A Game Loop Architecture with Automatic Distribution of Tasks and Load
Balancing between Processors

Blind for review

Abstract

Nowadays, multithread architectures for PCs (multi-cofRUg

and GPUs), and game consoles (as Microsoft Xbox360 and Sony

Playstation 3) is a trend. Hence, single thread games lodlps w
not get the best performance on such architectures. Fordhais
son, multithread game loops that take advantage of suclitereh
tures are gaining importance. There are a lot of multithigeade
loops that can be used in order to achieve better performaree
game, but they can not adapted for different architecturbs pa-
per presents a new architecture for game loops that cantdetec
analyze the user hardware and adapts itself to a specific lyanpe
that can achieve the best performance for that hardware.

Keywords:: Game loops, GPGPU, Task Distribution, Load Bal-
ancing, Real-time Systems

Author’s Contact:

Blind for review

1 Introduction

Multi-thread architectures on PC are getting more and mona-c
mon with the development of multi-core processors and the ne
GPUs architectures that can be used for generic procesaiisg.
top of the line video games like the Microsoft Xbox 360 and the
Sony Playstation 3 features multi-cores processors. \Witth game
architectures have to paralise and distribute its tasksemat the
processors, needing to utilize concepts from distributetizaral-

lel systems in order to fully take advantage of the hardwaitds
work utilizes from these concepts like task distributiord doad
balancing adapting this concepts to the game loop architect

Games are interactive real-time systems and, like multianggpli-
cation, they have time constraints to execute all of its @sees and
present to the end user the results. If a game does not fusfiteh
quirement, it will lose its interactivity and consequentlwvill fail.

gle or multi thread game loops. This work extended that wgrk b
presenting the following concepts:

e Automatic verification of the user hardware, and select tvhic
game loops will be used based on that knowledge;

e Load balancing between the threads of the work.

This work is organized as follows: Section two presents gioe
background. Section three presents some related workdiosec
four presents and explains all the major functionalitieshef pro-
posed architecture. In section five six presents the coiocius

2 Game Loops

The game loop is the underlying structure upon games aré buil
Games are regarded as real-time applications becauseiribisk
application has time constraints to run the tasks that relthem.
This means that if those tasks do not run fast enough, theiexge
the game must provide will be compromised.

The tasks that a computer game should execute can be broken do
into three general groups: data acquisition, data praogssind
presentation. Data acquisition means gathering data fiaitehle
input devices: mice, joysticks, keyboards, and motion sensrhe
data processing part refers to applying the user input hegame
(user commands), applying game rules (game logic), siingl#te
game world (game Physics), simulating non-player chara¢fe-
tificial Intelligence), and related tasks. The presentatigfers to
providing feedback to the user about the current game shaiteigh
images and audio.

As listed previously, there are many tasks that a game mostAu
computer games provides the illusion that everything ipkamg
at once. Since a computer game is an interactive applicafidn
is unable to perform its work on time, the user experiencénal
be acceptable. This issue characterizes computer gamdseasya
real time application.

3 Related Works

A common parameter for measuring a game and simulations is in

frame per second (FPS). The lower acceptable bound for a game Although the game loop represents the heart of computer game
16 FPS. Their are not higher bounds for a game FPS, but in PCsthere are not many academic works devoted to this subjece. Th
when the refresh rate of the monitor is less than the refréesheo ~ works by blind for review et al [blind for review blind for re-
game some discard of the rendered frame may occur. In order toviewb], Dalmau [Dalmau 2003], Dickinson [Dickinson 2001],
achieve the best FPS in a game, game loops are designed and dé/atte [Watte 2005], Gabb and Lake [Gabb and Lake 2005], and

veloped.

Game loop is the structure that determinate the order tlut teak
of the game is executed during the loop. The game loops islynain
divided in three categories: data acquisition, which geesdata
from user’s input; data processing, where the game logipere
cessed; and data presentation, where the results are fgesethe

Mnkknen [Mnkknen 2006] are among the few ones. All of them
focus on single-player games. The simplest real time game lo
models are the coupled ones. The Simple Coupled Model [find
review blind for reviewb] perhaps is the straightforwargagmch

to modeling game loops. It consists of sequentially arragnghe
tasks in a main loop. Figure 1 depicts this model.

end user though images and audio. There are several works tha This first model runs as fast as the machine is able to, makiregy

deal with game loops in order to achieve better results buhatty
they are very restricted to the designed hardware. This magent
an framework to build game loops that can adapt to the user har
ware in order to take the best performance from the hardware.

When a task is paralized in threads, the distribution of wdrk-
tween the threads sometimes it is not the ideal making tisneeeld-
ing to wait for the other(s). This is a common problem in distred
system, and to solve it a automatic distribution of the wartnleen
the threads is needed. This work implements this load baignc
using a heuristic to solve this problem.

This work is an extension of the work [blind for review blinarf
reviewa], where a framework for game loops that can autamati
distribute task between CPU and GPU and can also implement si

unpredictable when it comes to using it in different mactuoefig-
urations. The uncoupled models separate the renderingatateu
stages, so they can run independently, in theory. A naveoaphr
to a real time uncoupled models is to use one thread for rangler
and another for the update tasks. This approach exposeartie s
unpredictable behavior of the Simple Coupled Model. ThetMul
thread Uncoupled Model [blind for review blind for reviewtsy

to bring determinism to the game execution by feeding theatgod
stage with a time parameter. Figures 2 illustrate these lmpde
spectively.

By using these models, the application has a chance to at§ust
execution with time, so the game can run the same way in differ
ent machines. More powerful machines will be able to run treg
more smoothly, while less powerful ones will still be ablgtovide

Y Y

Cead player input

v

(update
(render C physics)

I v

render

read player input

v

game logic

v

animation

\—/
\—/

L

—

)
\—/

Figure 1: Smple Coupled Model

y v

Gad player iHDUD (render) Figure 3. Synchronous Function Parallel Model

|

T

i |— [Mnkknen 2006] is the formalization of the idea found in [Gab
update(t) and Lake 2005]. This model does not present a main game loop.
Figure 4 illustrates the model.

y

t=calulate
elapsed timeut game logic

Figure2: Multi-thread Uncoupled Model ¢

(physics)
some experience to the user. Although these are workindicod

time measuring may vary greatly in different machines dueaay |
reasons (such as process load), making it difficult do remedt

faithfully. For example, some games may require a scenayepl i

feature [Dickinson 2001], which may not be trivial to implent

if it is not possible to run some game sequence in a detertiginis C render)

way. Other features as network module implementation aod pr

gram debugging [Dickinson 2001] may be easier to implemfent i

the game uses a deterministic model. Another issue is thatirg l |

some simulations too frequently, like Al and game logic, may

yield better results. Figure 4. Asynchronous Function Parallel Model

Nowadays, computers and new video game consoles (such as th
Xbox 360 and the Playstation 3) feature multi-core procesdeor

this reason, game loops that take advantage of these rescame
likely to become important in the near future. Thereforerapa
lelizing game tasks with multiple threads is a natural stiejpw-

ever, dealing with concurrent programming introduces lagset

of problems, such as data sharing, data synchronizatiahdead-
locks. Also, as Gabb and Lake [Gabb and Lake 2005] states, not
all tasks can be fully parallelized due to dependencies grtigem.

As examples, characters cannot move until the game logions ¢ : : L
puted, and rendering cannot be performed until the game ®at g'nk; [:rllgezr(l)ré)gs)]may limit the performance of parallel tasjGabb
updated. Hence, serial tasks represent a bottleneck tbghiaiag '

gaming computation. Mnkknen [Mnkknen 2006] presents mod- Also Rhalibi et al [Rhalibi et al. 2005] shows a different agpgch
els regarding multi-thread architectures that are grouptdtwo for game loops that is modeled taking the tasks and its depeyd
categories: function parallel models and data paralleletsodlhe into consideration. Its divides the game loop steps in thoeeur-
first category is devoted to models that present concuresitst rent threads, creating a cyclic-dependency graph, to @gahe
while the second one tries to find data that can be processieelyn task ordering. In each thread, the tasks for rendering addtapare

Different threads run the game tasks by themselves. Thelnmde
categorized as asynchronous because the tasks do not ntiefo
completion of other ones to perform their job. Instead, tmks$
use the latest computed result to continue processing.Xaonge,
the rendering task would use the latest completed physiceia-
tion to draw game objects. This measure decreases the depsnd
among tasks. However, task execution should be carefutigdsc
uled for this scheme to work nicely. Unfortunately, this feea out

of the scope of the application. Also, serial parts of theliapfion

in parallel. The Synchronous Function Parallel Model [Mmné&k divided taking into consideration their dependency.
2006] proposes to allocate a thread to all tasks that arergtie .
cally) independent of each other. For example, performimgsRs The Data Parallel Model [Mnkknen 2006] uses a different
simulations while calculating animation. Figure 3 illeggs this paradigm where data are grouped in parallel sections ofgpt-a
model. cation where they are processed. The Data Parallel Modpbpes

to use separate threads for sets of data (like game object®ad
The author states that this model is limited by the amounvail-a of using a main loop with concurrent parts that process ath.da
able processing cores, and the parallel task should héesdiépen- In this configuration, the objects run their own tasks (likeafvd

dency on each other. The Asynchronous Function ParalleleMod animation) in parallel. Figure 5 depicts this approach.

v

Cead player inpuD

>

)
EDIED)
%

C render)

Figure5: Data Parallel Model

According to [Mnkknen 2006] , this model scales well because
it is able to allocate many processing cores as there artablei
Performance is limited by the amount of data processingdaat
run in parallel. An important issue is how to synchronize eom
munication of objects running in different threads. Mnkkr2906
states that the biggest drawback of this model is the needwo h
ing components designed with data parallelism in mind. Type

of parallelism has a similar approach as the GPGPU (genseval p
pose computation on graphics processor) work which alsaratss
GPUs threads for sets of data.

The focus on GPGPU has been increasing since graphics hardwa
had become programmable. It is a massively parallel acthite

with more powerful processing than the CPUs. GPGPU has been
theme of research on diverse areas like: image analysig @tet.
2008], linear algebra [Bolz et al. 2003], chemistry [Ufinntsad
Martnez 2008], physics simulation [Nyland et al. 2007], amulvd
simulation [blind for review blind for reviewc].

The proposed architecture works with multi-core CPUs antd&P
(if one is available). The architecture considers both ssugces. A
resource is a CPU core or a GPU, and the architecture enaagsul
them. However, not all of game tasks are suitable for pracgss
both in the GPU and the CPU, as their architectures are differ
and require different programming paradigms.

The aim of the proposed architecture is to provide a manageme
layer that it is able to analyse dynamically the hardwardoper
mance and adjust the amount of tasks to be processed by the re-
sources. In order to make a correct task distribution, ieisessary

to run an algorithm, and in the current architecture, a ésipe-
sponsible for this. The architecture applies the scriptipgroach
because the game loop is used in many games, and for eachof the
it uses a different algorithm and a subset of its parameters.

The core of the proposed architecture corresponds to tlieMas-

ager and the Hardware Check class. The Task Manager schedule
tasks in threads and changes which processor handles them wh
ever it is necessary. The Hardware Check monitors the psoces

to calculate the usage rates of all of them.

4.1 The Task Class

A task is defined such as a work that the application (the game)
should execute. There are three classic tasks that all gppliea

tion execute: player input, game state update, and prayiftiad-
back to the player. These tasks should be broken in smakhskdt

for example: Player input is performed by reading the keythoa
mouse or joystick state. Feedback to the player is provigeei-
dering the scene graphically, playing a sound effect, aiatibg the
joystick. Hence, a task can be anything that the applicatiorks
towards processing.

A constraint of this architecture is the fact that not alkiasan be
processed by all sorts of processor architectures. An eleaisifhe
CPU and the GPU, that have different hardware architectdres
GPU hardware is not able to access all of computer periphgrst

like the CPU. For example: read a file from hard disk. It is & tas
that only the CPU is able to process. On the other hand, physic
simulations can be processed by both, although GPUs typieal
ecute it faster than CPUs.

Thus, a task is broken in three groups. The first group workis wi
tasks that can be invoked only by the CPU in its cores, such as

There are some works that discuss using GPGPU with game loopsP!@yer input, file handling, and the managing of other taskse

[blind for review blind for reviewd], [blind for review blid for
reviewe], [blind for review blind for reviewf], [blind foreview
blind for reviewg]. These works concentrate using the GPdtiyio
for the physics calculations, and they extend one of the daops
presented previously, i.e., multi-thread uncoupled mbgeidding
a GPGPU stage.

Blind for review [blind for review blind for reviewa] presenan
architecture for game loops is able to implement any gamp loo
model and distribute tasks between the CPU and the GPU. This
work extends the work by Blind for review by proposing a game
loop that is able to detect the available hardware and autcatis
distribute tasks among the various CPU cores and also tofhé G

4 The Proposed Architecture

Although processing power in consoles and computers haslgre
increased, and multi-core architectures make it possibles¢ par-

allel processing, proper software is needed to extract pagfor-
mance from the hardware. Even though the game loop concept
applies to both consoles and computers, there are someedidfes
among these kind of hardware.

Consoles (i.e. consoles in the same family such as the Xb0x 36
have the same hardware, memory, processors and numbesesf cor
making development in those platforms more predictabée the
developers knows the hardware s/he will be working with). On
the other hand, for computers there is a myriad of configomati
considering processors, memory, GPUs, and combinatiohisf t
(and other) hardware.

tasks of this group can be allocated in different cores, dridere
are more than CPU core, they can run in parallel. In the sarge wa
the second group handles the tasks that can be only procegsed
GPUs, such as running shader processing. The last one istie g
that can be modelled to be invoked by both processors. Figure
illustrates the UML class diagram for tasks.

The third group is the main focus of this work, because itssaan
be invoked by all processors. We are specifically interestete
issue of delegating a task to a CPU core or to the GPU.

The task structure is described as follows:

e TASKLID: it is the id of the task. Whenever a task is created,
it receives this unique number. The architecture uses the id
guarantee the correct order of execution and to identifyctvhi

task is accessing the data shared among the tasks;

TASKTYPE: the task type, that can be the following: input,
update, presentation, and management (this last onefidenti
Task Manager and the Hardware Check classes);

e STACK: Itis a stack area used to preserve the task state when-
ever it leaves the processor;

DEPENDENCY: ID of next task that should run after this one.
The Task Manager relies on this information to guarantee the
correct execution ordering;

PRIORITY: The Task Manager uses this value to decide
which tasks in the task queue are going to be scheduled in
each processor. The next Section provides more detailg abou
this field.

Task Manager | | Hardware Check |

A

| Render | | Input | | Update | | GPU Task | | CPU Task

Joystick Keyboard

Figure6: UML class diagram

e Load balancing between the threads of the work.

4.2 The Task Manager Class A

The Task Manager is a special class derived from the genask T read player input
class, as Figure 6 illustrates. It provides managemertariogg,
finalizing, and synchronization of all others tasks (exdtsetf).

To guarantee the correct distribution and the abstracfitredasks,

the architecture defines a special task called Task Manafjee. v A 4
Task Manager is responsible for defining which task runs iichvh (physics) (Al)
processor, and it should check whether a task can be broken in

smaller tasks or not, and redistribute them. This class livet®

4
from the generic Task class, and it provides managemengnas ﬁ———l
. . S . . . synchronize
ing, finalizing, and synchronization of all others tasksc@pt it- <

A

self). In order to guarantee central control of tasks anut toerect
execution, there is only one instance of the Task Managss ¢ta
the application, implemented as the Singleton design ipatte

Y

The Task Manager class loads scripts that describe thalipdlicy update

of distribution that should be adopted. This means whichsagss

it will send and the rules that should be applied. The inpuapa v
eters of the script are: the task name, the elapsed time, hiuthw

processor is being used. The script has a task list and their ¢ render

straints. The task constraints are: the execution ordeiigwhich
processor should be used.

For each kind of task, the Task Manager holds one versioneof th
algorithm for the CPU (CPU Task) and another version (if appl
cable) for the GPU (GPU Task), both of them with the same dis-
tribution policy. The Task Manager creates instances ofGR&J Figure7: Multi-thread Uncoupled Model (CPU/GPU)
Task objects to run in the GPU thread. If there is a processtire
system with four cores, the Task Manager will create foutainses

of the CPU Task class, according to the script rules. Thrgad s
chronization must be guaranteed in the algorithms theraselvhe
GPU Task objects work the same way. The Task Manager identifie
how many GPUs are there in the system, and then it breaksske ta
among them.

resources. To distribute best the application among tlessmirces,
the Task Manager exchanges messages with the Hardware Check
objects (they are described in the next Section). Theseagessre
exchanged during the execution of the application. The Ware
Check objects send information about the performance daitbles
To make it possible to use a parallel programming model, the tothe Task Manager, which in turn uses this to decide abeuteist
Task Manager implements a multithread game loop. To aved th load balancing to apply.

problems of this model of programming, the Task Manager uses)))

a semaphore such as the synchronize object. Accessingdshare Each task holds information that the Task Manager queriésipn
data, starvation and deadlocks are examples of parallgram dates. Recapping from Section 4.1, these information ask itl,
ming model problems. Figure 7 illustrates the game loop mode task type, a stack, dependencies on other tasks, and taskypri

this work proposes.
brop The tasks send messages to the Task Manager when these events

The Task Manager sees the CPU cores and the GPU as processingccur:

o A task finishes execution;

e Atask finishes processing shared data.

in the CPU and 5 frames in the GPU and decide to for the faster
processor to execute the next 200 frames. It also specifasutim-
ber of CPU threads and the number of GPU threads to use. The

When a task finishes processing some shared data, the métssage SCript also specifies the number of frames to use when cétogla

sends to the Task Manager is interpreted as a release ofdhedsh
data.

For each CPU core and each GPU, there is a processing thréad an

an associated task queue. When a task finishes executintagke
Manager chooses the next task to run based on the prioriteyal
of the tasks in the queue.

One of the major features of the proposed architecture isckdimg

the fastest processor and the measurement interval [ldimrefiew
blind for reviewa]. The number of CPU and GPU threads defines
how many threads the application starts.

The architecture automatically distributes tasks betwwenessor
cores. If a core takes longer to process a task than othes,dbe
Task Manager removes some of the load of the heaviest task, th
Task Manager removes some of the load of the heaviest tagkéi.
task that is taking longer to run), and put in the lightesk (@& the

a task to run on another processor (CPU core to GPU or GPU to task that is taking less time to run).

CPU core or CPU core to other CPU core) during its execution.
In these cases, the task state is pushed to the tasks own(atatk
later restored) regardless of the processor type. For dranmp
timet, the GPU processes a Physics task and in tisthis task is
scheduled to the CPU. When the task starts to run again (ntvein
CPU), the Task Manager reloads the task state from the téesbls s
and signals it that the processor type has changed. Theriasityp

is changed to a value of zero, which means that the task igglac
on the front of the task queue. This measure is a way to guegant
that the task will keep on running.

The Task Manager performs load balancing according to tagaus
rate of processors. Another class, named Hardware Cheod; is
sponsible for providing the information about usage ragection
4.3 describes this class.

4.3 The Hardware Check Class

The Hardware Check is implemented as a task that runs on tbe CP
There is only one instance of this class in the applicatiomis T
class keeps track of the number of CPU cores and GPUs awilabl
in the system. While the application is running, it watchashe
processor to calculate the usage rates. The class infoenEagk
Manager about the current state of the processors and threis.c
The possible states are: "waiting” and "running”.

The class uses an ordered data structure to store infommeiiout
the usage rates of each processor. In this case, using asiep!
tor is enough. Keeping the vector ordered guarantees thdirtt
element will be that represents the highest usage rate.

To keep the Task Manager informed about the usage rates and pr
cessor states, it is necessary to establish a communiaztaomel
between them. Figure 8 illustrates this communication sehe

4.4 Ways to Distribute the Tasks

The architecture perfoms the initial task distribution dzhson
heuristics by reading a script file that contains the ruldss Script
file is written with the Lua language [R. lerusalimschy 1996his
script should not be complex to avoid delaying applicati@mtap.

The distribution of the tasks is done based on heuristiceritesl
and load before the execution of the application and it istemiin
LUA language . Despite the script of the heuristic is beiradied
and processed during the start of application, it shoulcbeatom-
plex to avoid spending time processing.

The architecture supports two kinds of heuristics. The érg is
manual, which means specifying tasks for specify procegpuor-
ing performance. This heuristic is used to test task perémca.
The second one is the automatic heuristic.

The automatic heuristic should describe all tasks usedégpipli-
cation, their ordering and the types of processors the tasisas
well as the rules to apply for changing processors. The ethpise
or frames per second are the only information the heuristésult

is a simple measure and can be applied for GPUs and CPUs. The

input parameters are the processor ID and the time elapséteby
processor to process it. It returns the processor ID for thegssor
that should run the task after that execution.

The algorithm 1 is an example of an initial condition of theihis-
tic. It is configured to loop in the following state: execut&&mes

Algorithm 1 INICIAL CONDITION

INITFRAMES <« 20
DISCARDFRAMES <5
LOOPFRAMES <= 50
EXECITEFRAMES <=5
CPUTHREAD <4
GPUTHREAD <=2

4.5 The Architecture Execution

This subsection is dedicated to illustrate the executiahefarchi-
tecture, so the reader can better understand it. Figureusgrdites
the process.

Firstif there are GPGPU tasks, the Hardware Check queriksrié

is a GPU card that can process the task. If this is the casdoitis

the Task Manager that this task is able to run either in the GPU
the GPU. After that, Hardware Check queries how many CPUscore
are available in the system, and pass this information toTési
Manager. The Task Manager, in turn, distribute the tasksutin
the available hardware.

5 Conclusion

The development and evolution of multi-cores processoRUS
and video games indicates that multhitread architectsragrend.

This work discussed the concept of game loops, a subjedsthat
very discussed in the literature. Our contribution lies rteeding
a previous work by providing an architecture for game lodysd ts
able to distribute tasks between the CPU and the GPU.

The proposed architecture is able to detect the availabtbyzae,
and then to break tasks into CPU cores and, if it is availa#ad
them to the GPU.

References
BLIND FOR REVIEW. blind for review. blind for review.blind for
review, blind for review.

BLIND FOR REVIEW. blind for review. blind for review. Irblind
for review, blind for review.

BLIND FOR REVIEW. blind for review. blind for review. Irblind
for review, blind for review.

BLIND FOR REVIEW. blind for review. blind for review.blind for

review, blind for review.

BLIND FOR REVIEW. blind for review. blind for review.blind for
review blind for review, blind for review, blind for review.

BLIND FOR REVIEW. blind for review. blind for review.blind for
review, blind for review.

BLIND FOR REVIEW. blind for review. blind for review.blind for
review, blind for review.

BoLz, J., FARMER, |., GRISPUN, E., AND SCHRDER, P. 2003.
Sparse matrix solvers on the gpu: conjugate gradients aitéd mu
grid.

Task_Manager

(Task_Manager J (Hardware_Check J (Physics task) (All. task J
T T T T
| | | |
S [[[
<<create>> L | |
<<create>> L 1 |
= |
<<creaie>> - ——
'
______ <<create>>
getETime(Physics)
ChangeP() -
geTE'I:i-m;(IA) -
ChangeP()
<<destroy>> :
< <<destroy>> I |
I I
< <<destroy>> | |
! |
<<destroy>> T | |
|
I I

I
|
|
|
|
Figure8: Interation diagram

DALMAU, D. S. C. 2003. Core Techniques and Algorithms in
Game Programming. New Riders Publishing.

DickIiNsON, P., 2001. Instant replay: Building a
game engine with reproducible behavior. Available
at http://www.gamasutra.com/features/
20010713/dickinson _01.htm/

GaBB, H., AND LAKE, A., 2005. Thread-
ing 3d game engine basics. Available at

http://www.gamasutra.com/features/
20051117/gabb _01.shtml/

KERR, A., CAMPBELL, D., AND RICHARDS, M. 2008. Gpu
vsipl: High-performance vsipl implementation for gpusHigh
Performance Embedded Computing.

MNKKNEN, V., 2006. Multithreaded game engine architectures.
Available athttp://www.gamasutra.com/features/
20060906/monkkonen _01.shtml

NYLAND, L., HARRIS, M., AND PRINS, J. 2007. Fast n-body
simulation with cudaGPU Gems 3 Chapter 31, 677—695.

R. IERUSALIMSCHY, L. H. DE FIGUEIREDO, W. C. 1996. Lua - an
extensible extension languadgaftware: Practice & Experience
26, 6.

RHALIBI, A. E., COSTA, S.,AND ENGLAND, D. 2005. Game
engineering for a multiprocessor architectureDIGRA Conf.

UFIMTSEV, |. S.,AND MARTNEZ, T. J. 2008. Quantum chemistry
on graphical processing units. 1. strategies for two-edednte-
gral evaluation. Journal Chemistry Theory Computation 4 (2),

222 - 231.
WATTE, J., 2005. Canonical game loop. Avail-
able at www.mindcontrol.org/ hplus/

graphics/game _loop.html/

