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Figure 1: Teaser of the GpuWars Game.

Abstract

The GPUs (Graphics Processing Units) have evolved into extremely
powerful and flexible processors, allowing its usage for processing
different data. This advantage can be used in game development
to optimize the game loop. Most GPGPU works deals only with
some steps of the game loop, allowing to the CPU to process most
of the game logic. This work differ from the traditional approach,
by presenting and implementing practically the entire game loop
inside the GPU. This is a big breakthrough on game development,
since the CPUs are evolving to multi-core, and future games will
need similar parallelism as the GPUs programs.
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1 Introduction

The increase of the level of realism in games depends not only on
the enhancement of modeling and rendering effects, but also on
the improvement of different aspects such as animation, artificial
intelligence of the characters and physics simulation.

Computers, new video game consoles (such as the Microsoft Xbox
360 and the Sony Playstation 3) and GPUs feature multi-core pro-
cessors. For this reason, paralleling the game tasks is getting more
and more important. This work has make a game with its tasks exe-
cution in parallel, with the sequential execution kept to a minimum.

The development of programmable GPUs has enabled new possi-
bilities for general purpose computation (GPGPU) which can be
used to enhance the level of realism of virtual simulations. Some
examples of works in GPGPU that address these issues are Quan-
tum Monte Carlos [Anderson et al. 2007], finite state machines
[Rudomn et al. 2005] and ray casting [Muller et al. 2007].

A lot of games and works that uses GPGPU to process some parts of
its tasks in the GPU and another on the CPU. This causes limitation
on the simulation, because it requires a lot of data transfers between
the CPU and GPU, and this can be the bottleneck of the simulation
[Krueger 2008]. This work implements all the methods of the game
entirely on the GPU with the use of CUDA architecture keeping the
GPU-CPU communication to a minimum.

This work is particular important in order to present a paradigm that
can be used in currently GPUs and video games (Xbox 360 and
Playstation 3), but also in future CPU architectures [Intel 2009],
where a massively cores are available.

The paper is organized as follows: Section 2 presents the GPGPU
concepts. Section 3 presents some related works on GPGPU that
can be applied to games. Section 4 presents the design of the
GpuWars game. Section 5 presents the architecture and section 6
present the physics aspects of the architecture. Section 7 presents
the game logic aspects of the architecture and section 8 presents the
results. Finally section 9 presents the conclusions and future works.

2 GPGPU

GPUs are powerful processors dedicated to graphics computation
which are much faster than CPU when considered all the paral-
lel processors available. A nVidia 8800 ultra [NVIDIA 2006],
for instance, can sustain a measured 384 GFLOPS/s against 35.3
GFLOPS/s for the 2.6 Ghz dual core Intel Xeon 5150 [NVIDIA
2008b].

GPUs are very good for processing applications that require high
arithmetic rates and data bandwidths. Because of the SIMD paral-
lel architecture of the GPU (the nVidia GeForce 9800 GX2 [nVidia
2009b], for example, has 256 unified stream processors), the devel-
opment of this kind of application requires a different programming
paradigm than the traditional CPU sequential programming model.

Nvidia and AMD/ATI are implementing unified architectures in
their GPUs. Each architecture is associated with a specific lan-
guage: Nvidia has developed CUDA (Compute Unified Architec-
ture) [nVidia 2009a] and AMD developed CAL (Compute Abstrac-



tion Layer) [AMD 2008]. One main advantage in the use of these
languages is that they allow the use of the GPU in a more flexible
way (both languages are based on the C language) without some of
the traditional shader languages limitations such as “scatter” mem-
ory operations, i.e. indexed write array operations, and others that
are not even implemented as integer data operands like bit-wise log-
ical operations AND, OR, XOR, NOT and bit-shifts [Owens et al.
2007]. Nevertheless, the disadvantage of these architectures is that
they are only available for the vendors of the software, i.e., CUDA
only works on Nvidia and CAL only works on AMD/ATI cards. In
order to have GPGPU programs that work on both GPUs it is nec-
essary to implement them in shader languages like GLSL (OpenGL
Shading Language), HLSL (High Level Shader Language) or CG
(C for Graphics) with all the vertex and pixel shader limitations and
idiosyncrasies. In the near future it will be possible to use OpenCL
(Open Computing Language) [Group 2009] which is available in
beta for both nVidia and AMD graphics cards at the moment of the
writing of this paper.

In addition, Intel has recently presented a new architecture for
GPUs called Larrabee [Seiler et al. 2008]. It is made up of sev-
eral x86 processors in parallel which can be used to process both
graphics and non-graphics data. The advantage of this architecture
is that it does not need a special language, just plain C. Neverthe-
less, it will only be available in 2010.

3 Related Work

There are a lot of works that deals with the GPGPU field, but the
application of these works on game fields are mostly concentrated
on the game physics.

Physics on the GPGPU is a potential field and many works could
achieve considerable speedup by taking the physics calculations
from the CPU and processing on the GPU. All the major physics en-
gine for games in the market has make, or is making, attempts to use
of the GPU to process its calculations. The work of Green [Green
2007] presents an implementation on the GPU of some methods
of the commercial physics engine called Havok FX which was be-
ing constructed to be a GPGPU version of Havok Physis [Havok
2009]. The Havok FX was discontinued when Havok was bought
by Intel, but there are rumors that it will be continued with the re-
lease of Intel new architecture for GPU [Seiler et al. 2008]. Also
the PhysX of nVidia [NVIDIA 2009c] is a physics engine that uses
the CUDA architecture to optimizate its calculation [Harris 2009].
Also Bullet [Coumans 2009], an open source physics engine, is also
investing in porting it to the GPU and has release some demos with
some aspects of the engine running on the GPU. Also in [Joselli
et al. 2008b] a hybrid physics engine that has some of its calcu-
lations on the GPU is present. Besides the physics engines, there
are other works related to the implementation of physics simulation
processes on the GPU like: particle system [Kipfer et al. 2004],
deformable bodies system [Georgii et al. 2005], and collision de-
tection [Govindaraju et al. 2003].

Physics simulation works very well on the GPU because of the
high performance of the stream processors, which allows high par-
allelism of the physics problems that can be solved in this structure.
With that, it is possible to have faster physics simulation on games,
and also more physics realistic games.

Another field that could be implemented in the GPGPU and can
be used by game is the game Al or game logic. This field is not
very explored and there are very simple works on the field. There
are implementation of finite state machine on the GPU [Rudomn
et al. 2005], but this work implements very primitive behavior that
cannot be used for games.

Another field that can be used for game that explores GPGPU is
crowd simulation, like the works [Shopf et al. 2008; Passos et al.
2008; Silva et al. 2008; Chiara et al. 2004]. Crowd simulation
can be used in games for simulating: the behavior of herbs of ani-
mals [Passos et al. 2008; Silva et al. 2008], people walking on the
street [van den Berg et al. 2008], soldiers fighting in a battle [Jin
et al. 2007], spectators watching a performance [nVidia 2008c] and
also to populate game worlds [Shopf et al. 2008], like a GTA game

[North 2008]. These works are particularly important since they
propose a simple Al model implementation into a GPU architec-
ture.

There are also some works that deals with the distribution of task
between the CPU and GPU, like [Zamith et al. 2007; Zamith et al.
2008; Joselli et al. 2008a; Joselli et al. 2008b; Joselli et al. 2009].
These works concentrate on the GPU most the physics tasks of the
game and these tasks can be distributed to the CPU. Even though
these works presents some aspects of the game tasks inside the
GPU, the present work differs from the latter, since it presents
all the game tasks that needs to be processed developed inside the
GPU.

There are no available work on the literature that use the GPU to
process the entire game logic, like the one present in this work, just
some tasks of the game.

4 The Design of the Game

The GpuWars is a massive 2D prototype shooter with a top-down
2D perspective. The game is similar to a 2D shooters like Geomet-
ric Wars [Creations 2009] and E4 [Inc. 2009]. The main enhance-
ments of GPUWars is that it uses GPU to process its calculations,
allowing to process and render thousands of enemies, while similar
games only process hundreds.

The game play is very simple: the player plays as a GPU card
(which is called “GPUship”) inside the “computer universe”, and
he needs to process (by shooting them) polygons, shaders and data
(the enemies) from a game. Every time the “GPUship” make physi-
cal contact with a enemy it looses time and in consequence it looses
FPS. The objective is to process the maximum number of data in
the smaller amount of time, and keep the game interactive with a
minimum 12 frames per second.

The GpuWars uses the keyboard as the input device of the game,
one set of controls are used to control the movement of the “GPU-
ship”, and another set to control the direction of the shots.

5 The Architecture

Computer games are multimedia applications that employ knowl-
edge of many different fields, such as Computer Graphics, Artifi-
cial Intelligence, Physics, Network and others [Valente et al. 2005].
More, computer games are also interactive applications that exhibit
three general classes of tasks: data acquisition, data processing, and
data presentation. Data acquisition in games is related to gathering
data from input devices as keyboards, mice and joysticks. Data pro-
cessing tasks consist on applying game rules, responding to user
commands, simulating Physics and Artificial Intelligence behav-
iors. Data presentation tasks relate to providing feedback to the
player about the current game state, usually through images and
audio. In this architecture practically all game logic is processed in
the GPU, i.e all the data processing tasks, only using the CPU for
tasks that need to make use of CPU like data acquisition.

This architecture was implemented using CUDA technology
[nVidia 2009a] for GPGPU processing; OpenGL for rendering;
GLSL (OpenGL Shading Language) for shaders; and GLUT
(OpenGL Utility Toolkit) for window creation and input gathering.

The game loop of the GpuWars work as follows. First the CPU
gather the input and sends it to the GPU. The GPU treat this data,
making the necessary adjustments,i.e, the transformation of the
player’s position and the creation of the players shots. The GPU
starts updating the bodies by applying the physics behavior on them
and their logic behavior, which corresponds to the artificial intelli-
gence step. These updates are put on a VBO (Vertex Buffer Object)
and sended to the shaders for rendering. The GPU also sends vari-
ables to the CPU in order to tell if it should terminate the applica-
tion. This game loop is illustrated in figure 2.

To resume, the CPU is responsible for:

e creating a window;
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Figure 2: Game Loop of GpuWars.

e gather the players input and send it to the GPU;
e make the GPU calls;
e execute the music and sound effects;

e and terminate the application, i.e, destroy the windows and
release the data.

While the GPU is responsible for:
e applying the physics on the bodies;
e process the artificial intelligence;
e determinate the game status, like the player scores;
e and determinate the end of the game.

The data that is exchanged between the CPU and GPU is encap-
sulate in special structure, in order to keep the communication be-
tween the CPU and the GPU to a minimum, since this process can
be a bottleneck of any simulation that has communication between
CPU and GPU [Krueger 2008].

GPGPU programs are divided in threads. In order to process the
main game logic which needs to be executed sequentially, the pro-
posed architecture have a special CUDA thread which is responsi-
ble for it, and is the same that treats the “GpuShip” data and inputs.
This processing includes: update the position of the “GpuShip” ac-
cordingly to the input; creation of shots, which are created in other
CUDA threads; determinate the scores; determinate the game over;
and determinate the creation of new enemies. The others threads
are responsible for updating the enemies and the shots, like colli-
sion detection and response and the individuals behavior. The posi-
tions and type are put in a VBO and sent to a vertex shader in order
to render the individuals without using the CPU. Also to deal with
the creation of the shots and enemies, the architecture keeps a list
with the values to indicate available positions for individuals cre-
ation. Using this structure the GPU processes some empty threads,
threads that practically does not process anything, and also differ-
ent codes in different threads, which can affect the performance
because of the threads synchronization inside the CUDA block. In
order to avoid this, the architecture groups similar threads together

in a CUDA block, avoiding the lost in performance caused by the
thread synchronization. Figure 3 illustrate the process of the differ-
ent threads.

GPGPU programs does not have native pseudo random number
generation. In order to fulfill that need this work developed a
pseudo-random number generation based on nVidia demo [Pod-
lozhnyuk 2007].

In order to implement this architecture some data structure are
needed, these are the data that are required for each individual:

e one vector with the individual position;
e one vector with the individual force;
e one vector with the individual direction/orientation;

e one integer as the individual type, which can be player, shot
or enemy types;

e one integer with the individual energy;
e one float for the individual mass;

This architecture is build in a way that it can be also used, with
proper modifications, in 3D games. In the next sections the most
important steps there are processed on the GPU, the physics step
and the Al step, are present.

6 Physics Step

This step is responsible for the physics behavior, i.e, how the bod-
ies process and resolve all bodies collisions and response. The
physics of this architecture is based on the physics on particle sys-
tems [nVidia 2008a; Microsoft 2007; Kipfer et al. 2004] and in a
hybrid physics engine [Joselli et al. 2008b].

Collision detection is a complex operation. For n bodies in a sys-
tem, their must be a collision detection check between the O(n?)
pairs of bodies. Normally, to reduce this computation cost, this
task is performed in two steps: first, the broad phase, and second,
the narrow phase. In the broad phase, the collision library detects
which bodies have a chance of colliding among themselves. In the
narrow phase, a more refined algorithm to do the collisions tests
are performed between the pairs of bodies that passed by the broad
phase.

The physics step is responsible for:
e Make the broad phase of the collision detection;

e Calculate the narrow phase of the collision detection, i.e, ap-
ply the collision in each body;

e Forwarding the simulation step for each body by computing
the new position and velocities according to the forces and the
time step, i.e., integrating the equations of motion;

6.1 The broad phase

This phase is responsible for avoiding the n? comparison between
all the individuals, and also avoid doing a narrow phase of the col-
lision detection between the n? individuals which is normally done
by spatial hashing.

There are many ways to do a spatial hashing for the broad phase of
the collision detection. This work uses a uniform grid, which has a
constant building cost (which makes the simulation more constant)
and is very suitable for the parallel structure of the GPU. Also this
structure is used in the Al step in order to determinate the vision of
the bodies.

This work has based its implementation on the spatial hashing with
sort of the nVidia particles demo [nVidia 2008a] and the CUDA
broad phase implementation [Le Grand 2007]. This work differs
from such implementation because it is adapted and optimize the
structure and methods to be used with the GPGPU game loop pro-
cess and to fill the requirements of the GpuWars game, which needs
bigger grids and larger number of objects in the grid in order to be
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Figure 3: The Different Process of the CUDA Threads of GpuWars.

faster for the Al steps, which uses the grid to simulate the vision of
the enemies.

6.2 The narrow phase of the collision detection

The narrow phase of the collision detection is responsible for doing
the collision detection among the rigid bodies. In this work, instead
of doing the collision check between all the polygons of the individ-
uals, it is implemented a basic primitive area element, that complex
models are put inside.

There are two types of bounds that this work implements, used to
surround every model, simplifying the narrow phase of the collision
detection: a circle bounds and a bounding rectangle. The circle
bound is used whenever is possible. This is done in order to save
memory, since the circle bound only needs the position vector and
a radius, while the bounding rectangle needs four variables.

6.3 The Integrator

This method is responsible for integrating the equations of motion
of a rigid body [Eberly 2004]. In this work it consist on a simple
step, since it does not takes into account the angular velocities and
torque. This method updates crowd individual velocity based on
the forces that are applied to it, which are sent to the integrator,
and then it updates the position based on its velocities, using an
integration method based on Euler integration. Euler integration is
one of the simplest form of integration. Mathematically, it evaluates

the derivative of a function at a certain time, and linearly extrapolate
based on that derivative to the next time step.

7 Al Step

Game Al is used to produce the illusion of intelligence in the behav-
ior of non-player characters (NPC), and in the case of GpuWars, the
enemies. There are a lot of ways to implement the game Al such as
finite state machines, fuzzy logic, neural networks, and many oth-
ers [Bourg and Seemann 2004]. This work uses finite state machine
(FSM). Finite state Machines are powerful tools used in many com-
puter game implementations [Dybsand 2000; Rankin and Vargas
2009; Li and Woodham 2009], like the NPC behavior, the charac-
ters animation states and the game menu states.

A finite state machine is a model of behavior composed of a states,
the transitions between those states, and the actions. This work
implements 3 different behaviors using FSM, the kamikaze, group
and tricky behaviors, which are present in the next subsections.

The behaviors are affected by the size of vision (which uses the
grid made by the broad phase of the collision detection), velocity
and energy, which are variables available for each type of enemy.
With the modification of these values, this work implements seven
different types of enemies.



7.1 Kamikaze Behavior

The kamikaze approach is a behavior that simulates suicidal attacks.
It uses a state machine that has only four state, wandering, attack-
ing, checking energy and dead, and can be seen on figure 4.

See Player
Wandering
Lose 5|ght of Player
Got S‘hoot energy = 0 energy > 0 Got Shoot
or
Collided with p\ayer Collided with player
Check
Energy
energy =0
Y
Dead

Figure 4: The Kamikaze State Machine.

The kamikaze is a very simple behavior. It wanders until it sees
the “GPUShip”, then it goes attacking it by throwing itself against
it. This approach is well suited for a GPU architecture, since few
information about the scene is necessary.

7.2 Group Behavior

The group behavior is a behavior that make groups, avoid bullets
and attacks. It has a state machine that has six state, wandering,
grouping, attacking, checking energy, avoiding bullets and dead,

and can be seen on figure 5.
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Energy
energy =0
Y
Dead

Figure 5: The Group State Machine.

This behavior is also very simple. The individual wanders trying to
find similar individuals, i.e, individuals of the same type, and the
“GPUShip”. If it sees a similar individual, it goes close to it and
make a group. And if it can see the player, it attacks the player by
throwing itself against it. If the individual sees a bullet coming in
its direction it tries to avoid it.

7.3 Tricky Behavior

The tricky behavior is the most complex behavior of the game. This
behavior tries also groups similar individuals and it is the only that
recoveries energy. It has a state machine that has seven states, wan-
dering, grouping, attacking, avoiding bullets, checking energy, es-
caping and dead, and can be seen on Figure 6.

Avoid
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individual individual bullet
See Player
_—
Wandering
—
Lose sight of Player
Got Shoot energy > X energy > X Got Shoot

or or
Collided with player Collided with player

recovered
energy

energy =0 energy < X

Figure 6: The Tricky State Machine.

The enemy wanders trying to find the “GPUShip” or similar indi-
viduals. If it sees a similar individual, it goes close to it and make
a group. If it is seeing the player, it throws itself against it. If the
individual sees a bullet coming in its direction it tries to avoid it. If
it has little energy it tries to scape to recover the lost energy.

8 Results

This work has decided to make the tests in the minimum hardware
that can run CUDA, a notebook with an AMD Turion Dual-core
with 3GB RAM memory and equipped with nVidia Geforce mobile
8200M GPU card (which has only 8 stream processors), running on
Windows Vista.

The number of enemies determines the performance of the game.
This work has decided to have a maximum bound of 8192 enemies.
A screenshot of the game can be seen of figure 7.

Figure 7: A Screenshot of the game.
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Figure 8: Performance of the game

To better view the performance, figure 8 show a graph with the
performance in FPS of the game in 5 minutes of the application.

From this figure can be seen that the performance of the game
ranges from 45 to 58 frames per second. This performance is con-
sidered optimal in a game [Joselli et al. 2009].

The game was also tested with a more powerful hardware, a quad-
core with a nVidia GeForce 8800GS GPU card (which has 96
stream processors), with similar results but with a speedup of three
times (the FPS ranges from 130 to 170).

9 Conclusions and Future Work

The GPUs have evolved and can be used to process different tasks
of the game loops. Most works deals with some aspects of the
game loop, with more focus on the game physics. This work differ
from the related GPGPU works, presenting a game that has all the
game logic inside the GPU. This can make a new trend on game
development.

Future works will focus on creating more complex behavior of ene-
mies, by implementing other game Al techniques, like hierarchical
state machines, fuzzy logic and neural networks. Also the authors
will proceed by evolving the architecture so it can be used in other
type of games.
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