
A Fast and Safe Framework to Prototyping Physical Worlds Using XNA
and GPU

60360

Abstract

Computer games are becoming an important resource for many
educational purposes. The increase of computational power and
new paradigms of engine architectures not only reinforce this, but
also make available new approaches to real time applications. It
is also well known that interactive environments are strong mech-
anisms for a more efficient content comprehension and assimila-
tion. One of these fields is physics, where experimentations and
real time interactions are desirable. Although there are many soft-
ware and computational environments focused on physics learning,
few programming tools offer the facility for programming appli-
cations and experiments. This work presents a novel framework
for physics programming that combines the facilities available in
Microsoft XNA framework with C# and GPU acceleration. The
present framework implements a complete set of functionalities for
dynamic simulation of rigid bodies, encapsulating them completely
with XNA.

Keywords:: Education for physics, XNA, CUDA, GPU acelera-
tion

Author’s Contact:

60360

1 Introduction

A considerable amount of the power increase in computer technolo-
gies is pushed by the video-games and interactive entertainment in-
dustry, which aims at more and more realistic virtual experiences
for the players. Due this, games and rich environment simulations
are applications that demand complex tasks to be developed. In fact,
they are composed of various computationally intensive problems,
such as artificial intelligence, physics simulation, scene database
query, networking, audio, video, I/O, etc.

Beyond entertainment, it is well known that video-games can have
many applications, such as education [Dede 1995; Papastergiou
2009; Gee 2004], training and health. An example of this is the
American’s Army game, created by the United States Army with
the purpose of providing an experience in the US Army tasks, fo-
cused for civilians’ usage [Strong 2002].

Computer games and simulation is proved to be extremely effi-
ciently at all stages of education not only for reinforcing knowl-
edge but also for archieving high-level cognitive, affective and psy-
chomotor objectives [Papastergiou 2009]. With this in mind, Mi-
crosoft Robotics [Microsoft 2008], a commercial platform for de-
veloping robotic applications, was developed, targeting students
and researches on robotics, given them a framework that is capable
of prototype a simulation easily in a few period of time [Workman
and Elzer 2009].

The increase in computational power is making it possible to apply
more efficient real time physics calculations. Simulations that were
impossible to be executed in real time are now becoming possible
[Yeh et al. 2006] and a large number of libraries and frameworks
for this purpose are becoming available. Beyond the direct applica-
tion on game development, these tools are also becoming an appro-
priate mechanism for physics teaching and research by educators
[Mayo 2007; Squire et al. 2004]. At this moment, most of these
libraries can simulate rigid bodies, soft bodies and fluids, which act
according to parameters that are set by the user in the simulation.
Unfortunately, the usage of these libraries is not a trivial task and
sometimes requires a lot of effort.

While some frameworks are purely code and allow programming
almost any situation, some of these physics simulation frameworks

are implemented using a visual interface, allowing an interactive
feed-back of the application [Intel 2000]. The first situation re-
quires highly specialized programming skill and the second brings
many restrictions for the experiments and educational process. An
alternative can be the direct usage of a commercial game [Price
2008; Price May 2008] to build an educational experiment, but the
constraints are stronger than using the visual interface of the engine
itself, as most commercial games were not mainly designed to fo-
cus on education. In this case, making a simple physics simulation
could be hard or even impossible as most of the physical related at-
tributes are hidden from the user due they irrelevance in the game.

Another option can be the use of a commercial game engine that
hides most of the low level programming from the user like is the
case of [Unity 2004]. In this case, experiments could be made eas-
ily from researches at cost of numerical precision, as most game
engines needs to deal with many subsystems like sound, artificial
intelligence and networking which are hardly ever necessary for
experiments research.

For complex physics simulation, integration with some API, such
as OpenGL, DirectX, and CUDA, is required in order to achieve
satisfactory and interactive results. However, this approach would
increase even more the complexity for the educators, due to tasks
that require expertise in systems architecture and computer pro-
gramming. In this case, an educator that has a good knowledge
in physics would also need skills related to computer graphics and
GPU programming, loosing focus on the main educational purpose.

Many of these physics libraries are based on C/C++, since they re-
quire a lot of optimizations and are very computationally intensive.
These classes of languages are called unmanaged languages, and
are much harder for a simple user. They present complicated house-
keeping details and development difficulties that are not related to
the intended application, which are time consuming and error prone
tasks. Another issue related to this kind of languages is its compi-
lation time that can be too long depending of the application’s com-
plexity and size. For these reasons, the use of script languages like
Lua [Puc-Rio 1993] is an obligation to avoid application recompi-
lation and increase productivity.

In this paper we present a framework that gives educational soft-
ware developers and educators with minima experience with pro-
gramming an appropriate environment that facilitates the produc-
tion of educational content, in particular on physics. The tools de-
veloped by this framework can also be used by research groups.
This solutions intends to be a fast, easy, and safe way for explor-
ing physics using computer graphics and interactivity. As it is an
extension of the Microsoft XNA [Microsoft 2004] framework, it
inherits its facilities. The proposed framework was developed with
the following requirements:

• Memory safety, avoiding the user to worry about issues that
are not related to the application itself;

• Fast interactivity and speed for showing the results to the user
when executing the application;

• A fast physics end very efficient simulation that runs on GPU
instead of CPU;

• Easy to use, even for non-programmers;

• Expansibility, allowing the development of other kinds of ap-
plications in the future;

• Modularity;

• Low coupling with other modules inside XNA framework.

By adopting XNA as the base for the application, an efficient mem-
ory safety, ease and minimal compilation time is achieved, since

these are benefits allowed by the C# language. We present a dis-
cussion about the efficiency related to unmanaged languages, like
C++.

Choosing the Microsoft XNA and C# language was important for
handling different kinds of input devices, graphics, sound, and net-
work tasks easily. Due to its rich documentation and good software
architecture, our proposed tool may be easily extended for more
complex environments related to different specific physical edu-
cational processes. We built the framework completely based on
Nvidia CUDA [NVidia 2004]. CUDA is a computer architecture
that uses a C like programming language. Using this, the GPU can
be fully explored as a parallel processor, allowing a very fast and
efficient approach.

The rest of the paper is organized as follows. Section 2 discusses
related work, section 3 presents the framework architecture and its
core components and section 4 explains the usage of these compo-
nents. Section 5 presents the results and section 6 brings an exam-
ple of developing a physical world simulation using the framework.
Finally, section 7 concludes the paper.

2 Related Work

Many efforts had been made in order to facilitate the development
of real time physics simulation by end users. One of the main ob-
jectives consists on hiding low level aspects to the developer, like
file manipulation, direct low level programming, and graphics in-
tegration, among others. Following these criteria, Kačić-Alesić
[Kačić-Alesić et al. 2003] proposed a plug-in that could do rigid
and deformable body dynamics, particle dynamics, and hair and
cloth simulation at a basic level. Although this work presents an
elegant architecture, it still needs some kind of integration with the
application, assuming that the user has a minimum knowledge of
low level computer programming.

Shapiro [Shapiro et al. 2007] developed a toolkit that enables the
users to create dynamic controllers for articulated characters under
physics simulation, mixing pose animations with physically based
motion. To prevent the user from using low level languages, this
work provides script languages for interaction with the simulation.
Although it is a good solution for end users and educational pur-
poses, it is restricted only to articulated characters, not allowing
more general physics simulation to be done.

In [Popović et al. 2000], the authors propose a simulator where the
user can give the initial position, velocity, and final position of the
simulated object. The simulator automatically generates physics
based motion based on the input constraints. This simulator is easy
to be used by end users but unfortunately is not capable to make
different physics simulations.

PhysX [NVidia 2008] is a powerful physics engine that can be used
with GPU acceleration, but requires knowledge of low level com-
puter programming and requires graphics integration knowledge
from the user for graphical feed-back. In some cases, a script lan-
guage is also needed to avoid the simulation recompilation in case
of parameters changing in the application.

In [Joselli et al. 2008], the author proposed an architecture of
physics simulation engine with automatic process distribution be-
tween GPU and CPU with physics simulation done in CUDA. This
achieves a better performance but still requires knowledge of low
level programming by the user to be used.

VPython [Scherer 2000] is a framework that uses the Python pro-
gramming language for creating 3D simulations and is used by re-
searches in various scientific fields [Mayo 2007] including Physics
research. Although easy to use and fast interactively to show the
simulation results, a simulation that requires a high physics pro-
cessing and/or deal with a large amount of data maybe not be able
to run in real time due the fact that it uses the CPU for all the simu-
lation processing.

Our framework has a simulation that runs on GPU instead of CPU
to achieve better performance but do not require any type of low
level computer programming to use. It provides the user a fast, ease,

and safe environment for researches using most of the technology
that is used in cutting edge games. At the same time, it is very
easy to expand due its modularity, allowing the addition of new
functionality to supply the user necessity without much effort.

3 The Framework Architecture

The proposed architecture was built with easy use and extensibility
in mind, adopting a plug-in strategy [Birsan 2005]. In this case,
anyone who needs a functionality that is not present in the frame-
work can add it without the necessity of modifying or even recom-
piling the framework, by only attaching the new developed module
to it. As its main target is educators, it needs to be easy to work
with and understand as most of the users do not have background
in computer programming. Thus, the framework needs to provide
mechanisms that involve as few programming as possible, letting
the educators focus on the physics simulations as much as possi-
ble. In Figure 1 a simple class diagram of the entire framework
is shown. As it can be seen, the core subsystems that compose it
are the services, the game screens, and the game object subsystem.
Each of them is presented in more detail below.

Figure 1: The framework architecture

3.1 Services

Services in the framework are modules that are available to be used
entirely in all stages of the simulation. The basic concept is that
services are unique and their tasks are well defined. Tasks that are
strong candidates to be implemented as services are rendering, in-
put event handling, and sound management. With this basic ar-
chitecture of services, most of the references that a class needs to
maintain are avoided, like a model that needs to use a render man-
ager to be displayed.

Due to its nature, the framework only allows the instantiation of
one service per type. In this case, if a service that was already
previously added to the framework is added again, the framework
will throw an exception.

As services are unique in the framework, problems of initialization
can occur. One example of such problems is related to the physics
service. Sometimes this class will need a service of rendering for
debug purpose and probably will store a reference of this service
inside of it. As services are created one after another, the physics
service would not know if the rendering service is available at the
moment of its initialization, requiring, at least, one boolean check
to verify if the required classes have already been created, as it is
possible to see in Listing 1. To avoid this problem, the services

are initialized in two steps by the framework. In the first step, all
services are created by the framework in a batch. In the second step,
the framework calls the Initialize method of all services. At this
moment, each service can initialize itself and asks for its services
dependency in a safe way.

void Update ()
{

i f (! r e n d e r i n g I n i t i a l i z e d &&
Framework . I n s t a n c e . S e r v i c e s . G e t S e r v i c e <

Render ing >() != n u l l)
r e n d e r i n g I n i t i a l i z e d = t rue ;

i f (r e n d e r i n g I n i t i a l i z e d)
/ / r e n d e r p h y s i c s o b j e c t

}
Listing 1: Check for dependency service

3.2 Game Screen

Game screens are used in the framework as a way to organize and
manage a collection of scene elements. It can be thought as a col-
lection of objects that are updated in batch by the engine, with some
methods and properties to facilitate the organization and manage-
ment of this collection in the framework.

Most physics libraries use some kind of container to organize all
objects in the simulation that can interact with each other. In this
case, objects that reside in a space have no influence over objects
that resides in another space, making possible more than one sim-
ulation running in parallel. Using game screens it is possible to
simulate the same behavior, as the framework runs them in parallel
and objects that are in a game screen does not have influence over
objects that are in another, although the same object can be added
to more than one game screen.

A game screen is an object derived from abstract class GameScreen.
In order to facilitate the user, the framework already provides the
derived class PhysicsSimulationScreen, which initializes and starts
all required services necessary to work with physics simulation. If
desired, a new GameScreen based class could be created by the user
with minimal effort.

3.3 Game Objects

A game object is the basic and only element that can be simulated
in the framework. It is based on the concept of Game Object Com-
ponent System [Bilas 2002]. In this system, the author proposed
the use of aggregation instead of inheritance to define a new func-
tionality in a game object. Thus, as an example, game objects that
need to be rendered must implement a component that handles this
task. Using this approach, some problems related to inheritance
are avoided and new game objects can be easily implemented by
the user, who only needs to define new components to handle the
required specific task.

In order to be simulated, game objects need to be attached to a
GameScreen object, which is responsible to update each game ob-
ject in the right time during the simulation. In advance, to better
manage game objects, they need to be unique in the game screen.
To achieve this, each game object has an identifier, which is set by
the user during its instantiation. This identifier is used to avoid the
same game object to be added more than once in the same game
screen, although it can be added in more than one game screen. A
game object is an instantiation of the class GameObject.

Game objects, to be properly used, are composed of a collection
of components, as discussed before. Components in game objects
may need to use other components in order to work appropriately.
This kind of dependency is solved by using a technique called de-
pendency injection [Passos et al. 2008]. By using this strategy,
components are “injected” automatically in compilation time into
components that have this kind of dependency. This guarantees
that all dependencies are satisfied inside a game object before the
simulation starts.

Figure 3: The input device service

Game objects and components that handle the physics simulation
are implemented in the core of the framework. As an example,
Listing 2 shows how a game object that represents a sphere-shaped
rigid body can be used in the framework.

GameObject go = new GameObject (” b a l l ”) ;
R i g i d B o d y S i m u l a t o r simbody = new

R i g i d B o d y S i m u l a t o r () ;
simbody . AddShape (new Sphere (1 , 1 , 1)) ;
go . Components . Add (simbody) ;

Listing 2: Game object to simulate physics

4 Built-in Services

As discussed before, services are an important mechanism to enable
extensibility of the framework. Although they can be created by the
user, the framework provides some basic services to allow it to run.
All the services listed below are necessary for allowing an educator
to define its physics simulation.

4.1 Input Service

Input services are responsible to deal with input devices. Currently,
the framework has only support to deal with mouse and keyboard
devices but others can be easily added by the user. In Figure 3,
the diagram shows how it is implemented by the framework. As
it can be seen, each device needs to implement the IInputDevice
interface, which has a State member for querying about the state of
the specified device as its own methods.

4.2 Graphics Service

Graphics tasks need to deal with different kinds of models that can
be rendered differently from other kinds of models. One example of
this is the shader effect that can vary from one model to another, re-
quiring different parameters so that the model is properly rendered.
As a consequence, each type of model could require the creation of
a different class of render component in order to render the models
of that type. Even more, GameObject is a sealed class, so it is not
possible to simply extend this class to deal with custom parameters
in the models.

In Figure 2, a sequence diagram is shown to better elucidate how a
model is rendered in the framework. The adopted approach to work

Figure 2: The rendering sequence diagram

Figure 4: The graphics service

with graphics is shown in Figure 4. As an example, the XNAModel
class is shown in the diagram. It is a wrapper for the built-in Model
class from XNA, which is responsible for rendering geometry. In
this case, the interface IRenderable needs to be realized in order to
use the built-in Model class for rendering. This interface realiza-
tion is done by the XNAModel class, which encapsulates the built-
in Model class. With this approach, a Content Pipeline extension,
which processes data types defined by users, can be easily created
by using a custom model class that realizes IRenderable interface
and maybe inherits from the built-in Model class. The use of this
wrapper was necessary because this class does not implement the
IRenderable interface, which is required to render a model.

The next step is the setting of custom shader parameters. In or-
der to do that, the RenderableComponent also needs a class that
implements the IEffectUpdater interface. In the diagram, BasicEf-
fectUpdater is a class that implements this interface. It also must
inherits from Component class because RenderableComponent will
find it in its parents’ component collection, due to the dependency
injection method.

With this restriction, a class that implements IEffectUpdater inter-
face also needs to inherit from Component class. As the compo-
nents have a parent class, the IEffectUpdater will have access to all
data from a game object, allowing custom parameters to be setup in
a shader.

Finally, when it is time to render, the framework will invoke an
internal method of the RenderManager service which will render all
models that were added to its collection, making some optimization
in this process.

4.3 Physics Service

This service is one of the most important in the framework, as it is
responsible for the physical world simulation. This physics service
was made using CUDA, which yields high performance physical
world simulation in the framework, as physics tasks can be highly
parallelized.

Following the overall framework architecture, for an object to be
simulated using physics laws, a game object needs to be created
and it must have a physics component, as can be shown in Figure
6. With this architecture, it is easy for the user to create physics ob-
jects in the framework, as the only requirement is setting a physic
component to the game object to be simulated. To better elucidate
the overall process inside the framework, the physics sequence dia-
gram is shown in figure 5.

As an important feature, joints are also supported by the framework
through the physics service which needs two game objects as a pa-
rameter. In this case, these game objects will react according to the
joint constant added to them. At this time, the physics service only
supports rigid bodies but in the future it will be possible to simu-
late fluids and soft bodies with less or no impact in the framework
architecture.

5 Performance and Analysis

In this work, we evaluated the framework against jMonkeyEngine
[jMonkeyEngine 2003], a 3D engine that uses Java for simulation
programming. We choose jMonkeyEngine because Java is an easy
to use and powerful language for developing real time simulations.
Additionally, Java is very comparable to C# as both use a Virtual
Machine (VM) for running applications. For this comparison, we
used jMEPhysics [JMEPhysics], an interface that connects a vari-
ety of physics library to jMonkeyEngine, allowing the user to sim-
ple use it without worries about integrations with the render engine.

At first, we planned to evaluate the framework against VPython as it
is widely used in academic for physics simulations [Salgado 2001].
Unfortunately VPython has not a built in physics module or does
not use anyone available. In this case, the integration needs to be
done by the user if physics simulations are necessary.

The tests were performed on an Intel Core 2 Duo 2.4Ghz CPU, 4GB
of RAM equipped with a NVidia 9800 GTS GPU. Each instance of
the test ran for 30 seconds and the average time to compute a frame
was recorded for each one. To assure the results are consistent, each
test was repeated 5 times.

A total of 10 different test instances were performed for each frame-
work type, varying only the number of balls, ranging from 50 to
16000.

From the raw results, shown in Table 1, it is possible to see the
performance of the XNA framework using GPU for physics over

Figure 5: The physics sequence diagram

Figure 6: The physics service architecture

a CPU physics based. From this table, it is possible to see that
physics simulations in JMonkey decreases in a exponentially man-
ner whereas it is more linearly in XNA. Using GPU physics based,
more accurate simulations can be made as more powerful is given
for researches, as well.

6 Physical World Simulation

To show how easy people who does not have much knowledge
about computer and graphics programming can work with the pro-
posed framework, this section presents the basic steps necessary to
create a physical world. In Listing 3, the basic steps to create a
game object which will simulate physics are shown.

GameObject b a l l = new GameObject (” b a l l ”) ;
RenderableComponent r e n d e r a b l e = new

RenderableComponent (
new XnaModel (Framework .

Conten tManager . Load (” Bal lModel ”)
) ;

B a s i c E f f e c t U p d a t e r e f f e c t U p d a t e r = new

B a s i c E f f e c t U p d a t e r () ;
R i g i d B o d y S i m u l a t o r sim = new

R i g i d B o d y S i m u l a t o r () ;
sim . Mass = 1 0 . 0 f ;
sim . AddShape (new Sphere (1 , 1 , 1)) ;
b a l l . Components . Add (r e n d e r a b l e) ;
b a l l . Components . Add (e f f e c t U p d a t e r) ;
b a l l . Components . Add (sim) ;
p h y s i c s S i m u l a t i o n S c r e e n .

G a m e O b j e c t C o l l e c t i o n . Add (b a l l) ;

Listing 3: Physics simulation setup

Initially, to simulate the physical world, game objects need a com-
ponent that handles this task. In this case, the built-in Rigid-
BodySimulator component was used to this purpose, which, basi-
cally, updates the transformation matrix of a game object according
to parameters that were set in it like mass and inertia, among others.
This gives educators the freedom to simulate whatever physics con-
dition is desired, requiring minimal effort as these parameters can
be easily changed, even during the simulation. Another important
parameter that needs to be set in rigid body simulation is the colli-
sion shape of the object to be simulated. In this example, collision
was made by using a sphere shape but others are available, like box
and capsule.

Simulating physics objects only requires the RigidBodySimulator
component. As graphical output is important, a component needs
to be added in this game object so that its rendering can be made
possible. Here, it is used the built-in RenderableComponent. As
every object to be rendered requires a shader and this needs param-
eters, RenderableComponent component needs a way to retrieve
these parameters from the user. This is achieved by using a Basic-
EffectUpdater that is responsible to setup the shader with its parent
game object transformation matrix, as can be seen in Listing 4. The
benefit of using a graphics architecture like that is the reuse possi-

Table 1: Comparison Tests

actors time JMonkey fps JMonkey time XNA fps XNA

50 1,67 598,41 4,25 235,29

200 7,12 140,26 4,93 202,84

500 26,45 37,80 6,46 154,80

1000 78,61 12,72 10,60 94,34

2000 144,92 6,90 18,43 54,26

3000 190,11 5,26 26,99 37,05

4000 202,02 4,95 34,33 29,13

8000 - - 88,70 11,27

12000 - - 148,20 6,75

16000 - - 213,35 4,69

bility of this component by all RenderableComponent that requires
the same parameters to work. Finally, a static game object to sim-
ulate a ground plane, not shown here for clarity, is added to the
simulation.

With the steps above, the game object is ready to be simulated,
only needing a GameScreen to do that. As this example simulates
2000 game objects with the same configuration, the GameObject
class has a method called Clone that is responsible for duplicating
a GameObject. This method was provided to facilitate the creation
of more than one game object with the same components but with
different parameters that can be setup in each of them. Finally, an
image of this code running can be seen in Figure 6.

void Update (E f f e c t e f f)
{

e f f . P a r a m e t e r s [” World ”] . S e t V a l u e (P a r e n t .
Trans fo rm) ;

e f f . P a r a m e t e r s [” View”] . S e t V a l u e (
XNAEngine . Engine . I n s t a n c e . S e r v i c e s .

G e t S e r v i c e <XNAEngine . S e r v i c e s .
Camera >() . View) ;

e f f . P a r a m e t e r s [” P r o j e c t i o n ”] . S e t V a l u e (
XNAEngine . Engine . I n s t a n c e . S e r v i c e s .

G e t S e r v i c e <XNAEngine . S e r v i c e s .
Camera >() . P r o j e c t i o n) ;

}
Listing 4: Shader parameters setup

Figure 7: The simulation of 2000 rigid bodies

The code example shows how easy is the creation of an environment
for physics research by anyone who does not have a background
in computer programming or computer graphics. After setting the
components desired in GameObject, this one will behave according
to the parameters from which these components were configured.
In reality, composition of behaviors is one of the key aspects that
facilitate the use of the framework, as it has an architecture that
only requires the composition of behaviors to create different kinds
of game objects, which does not occur when using inheritance, as
most functionally cannot be easily shared among other classes.

7 Conclusions

In this paper, a framework that enables real time physics applica-
tions with graphical feedback was presented. The main purpose
of this framework is to help educators and researches in physics,
without background in computer programming and graphics pro-
gramming, to use technologies that are mainly used in games to
simulate physical environments. This is achieved by using a solid
architecture and a computer language that is easy to use and do not
have collateral effects. Additionally, it uses one of the most promis-
ing approaches to simulate physics — the graphics processor unit
and CUDA to parallelize the computations, releasing the CPU from
these tasks.

Due to its ease to use and understand characteristics, the frame-
work can be used in universities and schools to teach physics con-
cepts. According to recent studies, theories that can be simulated
and visualized using computer graphics are most easily assimilated
by students than others that cannot [Johnson 2005]. With this in
mind, physics educators can use the framework to present physics
concepts that are possible to interact and, at the same time, see the
results graphically.

The framework also has an architecture that allows it to be used in
other fields other than education as, for example, games, just need-
ing some additional services to be provided, like a sound manager.

The framework is a constant work in progress and we are now in-
vestigating how use the framework for simulating soft bodies and
fluids to allow a wide range of physics simulation enabled in real
time. We also plan to extend this to developing a visual editor to
allow the simulation to be created visually, without requiring pro-
gramming by the user of the framework. This could facilitate even
more uses of the framework.

References

BILAS, S. 2002. A data-driven game object system. Game Devel-
oper Conference.

BIRSAN, D. 2005. On plug-ins and extensible architectures. Queue
3, 2, 40–46.

DEDE, C. 1995. The evolution of constructivist learning environ-
ments: Immersion in distributed, virtual worlds. Educational
Technology 35, 46–52.

GEE, J. P. 2004. What Video Games Have to Teach Us About
Learning and Literacy. Palgrave Macmillan.

INTEL, 2000. Havok. http://www.havok.com/.

JMEPHYSICS. Jmephysics: interface between jme and physics en-
gines. https://jmephysics.dev.java.net.

JMONKEYENGINE, 2003. Jmonkeyengine 2.0 on line documenta-
tion. http://www.jmonkeyengine.com.

JOHNSON, W. L. 2005. Lessons learned from games for education.
In SIGGRAPH ’05: ACM SIGGRAPH 2005 Educators program,
ACM, New York, NY, USA, 31.

JOSELLI, M., CLUA, E., MONTENEGRO, A., CONCI, A., AND
PAGLIOSA, P. 2008. A new physics engine with automatic pro-
cess distribution between cpu-gpu. In Sandbox ’08: Proceedings
of the 2008 ACM SIGGRAPH symposium on Video games, ACM,
New York, NY, USA, 149–156.

KAČIĆ-ALESIĆ, Z., NORDENSTAM, M., AND BULLOCK, D.
2003. A practical dynamics system. In SCA ’03: Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 7–16.

MAYO, M. J. 2007. Games for science and engineering education.
Commun. ACM 50, 7, 30–35.

MICROSOFT, 2004. Creators club. http://creators.xna.
com/en-US/.

MICROSOFT, 2008. Microsoft robotics. http://msdn.
microsoft.com/en-us/robotics/default.aspx.

NVIDIA, 2004. Cuda zone. http://www.nvidia.com/
object/cuda_home.html#.

NVIDIA, 2008. Physx. http://www.nvidia.com/object/
physx_new.html.

PAPASTERGIOU, M. 2009. Digital game-based learning in high
school computer science education: Impact on educational ef-
fectiveness and student motivation. Comput. Educ. 52, 1, 1–12.

PASSOS, E. B., SOUSA, J. W. S., NASCIMENTO, G., AND CLUA,
E. W. G. 2008. Fast and safe prototyping of game objects with

dependency injection. In VII Brazilian Symposium on Computer
Games and Digital Entertainment, Sociedade Brasileira de Com-
putao - SBC, 64–69.

POPOVIĆ, J., SEITZ, S. M., ERDMANN, M., POPOVIĆ, Z., AND
WITKIN, A. 2000. Interactive manipulation of rigid body simu-
lations. In SIGGRAPH ’00: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
209–217.

PRICE, C. B. 2008. The usability of a commercial game physics
engine to develop physics educational materials: An investiga-
tion. Simul. Gaming 39, 3, 319–337.

PRICE, C. B. May 2008. Learning physics with the unreal tourna-
ment engine. Physics Education 43, 291–296(6).

PUC-RIO, 1993. The programming language lua. http://www.
lua.org/.

SALGADO, R., 2001. Vpython applications for teach-
ing physics. http://www.phy.syr.edu/˜salgado/
software/vpython/.

SCHERER, D., 2000. Vpython. http://vpython.org/.

SHAPIRO, A., CHU, D., ALLEN, B., AND FALOUTSOS, P. 2007.
A dynamic controller toolkit. In Sandbox ’07: Proceedings of
the 2007 ACM SIGGRAPH symposium on Video games, ACM,
New York, NY, USA, 15–20.

SQUIRE, K., BARNETT, M., GRANT, J. M., AND HIGGIN-
BOTHAM, T. 2004. Electromagnetism supercharged!: learning
physics with digital simulation games. In ICLS ’04: Proceed-
ings of the 6th international conference on Learning sciences,
International Society of the Learning Sciences, 513–520.

STRONG, A., 2002. America’s army official website. http://
www.americasarmy.com/.

UNITY, 2004. Unity3d. http://www.unity3d.com.

WORKMAN, K., AND ELZER, S. 2009. Utilizing microsoft
robotics studio in undergraduate robotics. J. Comput. Small Coll.
24, 3, 65–71.

YEH, T. Y., FALOUTSOS, P., AND REINMAN, G. 2006. Enabling
real-time physics simulation in future interactive entertainment.
In Sandbox ’06: Proceedings of the 2006 ACM SIGGRAPH sym-
posium on Videogames, ACM, New York, NY, USA, 71–81.

