
A Novel Multithreaded Rendering System based on a Deferred
Approach

Jorge Alejandro Lorenzon

Universidad Austral, Argentina
jorgelorenzon@gmail.com

Esteban Walter Gonzalez Clua
Media Lab – UFF, Brazil

esteban@ic.uff.br

Figure 1: Mix of the final illuminated picture, the diffuse color buffer and the normal buffer

Abstract

This paper presents the architecture of a rendering
system designed for multithreaded rendering. The
implementation of the architecture following a deferred
rendering approach shows gains of 65% on a dual core
machine.

Keywords: multithreaded rendering, deferred
rendering, DirectX 11, command buffer, thread pool

1. Introduction

Game engines and 3D software are constantly
changing as the underlying hardware and low level
APIs evolve. The main driving force of change is the
pursuit of greater performance for 3D software, which
means, pushing more polygons with more realistic
models of illumination and shading techniques to the
screen. The problem then becomes how to design 3D
software in order to use the hardware to its maximum
potential.

Central processing unit (CPU) manufactures are

evolving the hardware to multi-core solutions.
Currently dual core CPUs have become the common
denominator while quad cores, like the recently
released Intel Core i7 Extreme Edition processor, with
the capability of running 8 processing threads, are
slowly filling the high end market. In order for
software to use all the capabilities and potential of the
hardware it is now imperative that it divides its
execution tasks among the different cores.

Therefore, the architecture of newer game engines
must include fine-grained multithreaded algorithms
and systems. Fortunately for some systems like physics
and AI this can be done. However, when it comes to
rendering there is one big issue: All draw and state
calls must go to the graphics processing unit (GPU) in
a serialized manner1. This limits game engines as only
one thread can actually execute draw calls to the
graphics card. Adding to the problem, draw calls and
state management of the graphics pipeline are
expensive for the CPU as there is a considerable
overhead created by the API and driver. For this
reason, most games and 3D applications are CPU
bound and rely on batching 3D models to feed the
GPU.

Microsoft, aware of this problem, is pushing

forward a new multithreaded graphics API for the PC,
Direct3D11. Direct3D11 was designed to remove the
current restriction of single threaded rendering. It
allows this by:

• Providing the ability to record command
buffers in different threads

• Free threaded creation of resources and
states

Command buffers are basically lists of functions to
execute. There are two types of command buffers:

1 This holds true for multi-GPU solutions, such as
those that use SLI. The actual speedup with these
setups (using alternate frame rendering) is
accomplished by having the graphics API buffer
commands for multiple frames so that each GPU can
work on one. For this to happen effectively the
application must not be limited by the CPU.

those that are part of an API and those that are not. The
common benefit that both provide is that by deferring
the communication with the GPU to a later stage, they
allow the application to simulate multiple devices and
divide its rendering work across multiple threads
Natively supported command buffers can provide an
additional performance benefit: Usually part of the
graphic APIs’ functions have a part that needs to be
executed in the CPU like the validation of the data
passed to them. So if the command buffers are
designed to only hold commands ready to be executed
by the GPU, the CPU load of the graphic APIs’
functions can be processed at the time of their building,
thus benefiting from the use of all the CPU cores. The
execution of these buffers is then easier on the CPU
leading to increased performance in CPU bound
applications.

This paper proposes a new architecture of a

multithreaded rendering system and shows the
performance gains in different scenarios with an
implementation based on DirectX11.

2. Related Work

Games traditionally use a game loop that execute
update and render logic serially. The first approach in
game engines to increase performance in multi-core
hardware was to execute natural independent systems
in parallel. The problem with this approach is that very
few systems are independent from each other. For
example: a particle system is independent from the AI
system, however, the AI system is not independent
from the physics engine as it needs to have the latest
state of the world objects to compute the behavior of
AI driven entities. The rendering and sound system
need to have all the final data for the frame to present
to the user so they depend on all of the systems. Thus,
just multithreading independent systems is not an
adequate enough solution for current hardware.

An engine has to be designed from the ground up
with multiprocessing in mind to fully utilize
multiprocessor hardware. There are two classic ways to
approach this task: multiprocessor pipelining and
parallel processing [Akenine-Moller et al. 2008].
Multiprocessor pipelining consists in dividing the
execution in different stages so that each processor
works on a different pipeline stage. For example: if the
pipeline is divided into stages APP, CULL, and
DRAW. For a given frame N, Core 0 would work on
APP on frame N + 2, Core 1 would work on CULL on
frame N + 1 and Core 2 would work on frame N. This
architecture increases the throughput with the negative
effect of increased latency. Parallel processing, on the
other hand, consists in dividing up the work into small
independent packages. This approach provides a
theoretical linear speedup but requires for the
algorithm to be naturally parallel.

Multithreaded engines have adopted different
combinations of the techniques of multiprocessor
pipelining and parallel processing. One approach has
been to let each system of an engine run in a thread of
its own [Gabb and Lake 2005]. In this solution systems
use the latest available data for them, many times, like
in multiprocessor pipelining, the data has been
processed in a previous frame by a different system.
The data independent systems benefit from the parallel
processing speedup. Data sharing between systems is
the biggest challenge in this type of architecture. Usage
of synch primitives around shared data can be very
expensive, so a buffering scheme is usually used to
make it possible to for a system to write to a buffer
while another system reads from a previously written
buffer, thus avoiding heavy use of synch primitives.
However, there are two problems with buffering
schemes; firstly they utilize more memory, a scarce
resource in some platforms. Secondly, copying of
memory between buffers2 might be expensive in terms
of processing time [Lewis 2007]. In conclusion, this
type of architecture is adequate while the number of
systems is greater or equal to the number of cores.
However, to scale further the game engine systems
need to be designed to be internally multithreaded.

The system that this paper focuses on is the
graphics system. The internal multithreaded
architecture relies on the use of command buffers. The
next paragraph gives an overview of the current
support of command buffers under different platforms.

Microsoft’s XBOX 360 DirectX and DirectX 11

support native command buffers [Lee 2008]. For other
platforms, non-native command buffers can be used.
The development team of Gamebryo has created an
open source command buffer recording library for
older versions of DirectX [Scheib 2008]. Their
implementation currently only supports DirectX 9 but
they are currently working on the implementation for
DirectX 10. The multithreaded architecture of the
rendering system is discussed in section 3, but before
jumping to that section, it is important to read about the
pipeline that will follow the rendering system.

A deferred rendering pipeline is used in the
graphics system treated in this paper. This type of
pipeline was chosen as many modern games, like
S.T.A.L.K.E.R [Pharr 2005] and Tabula Rasa [Nguyen
2007] among others, have adopted this technique. Its
main benefit is the decoupling of the geometry stage
from the light stage [Deering et al. 1988]. This
decoupling allows rendering to have a linear N + L
complexity instead of the greater N * L complexity of
the forward rendering approach, where N is the total
number of objects and L is the total number of lights.

2 Memory copying is necessary so that a system that
reads, processes, and writes to buffer 1 is able to utilize
the data written in buffer 1 in the next frame when it
will need to do the same process using buffer 2.

Older games did not use this technique, as it requires
the support of multiple render targets, extra video
memory, and a higher memory bandwidth. However,
with current hardware these requirements are no longer
prohibitive.

3. Multithreaded Rendering System

Games usually have a 25% to 40% of the frame time
used by the D3D runtime and driver [Davies 2008].
The overhead would not be such a problem if the
engine could work on something else while the scene is
being rendered. However, because the graphics system
needs for the shared data to remain unmodified while it
is doing its work the other engine systems become
stalled. So if the graphics system is single threaded, the
application wastes much of the CPU power. Therefore,
the system architecture discussed in this paper is
designed to utilize all of the CPU cores to create
command buffers to give back to the other systems the
ownership of the shared data as soon as possible. Once
the buffers are created the “update” systems can run
again while only one graphics thread remains
submitting the command buffers to GPU. Figure 2
illustrates the flow described.

Figure 2: Top level application flow

The next sub section explains the approach and

design used to build such a rendering system.

3.1 API abstraction layer

The first step in the design of the system is to abstract
it from the API that will be used. This allows the
software products that will later be constructed on top
of the engine to be able to target more platforms.

Engines commonly grouped the creation of state

and resources objects with the draw and state calls
under a single rendering interface. The first design
decision was to divide the responsibilities in two
different interfaces: Device and Context. Device is in
charge of the creation of resources and state objects
while Context is responsible for the actual rendering.
The Device is expected to be only instantiated once,
while from Context many instances may be created;
one for each thread that will submit rendering work.

Having a mapping of one to one between contexts and
threads is a necessary limitation to avoid the
performance penalty that would appear from the need
of synch primitives to maintain a rendering
consistency. The Device, on the other hand, may be
called from any thread. The best alternative, though, is
to have an independent thread that manages the
creation of resources. This could allow an application
to go through a continuous world without needing to
stop with loading screens.

The second step in creating the low level

abstraction was to abstract resource and state objects.
An abstract data type was declared for each of these.
Adapter classes were created to extend from these
abstract data types to make the adaptation necessary to
communicate with the various graphic APIs. Figure 3
shows the UML class diagram for the depth stencil
state.

Figure 3: Depth stencil state abstraction

3.2 Rendering in different contexts

The instances of Context are the “renderers”. As such,
they are the ones that receive the messages to draw or
change states. Having a number of them allows the
application to submit geometry in parallel.

However, not all of them are equal, since there is

one context with a special privilege: The Immediate
Context. This is the only one that can effectively
communicate with the GPU. The other contexts called
Deferred Contexts submit state and draw calls to
command buffers. Each of the deferred contexts then
contains a command buffer ready to be executed by
either another deferred context or by the immediate
context. Therefore, the creation of command buffers
becomes multithreaded while the submission of them is
single threaded. The distinction of contexts is made
because the nature of the CPU-GPU hardware allows
only one CPU thread to send content to the GPU. The
benefit in speed comes reducing the time that other
systems remain stalled and from using idle CPU cores
to help in the task of converting the state/draw calls
from the API into a list of low level calls ready to be
executed by the GPU. The immediate context can then
execute the command buffers at a faster rate than the
equivalent content via direct calls.

3.3 Graphics manager and render processes

In the previous section the low level abstraction layer
was presented. Its designed was influenced greatly by
the Direct3D11 API. In this section the next layer of
the architecture will be presented. This layer will be
responsible for the load balancing of rendering work.

Context and thread creation is not a lightweight

task and so creating them to render every frame is not
an option if we want to keep a high performance. The
knowledge of how many contexts to create is part of
the application design. Therefore, when initializing this
layer that information will need to be communicated to
it so it can allocate the resources needed at startup.

The Graphics Manager, represented in figure 4, is
the central class of this layer. It is responsible for
initializing a pool of threads and subsequently feeding
them with the work that comes from the application.
For each of the threads created a context is instanced
and assigned to it. This ownership extends throughout
the thread’s life. Changing the ownership of the
context is not possible because different threads may
never make calls to the same context.

These threads remain asleep as long as no work is

assigned to them. This prevents the Graphics Manager
from consuming CPU cycles when the application is
not rendering.

By making the number of possible worker threads

variable the application developer has the freedom to
choose as many threads as cores are available or any
other number that the developer feels that it will
provide a better performance.

Figure 4: Graphics Manager Diagram

Because the developer should be limited as little as

possible by the engine, the type of work that can be
submitted to the pool can be as fine grained as
executing a single draw call or as coarse as rendering a
shadow map. The only limitation is that all work tasks
need to be of the type Render Process.

The Render Process abstract class is the second
most important class of this layer. Its importance is due
to the ability that this class provides to application
specific rendering work to be executed by the Graphics
Manager through polymorphism.

The applications can define their rendering

pipelines by creating and implementing subclasses of
Render Process. The Graphics Manager commences
the execution of the rendering work by calling the
virtual method Execute() of Render Process from one
of the pool threads.

The Render Process and the derived classes receive

the context in which they can submit work as a
parameter of Execute(). This frees the Graphics
Manager from needing to keep a record of which
context was used for each render process and allows it
to do an optimal load balancing.

4. Multithreaded Deferred rendering

In the previous section we have discussed the
architecture of the rendering system. In this section we
will discuss how a deferred rendering pipeline fits on
top and benefits from the multithreading rendering. A
pipeline of this nature includes: a geometry buffer,
lighting, transparency and post processing effects
stages [Policarpo and Fonseca 2005]. The latter two
were not implemented for the testing of the
architecture. The following sub sections describe what
the stages do and how they were encapsulated to be
multithreaded rendered.

4.1 Geometry buffer

The geometry buffer (G-Buffer) creation is the first
step in a deferred rendering pipeline. The purpose of
the creation of the G-Buffer is to store the information
necessary for the shading of each pixel during the
lighting stage [Policarpo and Fonseca 2005]. The
values that get stored depend on what illumination
model the application will use. For the purpose of
testing the performance of the architecture by keeping
the application CPU bound a simple G-Buffer was
used. The values stored are depths, normals and diffuse
color.

 The flow of data to the G-Buffer for every pixel is
what consumes a lot of bandwidth. This is why before
starting to create the G-Buffer itself it is better to have
a rendering pass that just calculates the vertices’
positions in order to set the Z-buffer. This pass,
however, was not implemented for the test setup.

 The steps to create the G-Buffer were all
encapsulated in a class called Geometry Buffer
Creator, which, extends from Render Process. The
steps that it goes through are:

1. Set viewport
2. Set render targets

3. Set depth stencil state (read
and write depth enabled)

4. Set rasterizer state (cull
back, solid fill)

5. Clear the depth texture
6. Render each of the objects
7. Finish the command buffer

4.2 Lighting

Next is the lighting stage, where the application sends
to the pipeline the lights that affect the scene. The
effect that each light has on the pixels is calculated
with the stored information in the geometry buffer and
added to the final frame buffer.

4.2.1 Non-shadow casting lights

There are different alternatives to render non-shadow
casting lights. The most efficient is to use geometry to
represent lights [Calver 2003]. With this approach a
spotlight is represented as a cone, a point light as a
sphere and a directional light as a screen aligned quad.
The benefit of using geometry is that the Z-Buffer
rejects pixels more effectively than using scissors
rectangles.

 For the pixels that are not rejected by the scissor
test or Z-Buffer a pixel shader that calculates how the
light is influencing it is executed.

The process of rendering the non-shadow casting
lights is isolated in another render process called Non
Shadow Casting Lighting. The steps that this process
goes through are:

1. Set viewport
2. Set final buffer as the render

target
3. Set depth stencil state (depth

test enabled, write disabled)
4. Set rasterizer state (fill solid)
5. Set the G buffer as shader

resources
6. Render each light
7. Finish the command buffer

4.2.2 Shadow casting lights

The difference between non-shadow and shadow
casting lights is that the latter have to calculate the
obstruction of light due to the scene’s geometry. One
effective way to calculate this obstruction is through a
technique called shadow mapping [Akenine-Moller et
al. 2008]. Rendering the scene from the light’s point of
view while having writes and reads on the depth buffer
enabled creates a shadow map. The shadow map
contains depth information where the light is
obstructed by geometry.

 The shadowing lights’ pixel shader, before shading,
checks if the pixel is affected by the light or if it is in
shadow.

 The test application uses one shadowing light. It is
a hemispherical light and the shadow map algorithm
used was parabolic mapping. The process to create the
shadow map and light the pixels was encapsulated in
the Shadow Renderer class. The steps that it goes
through are:

1. Set viewport
2. Set depth buffer
3. Set depth stencil state (read and

write depth enabled)
4. Set rasterizer state (cull back,

solid fill)
5. Clear depth buffer
6. Render all objects that casts

shadows from the point of view of
the light

7. Set the shadow map (depth buffer
recently set) as a shader resource

8. Render light
9. Finish command buffer

5. Discussion

When designing the graphics system it was assumed
that the application would give to it the total ownership
of the CPU and data. With this in mind it, the
architecture was built to fulfill two major objectives:
stall the other application systems the less time
possible, and provide transparent scalability throughout
different platforms, current and future ones.

To make the system flexible enough it was
designed to follow a producer-consumer model. The
work products (encapsulated in render processes) are
produced by the application and are consumed by the
available threads. The means of distribution of the
render processes is the Graphics Manager’s
responsibility. This decision was made to encapsulate
the necessary platform dependent code that creates and
manages threads. Clean encapsulation of platform
dependent code makes not only porting, but also
optimizations for different platforms easier.

It is important to note that if the number of cores
increases beyond the number of stages that the
rendering pipeline has, a further splitting will be
needed. The split can occur at the application data
level. For example, the Geometry Buffer Creator can
be instanced twice so that each instance works on a
subset of the application data. The split would be best
done by object’s material, this way the shader
swapping in the GPU is kept to a minimum. Another
possible split is to calculate the shadow maps for
different shadow casting lights in parallel.

With a further increase in cores it will become

harder to divide rendering work in an efficient way, as
there are a limited number of materials used by objects
or shadow casting lights at a given frame. So an option
for the job-based architecture could be to start handling
some real time raytracing for some effects like
reflections and refractions.

6. Results

The tests were made on a Core 2 Duo E7200 CPU with
an ATI Radeon HD4750 GPU. Microsoft’s DirectX
March 2009 SDK was used. Note that the DirectX11
version in this SDK is a tech preview. The hardware
and drivers used are DirectX 10 level. DirectX 11 level
GPUs are not yet available in the market.

The test application did not do any update to the
objects in the scene so that the frame time was
completely used by the rendering system. Even though,
the objects did not move or update they were treated as
dynamic. The application sent to the rendering system
the objects that compose the scene shown in Figure 5.

Figure 5: Test scene

Two scenarios were created to compare the system

to the traditional ones. The first scenario consisted of
using a single thread while the second one consisted in
using the multithreaded solution.

In the first scenario the render processes that

represent the deferred shading pipeline were executed
in a sequential way in the main rendering thread with
straight communication to the immediate context. This
way is how traditionally games submit rendering work
to the GPU.

In the second scenario, the Graphics Manager was

initialized to work with 3 threads. At the start of each
frame the render processes were queued in the
Graphics Manager, which in this particular case used a
Win32 thread pool as part of its implementation. When
all of them were finished building their respective
command buffers the main thread would submit these
to the GPU through the immediate context.

The experiment was repeated with five variations.

These variations were related to scene complexity. By
scene complexity we mean the number of objects
drawn. The tests were done with: 7, 16, 106, 1006 and
2006 objects. It is worth mentioning that the final
image of the scene did not vary in the different tests as
the added objects had the same position and mesh that
the original ones. This way the Z-rejection hardware of
the GPU would cull the objects before they reached the
more processing intensive pixel shader stage. Doing

this allowed our application to be CPU bound in the
tests 1006 and 2006 objects.

The following chart (figure 6) shows the frames per

second obtained by the rendering engine with the use
of the multithreaded graphics manager versus the
common single threaded solution. The single threaded
results are shown by the green bar titled ST. The
multithreaded ones are represented by the red bar titled
MT.

Figure 6: FPS variation with scene complexity.

The first 3 scenarios with 7, 16 and 106 objects

show that the multithreaded design does not provide an
improvement over the common single threaded one.
The multithreaded solution was slightly worse than the
traditional one. This is because the multithreaded
solution does add a little overhead. Profiling showed
that the CPU only used 15% of its capacity. The
bottleneck in these tests, therefore, was created by the
inability of the GPU to render the polygons faster.

The CPU starts to work harder when the number of

objects increases, as it has to issue more draw calls,
which take up CPU time. With 1006 objects, the CPU
work created by the draw calls becomes sufficiently
heavy to shift the bottleneck from the GPU to the CPU.
Profiling of the single threaded scenario showed that
one the cores was working 4 times more than the other,
which was only running other program’s processes in
the back. The frames per second were in this scenario
were 71 in average.

When switching to the multithreaded solution, the

profiler showed a more even load among the cores and
the frames per second rose around 65% to 119. The
explanation to this is that, because the command
buffers used were native to the graphics API, the load
that each API call adds to the CPU was now being
distributed along two cores.

With 2006 objects the ratio of frames per second

between the two models only rose 2%. This evidenced
that the two cores had hit their limit.

7. Conclusion

In a low scene complexity scenario the benefits of
distributing the load of graphic API calls among

multiple cores is very low compared to the added
overhead of running a more complex multithreaded
system. Also, without other systems running there is no
stall caused to them by the single threaded graphics
system. So in this scenario the multithreaded solution
has a clear disadvantage. With the test results showing
a very slight decrease in performance for the
multithreaded system. It is promising that with other
systems running the application will have a better
performance using a multithreaded graphics system
than single threaded one.

 In the high scene complexity scenario the results
show the multithreaded design as clear winner with a
65% increase in speed. This lead would certainly
increase with in an application that utilized other
systems. The speedup shown by the results is
significant considering that the API is still immature
and that hardware and drivers were not the optimal for
the multithreaded solution.

The speedup of the proposed graphics system will

never be linear as there is still a part of the process that
is single threaded, however, it is clear by analyzing the
results that it is faster and more scalable than
traditional ones.

In conclusion the multithreaded rendering solution

based on a deferred rendering approach provides a
promising solution for applications that need high
performance and quality graphics.

Acknowledgements

The authors would like to thank André Luiz Brandão
for providing scene geometry to test the architecture.

References

DEERING MICHAEL, STEPHANIE WINNER, BIC SCHEDIWY,

CHRIS DUFFY, NEIL HUNT. "The triangle processor and
normal vector shader: a VLSI system for high
performance graphics". ACM SIGGRAPH Computer
Graphics (ACM Press) 22 (4): 21–30. 1988.

PHARR MATT, FERNANDO RANDIMA . GPU Gems 2. Addison-

Wesley Professional. 2005.

NGUYEN HUBERT. GPU Gems 3. Addison-Wesley

Professional. 2007.

SCHEIB V INCENT. Practical Parallel rendering with DirectX

9 and 10. GameFest 2008. [online]. Available from:
http://www.emergent.net/Global/Downloads/GameFest2
008-ParallelRendering.pdf [Accessed July 23, 2009].

POLICARPO FABIO, FONSECA FRANCISCO. Deferred Shading

Tutorial. SBGAMES 2005. [online].
http://www710.univ-
lyon1.fr/~jciehl/Public/educ/GAMA/2007/Deferred_Sha
ding_Tutorial_SBGAMES2005.pdf [Accessed July 23,
2009]

AKENINE-MOLLER TOMAS, HAINES ERIC, HOFFMAN NATY .
Real-Time Rendering. Third edition. AK Peters. 2008.

HEIRICH ALAN , BAVOIL LOUIS. Deferred Pixel Shading on the

PLAYSTATION 3. [online]
http://research.scea.com/ps3_deferred_shading.pdf
[Accessed July 23, 2009]

BRABEC STEFAN, ANNEN THOMAS, SEIDEL HANS-PETER.

Shadow Mapping for Hemispherical and
Omnidirectional Light Sources. [online] http://www.mpi-
inf.mpg.de/~brabec/doc/brabec_cgi02.pdf [Accessed July
23, 2009]

GABB HENRY, LAKE ADAM . Threading 3D Game Engine

Basics. November 17, 2005. [online]
http://www.gamasutra.com/features/20051117/gabb_01.s
html [Accessed 3 September 2009]

ANDREWS JEFF. Designing the Framework of a Parallel

Game Engine. February 25, 2009. [online]
http://software.intel.com/en-us/articles/designing-the-
framework-of-a-parallel-game-engine/ [Accessed 3
September 2009]

LEE MATT. Multi-Threaded Rendering for Games. GameFest

2008. [online]
http://www.microsoft.com/downloads/details.aspx?Famil
yID=DA8816C2-CFBE-4208-8DD8-
9DEEA0C2E2B5&displaylang=en [Accessed 3
September 2009]

 LEWIS IAN. Multicore Programming Two Years Later.

GameFest 2007. [online]
http://www.microsoft.com/downloads/details.aspx?Famil
yID=DA8816C2-CFBE-4208-8DD8-
9DEEA0C2E2B5&displaylang=en [Accessed 3
September 2009]

DAVIES LEIGH. Optimizing DirectX on Multi-core

architectures. Game Developers Conference 2008.
[online] http://software.intel.com/en-
us/videos/optimizing-directx-on-multi-core-architecture-
part-1/ [Accessed 4 September 2009]

CALVER DEAN. Photo-realistic Deferred Lighting. July 31,

2003. [online]
http://www.beyond3d.com/content/articles/19/1
[Accessed 5 September 2009]

