
An evaluation of JavaFX as 2D game creation tool

Abstract

With the current growth in the user experience,and the

existence of multiple publishing platforms, the

investigation of new game creation tools that simplify

th development process, is important to reduce costs

and increase the overall quality of the products.

Based on this perspective, we present an analysis of the

JavaFX technology as a tool for 2D game

development. For instance, we will focus the

evaluation on the following features:

 deployment

 scripting support

 vector graphics support

 flexible main loop

 sprite caching

 collision handling

 audio support

 distribution license

Keywords: 2d games, JavaFX,, tool evaluation, RIA

Authors’ contact:

1. Introduction
JavaFX [1] is a GUI (Graphic User Interface)

framework created by Sun Microsystems, based on a

script language that merges XML[2] definitions with

embedded Javascript-like[3] code. JavaFX can use

pure Java classes integrated in the scripts, what make
possible to enhance existing Java applications with a

modern look and feel. With the perspective of an rich

user experience, our study is based on the creation of a

video game.

This guideline is based on the experience of creating a

side scrolling platform video game using the JavaFX

script technology. During the experiment of the game

creation several decisions were made in order to

accommodate the technology and the expected results

of the game, most of these decisions are described in
the paper separated in two main topics : The process of

development and issues found during this process.

At the process of development topic, we will go over

the integration with the design team, the sprites

caching management, the organization of the scripts

files and the collision handling. The issues found topic

will explain the current audio support of JavaFX, the

difficulties found to deploy the game and some license

restrictions of the JavaFX.

1.1 Web application complexity
Web applications filled a gap of good presentation for

the end user and solved the critical problem of

application distribution, but as the time goes the

continuous expectation of a more intuitive experience

by the end user force HTML based applications to its

limits, making lots of different technologies to be tied

together in order to build richer user experience. What

in the beginning was a good solution to easily

distribute applications using plain HTML, become a
technology nightmare with HTML, JavaScript, CSS,

Flash [4] all together, excluding from the list the server

side technologies as JSP/Servlets, PHP and ASP.

We believe that this proliferation of web technologies ,

pushed a natural movement to reduce the number of

technologies need in order to solve the same problems.

This movement has taken place in the last years with a

new way to build an web presentation layer, where the

technologies come with a rich set of possibilities in

only one box, a report from Zapthink [5] adds to the
need of a rich user experience the expectation of

decentralizing computing so the user has best cost/IT

assets available, and explain that these two forces were

the key for the RIA (Rich Internet Application) born.

1.2 RIA Technologies
The main players of these new way to build
applications are : Adobe Flex [6]/ AIR [7], Silverlight

[8] and JavaFX. All can run over web browsers [9]

and also run as desktop applications, moving the

applications to a client-server like model, with a

difference that the server communication now is based

on web services.

When comparing these three solutions based on the age

of the technology, Adobe Flash based solutions, that

are Adobe flex / One should be considered the most

mature solution since Flash was introduced in 1996

[10] and Adobe Flex itself was introduced in 2005
some years before Silverlight (2008) and also before

JavaFX (2008).

One of the main advantages and obstacles of RIA

technologies is the fact that a player needs to setup at

the user machine in order to work, Flash technologies

have an clear advantage on this race, most of the PC's

(Personal Computer's) have a flash player installed.

Image 1: Flash player penetration[11]

But even with this great penetration in the client side,

when we consider number of job offerings as market

adoption number, we see at image 2 that both Adobe

Flex and Silverlight from Microsoft are getting a

similar performance in jobs offering numbers, even

with the hype of JavaFX in the 2008 Java One, the

official 1.0 was in December of 2008 followed some

months later by a 1.1 release, based on this we will
have to wait a little bit more to see the market reaction

to JavaFX.

Image 2: Job offers in RIA market

We strongly believe that the current Java community

can embrace JavaFX technology based on the current

number of job offers of Java, see Image 3, compared

with other technologies related to Flash and Microsoft

(C#, Vbscript) and Javascript, we can see the potential

growth of JavaFX as a RIA option for the Java

community.

Image 3: Java job offers and other technologies [13]

Currently game development in Java have some

options beside the pure Java development or applet
based games, some frameworks are available in the

market, Jmonkey [14], JPCT [15], Pulpcore [16] and

GTGE [17], all use Java code for the game

development, the possibility of use an script language

as JavaFX can increase the productivity of the games,

and low the cost of maintenance.

2. Development process

For this experience we created a port of an existing

game used for the Global Game Jam 2009 [18], that

was originally created in XNA, and all the source code

of the game is available for download [19] using

subversion.

2.1 Game main loop
Most of the available samples of JavaFX are organized

in only one big script due to the simplicity of the

samples, in our case we will enforce that the separation
of script files will allow a object oriented organization

of the script files. Our main script will be the Main.fx

file that will have all the declaration of the instances

that the game will use.

First of all this script will have the instance of the

Game object that is an extension of the Stage class.

The Game.fx class uses an TimeLine [20] object to

control the game main loop, by using this type of

object we can control the speed of the game by

changing the time parameter of the Keyframe [12]
object inside the TimeLine

public class Game extends Stage {

 public var tick: Timeline = Timeline

{

 repeatCount: Timeline.INDEFINITE

 keyFrames: [

 KeyFrame {

 time: 10ms

 action: function() {

 mainLoop();

 }

 }]

 };

 public function mainLoop(){ }

 public function play(){ tick.play();

}

}

One special features of the language to highlight is the

Duration type that allows the usage of milliseconds,

seconds and minutes or combination of the three,

features like this and the simplicity of the created code

make the development process more intuitive.

The mainLoop() method check for objects that extends

the updatable class and call update method of each one

propagating the game tick for the objects that need

update in the game.

Image 4: Main loop sequence diagram

In order to use the Game class the Main.fx script

creates an instance of it and call the play() method that

starts the timeline and keep the game in constant loop.

var game: Game = Game {

 title: "Cabecudinhos ... "

 x: 0

 y: 50

 width: 800

 height: 600

 scene: Scene {content: bind

currentGroup }

 fullScreen: false

}

function run(__ARGS__ : String[]) {

 game.play();

 soundtrack.play();

}

Note that the instruction

var game: Game = Game {}

Creates an instance of the Game class and the initial

state of this object is defined inside the curly brackets

and the run method is the JavaFX implementation of

the Java main() method.

2.1 Design team integration
Game development teams need someone to fill the

artistic role, in order to create the environment, the

GUI, the characters and NPC's (non player characters).

JavaFX offers support uncompressed and compressed

bitmaps files, beside that offers a production suite

integration with some popular design tools as Adobe

Photoshop [21] and Adobe Illustrator [22] beside that

also offer an converter that reads SVG [23] files and

convert then to FXZ files, that are the standard format

used for images definition at JavaFX and can be read
in the code.

As the design can work in parallel with the

programming team, we can have colored rectangles

working as game characters during the development

process, this can be achieved within most of existing

game frameworks. With the use an SVG files

converted to FXZ format is possible to add an unique

identifier attribute to individual elements of drawings,

usually know as ID, and these are the reference used in

the script to manipulate the images that can be changed

by the design team without any sort of change in the
code.

The image 4 show the character created in the SVG

format after imported to the JavaFX project, and the

code bellow make the change in part of the object.

(player1.lookup("JFX:body")

 as Rectangle).fill = Color.BLUE;

Image 5: Imported SVG file

This approach allow the use of the FXZ files as
integration artifact that won't need any intervention

from the programming team in order to work properly

in the game, this integration allow the use of complex

objects and have its visual aspect changed by

programming instead of having multiple sprites for the

different states of the visual object.

2.2 Sprite caching
FXZ files are .Fx files compressed with ZIP [24]

algorithm, can most of the times are result of the

conversion from an SVG file. SVG files that are XML

based can describe for example an Circle within small

number of parameters, but depending of how the artist

build the Circle it can be defined by hundreds of nodes,

this demonstrate of how intense can be the processing

of FXZ files every time we need then in the game. This

is more clear when we have complex illustrations

composed by several components, and every call of
FXDLoader.load() [12] will force the parsing of the

FXZ files, in order to avoid this we implement an

caching mechanism to load the FXZ files only once

and reuse.

public class NodeFromFXZPool {

 var cache: HashMap = new HashMap();

 public function

get(source:String):Node{

 var content: Node =

 cache.get(source) as Node;

 if(content == null){

 content =

 FXDLoader.load(source) as

Node;

 cache.put(source, content);

 }

 return

Duplicator.duplicate(content);

 }

}

The key of the caching mechanism implementation is
the Duplicator [12] class that uses and existing Node

definition and create an independent copy of it.

2.3 Scripts Organization
In order to organize the code in classes we separated

the classes in .Fx files, but this created an problem
when defining the different Scene [12] objects of the

game, because we need to change the main game

instance in order to indicate Scene changes, this would

be simple to achieve if the scope of the event handling

methods belong to the objects created, but in JavaFX

the scope of the created methods belong to the script

where the method were created.

In this example we have the definition of an instance of

the HowToPlayGroup that will be show as current

scene of the game and when the onClick method is

call the currentGroup is changed to a value that is
declared in the Main.fx

var howToPlayScene: HowToPlayGroup =

HowToPlayGroup {

 onClick: function(){

 currentGroup = menuScene;

 }

}

In order to create this we build a callback solution in

the scene definitions to avoid coupling with the main

script,

public class HowToPlayGroup extends Group

{

 public var onClick: function(): Void;

 ...

 onMouseClicked: function(e){

 if(onClick != null){

 onClick();

 }

 }

 ...

}

With this callback strategy scenes can be treated as

independent artifacts that can be created and tested

without the main script, reducing external

dependencies and the coupling to the main Stage.

2.4 Collision Handling
In JavaFX games in order to check the collision of

game elements we use the Rectangle.intersect() method

that is provided with the language. There is a

possibility of having more complex collision handling,

this need additional implementation, that could be

iterating over the existing points from an imported

SVG file or from an script based polygon.

One workaround to this restriction is presented by

Silveira Neto [25] where a bounding box smaller than

the game object itself is created so part of the object
really overlaps the collision target when the collision

happens, offering to the player the visual feedback of

the collision.

Image 6: bounding box smaller than the image

3. issues

3.1 Audio support
The current version of the engine use an third party

video/audio decoder created by On2 [26][27], that

offers support to multiple video formats, and claims

that offers support to mp3 [28] files. After some tests

with different mp3 files encoded in different

frequencies and different quality JavaFX wasn't able to

play most of the combinations, the table1 shows some

tested combinations.

Frequency Encoding Duration File size Result

48000Hz 128bits > 1sec 456K Failure

48000Hz 96bits > 1 sec 341K Success

48000Hz 32bits > 1sec 114K Failure

48000Hz 16bits > 1 sec 57K Failure

Table 1 : MP3 combinations tests

For sound effects that multiple files are used, the

possibility of use 16bits against 96bits when encoding

the audio files would the audio footprint of the game

six times smaller.

An solution found for this mp3 restricted support were

to implement a version of MediaPlayer that support

Mp3 by using the integration of the Jlayer library [29].

This implementation [30] were made using a

combination of an Java and JavaFX implementation of

AbstractAsyncOperation. The same solution can be
used to add support to OGG [31] files and WAV [32]

files or any other audio format.

3.2 Deploy of the game
We tested the Applet and webstart [33] deploy of

JavaFX applications. For the Applet or the webstart

deploy the user needs to download the JavaFX
Runtime environment that can't be released with the

application due to license restrictions, that force the

end user to be on line when first runs the game. This

restrictions is a roadblock to the usage of JavaFX as

solution to create standalone games, where the user

don't need internet connection to play.

Using the webstart solution the end user is forced to

handle dialogs in English, without an option to

translate to the user's language, this is a serious

restriction for publishing games to the general public in

special for the Brazilian market. Other issue on using

the webstart solution is the fact that even with Java

Runtime Environment installed webstart application

files are not automatically run, what adds an extra

complexity to the end users, in order to execute the

webstart file.

Another issue when using the JavaFX as an Applet is

the fact that the whole applet must be downloaded
before the user can start the interaction, this generate a

high level of frustration due to the fact that Applet

download don't give the user a feedback of the

percentage of the download. Pulpcore Other game

solution based on applets, solved this issue by creating

an small applet with less than 200k, size depends on

messages or custom actions in the loader, that loads the

real application applet, and can show to the user a

feedback of the percentage of the download.

4. Related work
Despite the fact of JavaFX is new and still with some

bugs, there some casual games developed with this

technology. There are few game implementations in

JavaFX at this time, Pacman [34] and Brick Breaker

[35] are examples of the use of the technology in 2D

game creation.

Image 7 Pacman clone

Image 8 Brick break

5. Conclusions

Based on the fact that Java language itself has a good

popularity (see image 3), and JavaFX offers a full

integration with existing Java code, we can assume that

JavaFX has a good chance to be the next natural GUI

framework choice for Java games and applications.

Related to the evaluation itself, we can conclude that

JavaFX can be used to create game applications with

some restrictions. The current audio support has
restrictions related to mp3 files and no OGG files

support. Only controlled environments where the users

can make sure that access to the Internet is available, is

the expected deployment scenario in order to download

the JavaFX runtime environment.

Follow the summary of the JavaFX evaluation using

the 2D game development challenges table:

deployment Online required, >10mb

runtime download

scripting support Full with JavaFX script

vector graphics

support

Can be imported to

framework script

flexible main loop Created with TimeLine

sprite caching Can be done

collision handling Rectangles only

audio support Poor mp3 support, no OGG

distribution license Can't distribute standalone

runtime, need download

Table 2: summary of JavaFX 2D game development

challenges

We see as expansions to this research the investigation

of multi-player games created with web technologies

specially with JavaFX. Other future research related to

JavaFX would be the investigation of 3D possibilities,

in particular the integration with Jmonkey or Java3D

engine.

References

[1] JavaFX, http://javafx.com/
[2] XML, http://www.w3.org/TR/REC-xml/

[3] Javascript, http://pt.wikipedia.org/wiki/JavaScript

[4] Flash, http://www.adobe.com/products/flash/

[5] Rich Internet Applications: Market Trends and

Technologies,

http://www.zapthink.com/report.html?id=ztr-ws112

[6] Flex, http://www.adobe.com/devnet/flex/

[7] Adobe AIR, http://www.adobe.com/products/air/
[8] Silverlight, http://silverlight.net/

[9] Wikipedia - Rich Internet Applications,

http://en.wikipedia.org/wiki/Rich_Internet_application

[10] Wikipedia Flash Player,

http://en.wikipedia.org/wiki/Adobe_Flash

[11] Flash Player penetration ,

http://www.adobe.com/products/player_census/flashpl

ayer/

[12] Job offers in RIA,

http://www.indeed.com/jobtrends?q=JavaFX,+silverlig

ht,+adobe+flex

[13] Job offers Java against JavaScript, C#, VbScript,

Flash,

http://www.indeed.com/jobtrends?q=Java,+javascript,+
c%23,+vbscript,+flash

[14] Jmonkey, http://www.jmonkeyengine.com/

[15] Jpct, http://www.jpct.net/

[16] Pulpcore,

http://www.interactivepulp.com/pulpcore/

[17] GTGE game engine,

http://www.goldenstudios.or.id/products/GTGE/

[18] Global Game Jam, http://globalgamejam.org/

[19] Project source code subversion, SUPRESSED –

HAS INFORMATION ABOUT THE AUTHOR

[20] JavaFX API documentation,

http://java.sun.com/javafx/1/docs/api/index.html
[21] Adobe Photoshop,

http://www.adobe.com/products/photoshop/photoshop/

?promoid=DTENB

[22] Adobe Illustrator,

http://www.adobe.com/products/illustrator/

[23] SVG, http://www.w3.org/TR/SVG/

[24] ZIP,

http://en.wikipedia.org/wiki/ZIP_(file_format)

[25]How to create a RPG like game,

http://silveiraneto.net/2008/12/08/javafx-how-to-

create-a-rpg-like-game/
[26] JavaFx media support,

http://javafx.com/docs/articles/media/player.jsp

[27] On2 technologies, http://www.on2.com/

[28] MP3, http://en.wikipedia.org/wiki/MP3

[29] Jlayer - pure Java mp3 library,

http://www.javazoom.net/javalayer/javalayer.html

[30] JavaFx MediaPlayer using Jlayer, SUPRESSED –

HAS INFORMATION ABOUT THE AUTHOR

[31] OGG, http://en.wikipedia.org/wiki/Ogg

[32] WAV, http://en.wikipedia.org/wiki/WAV

[33] webstart,
http://java.sun.com/javase/technologies/desktop/javaw

ebstart/index.jsp

[34] JavaFX game - Pacman,

http://www.javafxgame.com/javafx-pac-man-article-5/

[35] JavaFX game - Brick breaker,

http://javafx.com/samples/BrickBreaker/

