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Figure 1: Mix of the final illuminated picture, the diffuse color buffer and the normal buffer 
 
Abstract 
 
This paper presents the architecture of a rendering 
system designed for multithreaded rendering. The 
implementation of the architecture following a deferred 
rendering approach shows gains of 65% on a dual core 
machine. 
  
Keywords: multithreaded rendering, deferred 
rendering, DirectX 11, command buffer, thread pool 
 
1. Introduction 
 
Game engines and 3D software are constantly 
changing as the underlying hardware and low level 
APIs evolve. The main driving force of change is the 
pursuit of greater performance for 3D software, which 
means, pushing more polygons with more realistic 
models of illumination and shading techniques to the 
screen. The problem then becomes how to design 3D 
software in order to use the hardware to its maximum 
potential.  

 
Central processing unit (CPU) manufactures are 

evolving the hardware to multi-core solutions. 
Currently dual core CPUs have become the common 
denominator while quad cores, like the recently 
released Intel Core i7 Extreme Edition processor, with 
the capability of running 8 processing threads, are 
slowly filling the high end market. In order for 
software to use all the capabilities and potential of the 
hardware it is now imperative that it divides its 
execution tasks among the different cores.  

 

Therefore, the architecture of newer game engines 
must include fine-grained multithreaded algorithms 
and systems. Fortunately for some systems like physics 
and AI this can be done. However, when it comes to 
rendering there is one big issue: All draw and state 
calls must go to the graphics processing unit (GPU) in 
a serialized manner1. This limits game engines as only 
one thread can actually execute draw calls to the 
graphics card. Adding to the problem, draw calls and 
state management of the graphics pipeline are 
expensive for the CPU as there is a considerable 
overhead created by the API and driver. For this 
reason, most games and 3D applications are CPU 
bound and rely on batching 3D models to feed the 
GPU. 

 
Microsoft, aware of this problem, is pushing 

forward a new multithreaded graphics API for the PC, 
Direct3D11. Direct3D11 was designed to remove the 
current restriction of single threaded rendering. It 
allows this by: 

• Providing the ability to record command 
buffers in different threads 

• Free threaded creation of resources and 
states 

Command buffers are basically lists of functions to 
execute. There are two types of command buffers: 

                                                 
1 This holds true for multi-GPU solutions, such as 
those that use SLI. The actual speedup with these 
setups (using alternate frame rendering) is 
accomplished by having the graphics API buffer 
commands for multiple frames so that each GPU can 
work on one. For this to happen effectively the 
application must not be limited by the CPU. 

 



those that are part of an API and those that are not. The 
common benefit that both provide is that by deferring 
the communication with the GPU to a later stage, they 
allow the application to simulate multiple devices and 
divide its rendering work across multiple threads 
Natively supported command buffers can provide an 
additional performance benefit: Usually part of the 
graphic APIs’ functions have a part that needs to be 
executed in the CPU like the validation of the data 
passed to them. So if the command buffers are 
designed to only hold commands ready to be executed 
by the GPU, the CPU load of the graphic APIs’ 
functions can be processed at the time of their building, 
thus benefiting from the use of all the CPU cores. The 
execution of these buffers is then easier on the CPU 
leading to increased performance in CPU bound 
applications.  

 
This paper proposes a new architecture of a 

multithreaded rendering system and shows the 
performance gains in different scenarios with an 
implementation based on DirectX11. 
 
2. Related Work 
 
Games traditionally use a game loop that execute 
update and render logic serially. The first approach in 
game engines to increase performance in multi-core 
hardware was to execute natural independent systems 
in parallel. The problem with this approach is that very 
few systems are independent from each other. For 
example: a particle system is independent from the AI 
system, however, the AI system is not independent 
from the physics engine as it needs to have the latest 
state of the world objects to compute the behavior of 
AI driven entities. The rendering and sound system 
need to have all the final data for the frame to present 
to the user so they depend on all of the systems. Thus, 
just multithreading independent systems is not an 
adequate enough solution for current hardware. 
 

An engine has to be designed from the ground up 
with multiprocessing in mind to fully utilize 
multiprocessor hardware. There are two classic ways to 
approach this task: multiprocessor pipelining and 
parallel processing [Akenine-Moller et al. 2008]. 
Multiprocessor pipelining consists in dividing the 
execution in different stages so that each processor 
works on a different pipeline stage. For example: if the 
pipeline is divided into stages APP, CULL, and 
DRAW. For a given frame N, Core 0 would work on 
APP on frame N + 2, Core 1 would work on CULL on 
frame N + 1 and Core 2 would work on frame N. This 
architecture increases the throughput with the negative 
effect of increased latency. Parallel processing, on the 
other hand, consists in dividing up the work into small 
independent packages. This approach provides a 
theoretical linear speedup but requires for the 
algorithm to be naturally parallel.  

 

Multithreaded engines have adopted different 
combinations of the techniques of multiprocessor 
pipelining and parallel processing. One approach has 
been to let each system of an engine run in a thread of 
its own [Gabb and Lake 2005]. In this solution systems 
use the latest available data for them, many times, like 
in multiprocessor pipelining, the data has been 
processed in a previous frame by a different system. 
The data independent systems benefit from the parallel 
processing speedup. Data sharing between systems is 
the biggest challenge in this type of architecture. Usage 
of synch primitives around shared data can be very 
expensive, so a buffering scheme is usually used to 
make it possible to for a system to write to a buffer 
while another system reads from a previously written 
buffer, thus avoiding heavy use of synch primitives. 
However, there are two problems with buffering 
schemes; firstly they utilize more memory, a scarce 
resource in some platforms. Secondly, copying of 
memory between buffers2 might be expensive in terms 
of processing time [Lewis 2007]. In conclusion, this 
type of architecture is adequate while the number of 
systems is greater or equal to the number of cores. 
However, to scale further the game engine systems 
need to be designed to be internally multithreaded.  
 

The system that this paper focuses on is the 
graphics system. The internal multithreaded 
architecture relies on the use of command buffers. The 
next paragraph gives an overview of the current 
support of command buffers under different platforms. 

 
Microsoft’s XBOX 360 DirectX and DirectX 11 

support native command buffers [Lee 2008]. For other 
platforms, non-native command buffers can be used. 
The development team of Gamebryo has created an 
open source command buffer recording library for 
older versions of DirectX [Scheib 2008]. Their 
implementation currently only supports DirectX 9 but 
they are currently working on the implementation for 
DirectX 10. The multithreaded architecture of the 
rendering system is discussed in section 3, but before 
jumping to that section, it is important to read about the 
pipeline that will follow the rendering system. 
 

A deferred rendering pipeline is used in the 
graphics system treated in this paper. This type of 
pipeline was chosen as many modern games, like 
S.T.A.L.K.E.R [Pharr 2005] and Tabula Rasa [Nguyen 
2007] among others, have adopted this technique. Its 
main benefit is the decoupling of the geometry stage 
from the light stage [Deering et al. 1988]. This 
decoupling allows rendering to have a linear N + L 
complexity instead of the greater N * L complexity of 
the forward rendering approach, where N is the total 
number of objects and L is the total number of lights. 

                                                 
2 Memory copying is necessary so that a system that 
reads, processes, and writes to buffer 1 is able to utilize 
the data written in buffer 1 in the next frame when it 
will need to do the same process using buffer 2. 



Older games did not use this technique, as it requires 
the support of multiple render targets, extra video 
memory, and a higher memory bandwidth. However, 
with current hardware these requirements are no longer 
prohibitive. 
 
3. Multithreaded Rendering System 
 
Games usually have a 25% to 40% of the frame time 
used by the D3D runtime and driver [Davies 2008]. 
The overhead would not be such a problem if the 
engine could work on something else while the scene is 
being rendered. However, because the graphics system 
needs for the shared data to remain unmodified while it 
is doing its work the other engine systems become 
stalled. So if the graphics system is single threaded, the 
application wastes much of the CPU power. Therefore, 
the system architecture discussed in this paper is 
designed to utilize all of the CPU cores to create 
command buffers to give back to the other systems the 
ownership of the shared data as soon as possible. Once 
the buffers are created the “update” systems can run 
again while only one graphics thread remains 
submitting the command buffers to GPU. Figure 2 
illustrates the flow described.  
 

 
Figure 2: Top level application flow 

 
The next sub section explains the approach and 

design used to build such a rendering system. 
 
3.1 API abstraction layer 
  
The first step in the design of the system is to abstract 
it from the API that will be used. This allows the 
software products that will later be constructed on top 
of the engine to be able to target more platforms.  

 
Engines commonly grouped the creation of state 

and resources objects with the draw and state calls 
under a single rendering interface. The first design 
decision was to divide the responsibilities in two 
different interfaces: Device and Context. Device is in 
charge of the creation of resources and state objects 
while Context is responsible for the actual rendering. 
The Device is expected to be only instantiated once, 
while from Context many instances may be created; 
one for each thread that will submit rendering work. 

Having a mapping of one to one between contexts and 
threads is a necessary limitation to avoid the 
performance penalty that would appear from the need 
of synch primitives to maintain a rendering 
consistency. The Device, on the other hand, may be 
called from any thread. The best alternative, though, is 
to have an independent thread that manages the 
creation of resources. This could allow an application 
to go through a continuous world without needing to 
stop with loading screens.   

  
The second step in creating the low level 

abstraction was to abstract resource and state objects. 
An abstract data type was declared for each of these. 
Adapter classes were created to extend from these 
abstract data types to make the adaptation necessary to 
communicate with the various graphic APIs. Figure 3 
shows the UML class diagram for the depth stencil 
state. 

 

 
Figure 3: Depth stencil state abstraction 

  
3.2 Rendering in different contexts 
 
The instances of Context are the “renderers”. As such, 
they are the ones that receive the messages to draw or 
change states. Having a number of them allows the 
application to submit geometry in parallel.  

 
However, not all of them are equal, since there is 

one context with a special privilege: The Immediate 
Context. This is the only one that can effectively 
communicate with the GPU. The other contexts called 
Deferred Contexts submit state and draw calls to 
command buffers. Each of the deferred contexts then 
contains a command buffer ready to be executed by 
either another deferred context or by the immediate 
context. Therefore, the creation of command buffers 
becomes multithreaded while the submission of them is 
single threaded. The distinction of contexts is made 
because the nature of the CPU-GPU hardware allows 
only one CPU thread to send content to the GPU. The 
benefit in speed comes reducing the time that other 
systems remain stalled and from using idle CPU cores 
to help in the task of converting the state/draw calls 
from the API into a list of low level calls ready to be 
executed by the GPU. The immediate context can then 
execute the command buffers at a faster rate than the 
equivalent content via direct calls.  



 
3.3 Graphics manager and render processes 
 
In the previous section the low level abstraction layer 
was presented. Its designed was influenced greatly by 
the Direct3D11 API. In this section the next layer of 
the architecture will be presented. This layer will be 
responsible for the load balancing of rendering work.  

 
Context and thread creation is not a lightweight 

task and so creating them to render every frame is not 
an option if we want to keep a high performance. The 
knowledge of how many contexts to create is part of 
the application design. Therefore, when initializing this 
layer that information will need to be communicated to 
it so it can allocate the resources needed at startup. 
 

The Graphics Manager, represented in figure 4, is 
the central class of this layer. It is responsible for 
initializing a pool of threads and subsequently feeding 
them with the work that comes from the application. 
For each of the threads created a context is instanced 
and assigned to it. This ownership extends throughout 
the thread’s life. Changing the ownership of the 
context is not possible because different threads may 
never make calls to the same context. 

 
These threads remain asleep as long as no work is 

assigned to them. This prevents the Graphics Manager 
from consuming CPU cycles when the application is 
not rendering.  

 
By making the number of possible worker threads 

variable the application developer has the freedom to 
choose as many threads as cores are available or any 
other number that the developer feels that it will 
provide a better performance.  

 

 
Figure 4: Graphics Manager Diagram 

 
Because the developer should be limited as little as 

possible by the engine, the type of work that can be 
submitted to the pool can be as fine grained as 
executing a single draw call or as coarse as rendering a 
shadow map. The only limitation is that all work tasks 
need to be of the type Render Process. 

 

The Render Process abstract class is the second 
most important class of this layer. Its importance is due 
to the ability that this class provides to application 
specific rendering work to be executed by the Graphics 
Manager through polymorphism.  

 
The applications can define their rendering 

pipelines by creating and implementing subclasses of 
Render Process. The Graphics Manager commences 
the execution of the rendering work by calling the 
virtual method Execute() of Render Process from one 
of the pool threads.  

 
The Render Process and the derived classes receive 

the context in which they can submit work as a 
parameter of Execute(). This frees the Graphics 
Manager from needing to keep a record of which 
context was used for each render process and allows it 
to do an optimal load balancing. 
 
4. Multithreaded Deferred rendering 
 
In the previous section we have discussed the 
architecture of the rendering system. In this section we 
will discuss how a deferred rendering pipeline fits on 
top and benefits from the multithreading rendering. A 
pipeline of this nature includes: a geometry buffer, 
lighting, transparency and post processing effects 
stages [Policarpo and Fonseca 2005]. The latter two 
were not implemented for the testing of the 
architecture. The following sub sections describe what 
the stages do and how they were encapsulated to be 
multithreaded rendered.  
 
4.1 Geometry buffer 
 
The geometry buffer (G-Buffer) creation is the first 
step in a deferred rendering pipeline. The purpose of 
the creation of the G-Buffer is to store the information 
necessary for the shading of each pixel during the 
lighting stage [Policarpo and Fonseca 2005]. The 
values that get stored depend on what illumination 
model the application will use. For the purpose of 
testing the performance of the architecture by keeping 
the application CPU bound a simple G-Buffer was 
used. The values stored are depths, normals and diffuse 
color. 
 
 The flow of data to the G-Buffer for every pixel is 
what consumes a lot of bandwidth. This is why before 
starting to create the G-Buffer itself it is better to have 
a rendering pass that just calculates the vertices’ 
positions in order to set the Z-buffer. This pass, 
however, was not implemented for the test setup. 
 
 The steps to create the G-Buffer were all 
encapsulated in a class called Geometry Buffer 
Creator, which, extends from Render Process. The 
steps that it goes through are: 

 
1. Set viewport 
2. Set render targets 



3. Set depth stencil state (read 
and write depth enabled) 

4. Set rasterizer state (cull 
back, solid fill) 

5. Clear the depth texture 
6. Render each of the objects 
7. Finish the command buffer 

  
4.2 Lighting 
 
Next is the lighting stage, where the application sends 
to the pipeline the lights that affect the scene. The 
effect that each light has on the pixels is calculated 
with the stored information in the geometry buffer and 
added to the final frame buffer. 
 
4.2.1 Non-shadow casting lights 
 
There are different alternatives to render non-shadow 
casting lights. The most efficient is to use geometry to 
represent lights [Calver 2003]. With this approach a 
spotlight is represented as a cone, a point light as a 
sphere and a directional light as a screen aligned quad. 
The benefit of using geometry is that the Z-Buffer 
rejects pixels more effectively than using scissors 
rectangles.  
  
 For the pixels that are not rejected by the scissor 
test or Z-Buffer a pixel shader that calculates how the 
light is influencing it is executed.  
 

The process of rendering the non-shadow casting 
lights is isolated in another render process called Non 
Shadow Casting Lighting. The steps that this process 
goes through are: 

 
1. Set viewport 
2. Set final buffer as the render 

target 
3. Set depth stencil state (depth 

test enabled, write disabled) 
4. Set rasterizer state (fill solid) 
5. Set the G buffer as shader 

resources 
6. Render each light 
7. Finish the command buffer 

 
4.2.2 Shadow casting lights 
 
The difference between non-shadow and shadow 
casting lights is that the latter have to calculate the 
obstruction of light due to the scene’s geometry. One 
effective way to calculate this obstruction is through a 
technique called shadow mapping [Akenine-Moller et 
al. 2008]. Rendering the scene from the light’s point of 
view while having writes and reads on the depth buffer 
enabled creates a shadow map. The shadow map 
contains depth information where the light is 
obstructed by geometry.  
 
 The shadowing lights’ pixel shader, before shading, 
checks if the pixel is affected by the light or if it is in 
shadow.  
 

 The test application uses one shadowing light. It is 
a hemispherical light and the shadow map algorithm 
used was parabolic mapping. The process to create the 
shadow map and light the pixels was encapsulated in 
the Shadow Renderer class. The steps that it goes 
through are: 

 
1. Set viewport 
2. Set depth buffer 
3. Set depth stencil state (read and 

write depth enabled) 
4. Set rasterizer state (cull back, 

solid fill) 
5. Clear depth buffer 
6. Render all objects that casts 

shadows from the point of view of 
the light 

7. Set the shadow map (depth buffer 
recently set) as a shader resource 

8. Render light 
9. Finish command buffer 

 
5. Discussion 
 
When designing the graphics system it was assumed 
that the application would give to it the total ownership 
of the CPU and data. With this in mind it, the 
architecture was built to fulfill two major objectives: 
stall the other application systems the less time 
possible, and provide transparent scalability throughout 
different platforms, current and future ones.  
 

To make the system flexible enough it was 
designed to follow a producer-consumer model. The 
work products (encapsulated in render processes) are 
produced by the application and are consumed by the 
available threads. The means of distribution of the 
render processes is the Graphics Manager’s 
responsibility. This decision was made to encapsulate 
the necessary platform dependent code that creates and 
manages threads. Clean encapsulation of platform 
dependent code makes not only porting, but also 
optimizations for different platforms easier. 
 

It is important to note that if the number of cores 
increases beyond the number of stages that the 
rendering pipeline has, a further splitting will be 
needed. The split can occur at the application data 
level. For example, the Geometry Buffer Creator can 
be instanced twice so that each instance works on a 
subset of the application data. The split would be best 
done by object’s material, this way the shader 
swapping in the GPU is kept to a minimum. Another 
possible split is to calculate the shadow maps for 
different shadow casting lights in parallel. 

 
With a further increase in cores it will become 

harder to divide rendering work in an efficient way, as 
there are a limited number of materials used by objects 
or shadow casting lights at a given frame. So an option 
for the job-based architecture could be to start handling 
some real time raytracing for some effects like 
reflections and refractions. 



6. Results  
 
The tests were made on a Core 2 Duo E7200 CPU with 
an ATI Radeon HD4750 GPU. Microsoft’s DirectX 
March 2009 SDK was used. Note that the DirectX11 
version in this SDK is a tech preview. The hardware 
and drivers used are DirectX 10 level. DirectX 11 level 
GPUs are not yet available in the market.  
 

The test application did not do any update to the 
objects in the scene so that the frame time was 
completely used by the rendering system. Even though, 
the objects did not move or update they were treated as 
dynamic. The application sent to the rendering system 
the objects that compose the scene shown in Figure 5. 
 

 
Figure 5: Test scene 

 
Two scenarios were created to compare the system 

to the traditional ones. The first scenario consisted of 
using a single thread while the second one consisted in 
using the multithreaded solution.  

 
In the first scenario the render processes that 

represent the deferred shading pipeline were executed 
in a sequential way in the main rendering thread with 
straight communication to the immediate context. This 
way is how traditionally games submit rendering work 
to the GPU. 

 
In the second scenario, the Graphics Manager was 

initialized to work with 3 threads. At the start of each 
frame the render processes were queued in the 
Graphics Manager, which in this particular case used a 
Win32 thread pool as part of its implementation. When 
all of them were finished building their respective 
command buffers the main thread would submit these 
to the GPU through the immediate context. 

 
The experiment was repeated with five variations. 

These variations were related to scene complexity. By 
scene complexity we mean the number of objects 
drawn. The tests were done with: 7, 16, 106, 1006 and 
2006 objects. It is worth mentioning that the final 
image of the scene did not vary in the different tests as 
the added objects had the same position and mesh that 
the original ones. This way the Z-rejection hardware of 
the GPU would cull the objects before they reached the 
more processing intensive pixel shader stage. Doing 

this allowed our application to be CPU bound in the 
tests 1006 and 2006 objects.  

 
The following chart (figure 6) shows the frames per 

second obtained by the rendering engine with the use 
of the multithreaded graphics manager versus the 
common single threaded solution. The single threaded 
results are shown by the green bar titled ST. The 
multithreaded ones are represented by the red bar titled 
MT. 

 

 
Figure 6: FPS variation with scene complexity. 

 
The first 3 scenarios with 7, 16 and 106 objects 

show that the multithreaded design does not provide an 
improvement over the common single threaded one. 
The multithreaded solution was slightly worse than the 
traditional one. This is because the multithreaded 
solution does add a little overhead. Profiling showed 
that the CPU only used 15% of its capacity. The 
bottleneck in these tests, therefore, was created by the 
inability of the GPU to render the polygons faster. 

 
The CPU starts to work harder when the number of 

objects increases, as it has to issue more draw calls, 
which take up CPU time. With 1006 objects, the CPU 
work created by the draw calls becomes sufficiently 
heavy to shift the bottleneck from the GPU to the CPU. 
Profiling of the single threaded scenario showed that 
one the cores was working 4 times more than the other, 
which was only running other program’s processes in 
the back. The frames per second were in this scenario 
were 71 in average.  

 
When switching to the multithreaded solution, the 

profiler showed a more even load among the cores and 
the frames per second rose around 65% to 119. The 
explanation to this is that, because the command 
buffers used were native to the graphics API, the load 
that each API call adds to the CPU was now being 
distributed along two cores.  

 
With 2006 objects the ratio of frames per second 

between the two models only rose 2%. This evidenced 
that the two cores had hit their limit.  
 
7. Conclusion 

 
In a low scene complexity scenario the benefits of 
distributing the load of graphic API calls among 



multiple cores is very low compared to the added 
overhead of running a more complex multithreaded 
system. Also, without other systems running there is no 
stall caused to them by the single threaded graphics 
system. So in this scenario the multithreaded solution 
has a clear disadvantage. With the test results showing 
a very slight decrease in performance for the 
multithreaded system. It is promising that with other 
systems running the application will have a better 
performance using a multithreaded graphics system 
than single threaded one.  
 

 In the high scene complexity scenario the results 
show the multithreaded design as clear winner with a 
65% increase in speed. This lead would certainly 
increase with in an application that utilized other 
systems. The speedup shown by the results is 
significant considering that the API is still immature 
and that hardware and drivers were not the optimal for 
the multithreaded solution.   

 
The speedup of the proposed graphics system will 

never be linear as there is still a part of the process that 
is single threaded, however, it is clear by analyzing the 
results that it is faster and more scalable than 
traditional ones. 

 
In conclusion the multithreaded rendering solution 

based on a deferred rendering approach provides a 
promising solution for applications that need high 
performance and quality graphics.  
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