Available from:

http://200.169.53.89/scgames/artigos/08980100014.pdf

[Accessed 18 June 2009].

LAViD, 2009. Available from: http://www.lavid.ufpb.br/

[Accessed 24 June 2009].

Lima, F. M., 2007. Protocolo de Aplicação para Jogos de

Tabuleiro para Ambiente de TV Digital. Available from:

http://www.midiacom.uff.br/~debora/fsmm/trab-2007-

2/protocolo.pdf [Accessed 21 April 2009].

Microsoft, 2009. XNA. Available from: http://www.xna.com/

[Accessed 01 June 2009].

Morris, S., 2009. An Introduction To Xlets. Available from:

http://www.mhp-

interactive.org/tutorials/mhp/xlet_introduction [Accessed

30 May 2009].

Sun, 1999. The AWT in 1.0 and 1.1. Available from:

http://java.sun.com/products/jdk/awt/ [Accessed 28

March 2009].

Sun, 2006. Interface Xlet. Available from:

http://72.5.124.55/javame/reference/apis/jsr217/javax/mi

croedition/xlet/Xlet.html [Accessed 30 March 2009].

Sun, 2009a. Java ME Technology – Java TV API. Available

from: http://java.sun.com/javame/technology/javatv/

[Accessed 28 March 2009].

Sun, 2009b. Java(TM) DTV 1.0 Final Release. Available

from: https://cds.sun.com/is-

bin/INTERSHOP.enfinity/WFS/CDS-CDS_Developer-

Site/en_US/-/USD/ViewProductDetail-

Start?ProductRef=javadtv-1.0-oth-JPR@CDS-

CDS_Developer [Accessed 30 May 2009].

Sveden, M., 2004. xleTView. Available from:

http://www.xletview.org/ [Accessed 30 May 2009].

Telemídia, 2009. Available from: http://www.telemidia.puc-

rio.br/ [Accessed 24 June 2009].

Unity, 2009. Unity: Game Development Tool. Available

from: http://unity3d.com/ [Accessed 01 June 2009].

Valente, L., 2005. GUFF: Um Framework para

desenvolvimento de jogos, Dissertação (Mestrado) -

Universidade Federal Fluminense – Instituto de

Computação. Available from:

http://guff.tigris.org/docs/Thesis05-pt.pdf [Áccessed 07

March 2009].

