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Abstract

Nowadays, multithread architectures for PCs (multi-core CPUs
and GPUs), and game consoles (as Microsoft Xbox360 and Sony
Playstation 3) is a trend. Hence, single thread games loops will
not get the best performance on such architectures. For thisrea-
son, multithread game loops that take advantage of such architec-
tures are gaining importance. There are a lot of multithreadgame
loops that can be used in order to achieve better performancein a
game, but they can not adapted for different architectures.This pa-
per presents a new architecture for game loops that can detect and
analyze the user hardware and adapts itself to a specific gameloop
that can achieve the best performance for that hardware.
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1 Introduction

Multi-thread architectures on PC are getting more and more com-
mon with the development of multi-core processors and the new
GPUs architectures that can be used for generic processing.Also
top of the line video games like the Microsoft Xbox 360 and the
Sony Playstation 3 features multi-cores processors. With that, game
architectures have to paralise and distribute its tasks between the
processors, needing to utilize concepts from distributed and paral-
lel systems in order to fully take advantage of the hardware.This
work utilizes from these concepts like task distribution and load
balancing adapting this concepts to the game loop architecture.

Games are interactive real-time systems and, like multimedia appli-
cation, they have time constraints to execute all of its processes and
present to the end user the results. If a game does not fulfil this re-
quirement, it will lose its interactivity and consequentlyit will fail.
A common parameter for measuring a game and simulations is in
frame per second (FPS). The lower acceptable bound for a gameis
16 FPS. Their are not higher bounds for a game FPS, but in PCs
when the refresh rate of the monitor is less than the refresh of the
game some discard of the rendered frame may occur. In order to
achieve the best FPS in a game, game loops are designed and de-
veloped.

Game loop is the structure that determinate the order that each task
of the game is executed during the loop. The game loops is mainly
divided in three categories: data acquisition, which gets the data
from user’s input; data processing, where the game logic arepro-
cessed; and data presentation, where the results are presented to the
end user though images and audio. There are several works that
deal with game loops in order to achieve better results but normally
they are very restricted to the designed hardware. This workpresent
an framework to build game loops that can adapt to the user hard-
ware in order to take the best performance from the hardware.

When a task is paralized in threads, the distribution of works be-
tween the threads sometimes it is not the ideal making threads need-
ing to wait for the other(s). This is a common problem in distributed
system, and to solve it a automatic distribution of the work between
the threads is needed. This work implements this load balancing
using a heuristic to solve this problem.

This work is an extension of the work [blind for review blind for
reviewa], where a framework for game loops that can automatic
distribute task between CPU and GPU and can also implement sin-

gle or multi thread game loops. This work extended that work by
presenting the following concepts:

∙ Automatic verification of the user hardware, and select which
game loops will be used based on that knowledge;

∙ Load balancing between the threads of the work.

This work is organized as follows: Section two presents gameloop
background. Section three presents some related works. Section
four presents and explains all the major functionalities ofthe pro-
posed architecture. In section five six presents the conclusion.

2 Game Loops

The game loop is the underlying structure upon games are built.
Games are regarded as real-time applications because this kind of
application has time constraints to run the tasks that rely on them.
This means that if those tasks do not run fast enough, the experience
the game must provide will be compromised.

The tasks that a computer game should execute can be broken down
into three general groups: data acquisition, data processing, and
presentation. Data acquisition means gathering data from available
input devices: mice, joysticks, keyboards, and motion sensors. The
data processing part refers to applying the user input into the game
(user commands), applying game rules (game logic), simulating the
game world (game Physics), simulating non-player characters (Ar-
tificial Intelligence), and related tasks. The presentation refers to
providing feedback to the user about the current game state,through
images and audio.

As listed previously, there are many tasks that a game must run. A
computer games provides the illusion that everything is happening
at once. Since a computer game is an interactive application, if it
is unable to perform its work on time, the user experience will not
be acceptable. This issue characterizes computer games as aheavy
real time application.

3 Related Works

Although the game loop represents the heart of computer games,
there are not many academic works devoted to this subject. The
works by blind for review et al [blind for review blind for re-
viewb], Dalmau [Dalmau 2003], Dickinson [Dickinson 2001],
Watte [Watte 2005], Gabb and Lake [Gabb and Lake 2005], and
Mnkknen [Mnkknen 2006] are among the few ones. All of them
focus on single-player games. The simplest real time game loop
models are the coupled ones. The Simple Coupled Model [blindfor
review blind for reviewb] perhaps is the straightforward approach
to modeling game loops. It consists of sequentially arranging the
tasks in a main loop. Figure 1 depicts this model.

This first model runs as fast as the machine is able to, making it very
unpredictable when it comes to using it in different machineconfig-
urations. The uncoupled models separate the rendering and update
stages, so they can run independently, in theory. A nave approach
to a real time uncoupled models is to use one thread for rendering
and another for the update tasks. This approach exposes the same
unpredictable behavior of the Simple Coupled Model. The Multi-
thread Uncoupled Model [blind for review blind for reviewb]try
to bring determinism to the game execution by feeding the update
stage with a time parameter. Figures 2 illustrate these models, re-
spectively.

By using these models, the application has a chance to adjustits
execution with time, so the game can run the same way in differ-
ent machines. More powerful machines will be able to run the game
more smoothly, while less powerful ones will still be able toprovide
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Figure 1: Simple Coupled Model
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Figure 2: Multi-thread Uncoupled Model

some experience to the user. Although these are working solutions,
time measuring may vary greatly in different machines due tomany
reasons (such as process load), making it difficult do reproduce it
faithfully. For example, some games may require a scene replay
feature [Dickinson 2001], which may not be trivial to implement
if it is not possible to run some game sequence in a deterministic
way. Other features as network module implementation and pro-
gram debugging [Dickinson 2001] may be easier to implement if
the game uses a deterministic model. Another issue is that running
some simulations too frequently, like AI and game logic, maynot
yield better results.

Nowadays, computers and new video game consoles (such as the
Xbox 360 and the Playstation 3) feature multi-core processors. For
this reason, game loops that take advantage of these resources are
likely to become important in the near future. Therefore, paral-
lelizing game tasks with multiple threads is a natural step.How-
ever, dealing with concurrent programming introduces another set
of problems, such as data sharing, data synchronization, and dead-
locks. Also, as Gabb and Lake [Gabb and Lake 2005] states, not
all tasks can be fully parallelized due to dependencies among them.
As examples, characters cannot move until the game logic is com-
puted, and rendering cannot be performed until the game state is
updated. Hence, serial tasks represent a bottleneck to parallelizing
gaming computation. Mnkknen [Mnkknen 2006] presents mod-
els regarding multi-thread architectures that are groupedinto two
categories: function parallel models and data parallel models. The
first category is devoted to models that present concurrent tasks,
while the second one tries to find data that can be processed entirely
in parallel. The Synchronous Function Parallel Model [Mnkknen
2006] proposes to allocate a thread to all tasks that are (theoreti-
cally) independent of each other. For example, performing Physics
simulations while calculating animation. Figure 3 illustrates this
model.

The author states that this model is limited by the amount of avail-
able processing cores, and the parallel task should have little depen-
dency on each other. The Asynchronous Function Parallel Model
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Figure 3: Synchronous Function Parallel Model

[Mnkknen 2006] is the formalization of the idea found in [Gabb
and Lake 2005]. This model does not present a main game loop.
Figure 4 illustrates the model.
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Figure 4: Asynchronous Function Parallel Model

Different threads run the game tasks by themselves. The model is
categorized as asynchronous because the tasks do not wait for the
completion of other ones to perform their job. Instead, the tasks
use the latest computed result to continue processing. For example,
the rendering task would use the latest completed physics informa-
tion to draw game objects. This measure decreases the dependency
among tasks. However, task execution should be carefully sched-
uled for this scheme to work nicely. Unfortunately, this is often out
of the scope of the application. Also, serial parts of the application
(like rendering) may limit the performance of parallel tasks [Gabb
and Lake 2005].

Also Rhalibi et al [Rhalibi et al. 2005] shows a different approach
for game loops that is modeled taking the tasks and its dependency
into consideration. Its divides the game loop steps in threeconcur-
rent threads, creating a cyclic-dependency graph, to organize the
task ordering. In each thread, the tasks for rendering and update are
divided taking into consideration their dependency.

The Data Parallel Model [Mnkknen 2006] uses a different
paradigm where data are grouped in parallel sections of the appli-
cation where they are processed. The Data Parallel Model proposes
to use separate threads for sets of data (like game objects),instead
of using a main loop with concurrent parts that process all data.
In this configuration, the objects run their own tasks (like AI and
animation) in parallel. Figure 5 depicts this approach.
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Figure 5: Data Parallel Model

According to [Mnkknen 2006] , this model scales well because
it is able to allocate many processing cores as there are available.
Performance is limited by the amount of data processing thatcan
run in parallel. An important issue is how to synchronize com-
munication of objects running in different threads. Mnkknen 2006
states that the biggest drawback of this model is the need to hav-
ing components designed with data parallelism in mind. Thistype
of parallelism has a similar approach as the GPGPU (general pro-
pose computation on graphics processor) work which also separates
GPUs threads for sets of data.

The focus on GPGPU has been increasing since graphics hardware
had become programmable. It is a massively parallel architecture
with more powerful processing than the CPUs. GPGPU has been
theme of research on diverse areas like: image analysis [Kerr et al.
2008], linear algebra [Bolz et al. 2003], chemistry [Ufimtsev and
Martnez 2008], physics simulation [Nyland et al. 2007], andcrowd
simulation [blind for review blind for reviewc].

There are some works that discuss using GPGPU with game loops
[blind for review blind for reviewd], [blind for review blind for
reviewe], [blind for review blind for reviewf], [blind for review
blind for reviewg]. These works concentrate using the GPU mostly
for the physics calculations, and they extend one of the gameloops
presented previously, i.e., multi-thread uncoupled modelby adding
a GPGPU stage.

Blind for review [blind for review blind for reviewa] presents an
architecture for game loops is able to implement any game loop
model and distribute tasks between the CPU and the GPU. This
work extends the work by Blind for review by proposing a game
loop that is able to detect the available hardware and automatically
distribute tasks among the various CPU cores and also to the GPU.

4 The Proposed Architecture

Although processing power in consoles and computers has greatly
increased, and multi-core architectures make it possible to use par-
allel processing, proper software is needed to extract highperfor-
mance from the hardware. Even though the game loop concept
applies to both consoles and computers, there are some differences
among these kind of hardware.

Consoles (i.e. consoles in the same family such as the Xbox 360)
have the same hardware, memory, processors and number of cores,
making development in those platforms more predictable (i.e. the
developers knows the hardware s/he will be working with). On
the other hand, for computers there is a myriad of configurations
considering processors, memory, GPUs, and combination of this
(and other) hardware.

The proposed architecture works with multi-core CPUs and GPUs
(if one is available). The architecture considers both as resources. A
resource is a CPU core or a GPU, and the architecture encapsulates
them. However, not all of game tasks are suitable for processing
both in the GPU and the CPU, as their architectures are different
and require different programming paradigms.

The aim of the proposed architecture is to provide a management
layer that it is able to analyse dynamically the hardware perfor-
mance and adjust the amount of tasks to be processed by the re-
sources. In order to make a correct task distribution, it is necessary
to run an algorithm, and in the current architecture, a script is re-
sponsible for this. The architecture applies the scriptingapproach
because the game loop is used in many games, and for each of them
it uses a different algorithm and a subset of its parameters.

The core of the proposed architecture corresponds to the Task Man-
ager and the Hardware Check class. The Task Manager schedules
tasks in threads and changes which processor handles them when-
ever it is necessary. The Hardware Check monitors the processors
to calculate the usage rates of all of them.

4.1 The Task Class

A task is defined such as a work that the application (the game)
should execute. There are three classic tasks that all game applica-
tion execute: player input, game state update, and providing feed-
back to the player. These tasks should be broken in small subtasks,
for example: Player input is performed by reading the keyboard,
mouse or joystick state. Feedback to the player is provided by ren-
dering the scene graphically, playing a sound effect, or vibrating the
joystick. Hence, a task can be anything that the applicationworks
towards processing.

A constraint of this architecture is the fact that not all tasks can be
processed by all sorts of processor architectures. An example is the
CPU and the GPU, that have different hardware architectures. The
GPU hardware is not able to access all of computer peripherals just
like the CPU. For example: read a file from hard disk. It is a task
that only the CPU is able to process. On the other hand, physics
simulations can be processed by both, although GPUs typically ex-
ecute it faster than CPUs.

Thus, a task is broken in three groups. The first group works with
tasks that can be invoked only by the CPU in its cores, such as
player input, file handling, and the managing of other tasks.The
tasks of this group can be allocated in different cores, and,if there
are more than CPU core, they can run in parallel. In the same way,
the second group handles the tasks that can be only processedby
GPUs, such as running shader processing. The last one is the group
that can be modelled to be invoked by both processors. Figure6
illustrates the UML class diagram for tasks.

The third group is the main focus of this work, because its tasks can
be invoked by all processors. We are specifically interestedin the
issue of delegating a task to a CPU core or to the GPU.

The task structure is described as follows:

∙ TASK ID: it is the id of the task. Whenever a task is created,
it receives this unique number. The architecture uses the idto
guarantee the correct order of execution and to identify which
task is accessing the data shared among the tasks;

∙ TASKTYPE: the task type, that can be the following: input,
update, presentation, and management (this last one identifies
Task Manager and the Hardware Check classes);

∙ STACK: It is a stack area used to preserve the task state when-
ever it leaves the processor;

∙ DEPENDENCY: ID of next task that should run after this one.
The Task Manager relies on this information to guarantee the
correct execution ordering;

∙ PRIORITY: The Task Manager uses this value to decide
which tasks in the task queue are going to be scheduled in
each processor. The next Section provides more details about
this field.
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Figure 6: UML class diagram

∙ Load balancing between the threads of the work.

4.2 The Task Manager Class

The Task Manager is a special class derived from the generic Task
class, as Figure 6 illustrates. It provides management, instancing,
finalizing, and synchronization of all others tasks (exceptitself).

To guarantee the correct distribution and the abstraction of the tasks,
the architecture defines a special task called Task Manager.The
Task Manager is responsible for defining which task runs in which
processor, and it should check whether a task can be broken in
smaller tasks or not, and redistribute them. This class is derived
from the generic Task class, and it provides management, instanc-
ing, finalizing, and synchronization of all others tasks (except it-
self). In order to guarantee central control of tasks and their correct
execution, there is only one instance of the Task Manager class in
the application, implemented as the Singleton design pattern.

The Task Manager class loads scripts that describe the initial policy
of distribution that should be adopted. This means which messages
it will send and the rules that should be applied. The input param-
eters of the script are: the task name, the elapsed time, and which
processor is being used. The script has a task list and their con-
straints. The task constraints are: the execution orderingand which
processor should be used.

For each kind of task, the Task Manager holds one version of the
algorithm for the CPU (CPU Task) and another version (if appli-
cable) for the GPU (GPU Task), both of them with the same dis-
tribution policy. The Task Manager creates instances of theGPU
Task objects to run in the GPU thread. If there is a processor in the
system with four cores, the Task Manager will create four instances
of the CPU Task class, according to the script rules. Thread syn-
chronization must be guaranteed in the algorithms themselves. The
GPU Task objects work the same way. The Task Manager identifies
how many GPUs are there in the system, and then it breaks the task
among them.

To make it possible to use a parallel programming model, the
Task Manager implements a multithread game loop. To avoid the
problems of this model of programming, the Task Manager uses
a semaphore such as the synchronize object. Accessing shared
data, starvation and deadlocks are examples of parallel program-
ming model problems. Figure 7 illustrates the game loop model
this work proposes.

The Task Manager sees the CPU cores and the GPU as processing
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Figure 7: Multi-thread Uncoupled Model (CPU/GPU)

resources. To distribute best the application among these resources,
the Task Manager exchanges messages with the Hardware Check
objects (they are described in the next Section). These messages are
exchanged during the execution of the application. The Hardware
Check objects send information about the performance of thetasks
to the Task Manager, which in turn uses this to decide about the best
load balancing to apply.

Each task holds information that the Task Manager queries and up-
dates. Recapping from Section 4.1, these information are: task id,
task type, a stack, dependencies on other tasks, and task priority.

The tasks send messages to the Task Manager when these events
occur:



∙ A task finishes execution;

∙ A task finishes processing shared data.

When a task finishes processing some shared data, the messageit
sends to the Task Manager is interpreted as a release of the shared
data.

For each CPU core and each GPU, there is a processing thread and
an associated task queue. When a task finishes executing, theTask
Manager chooses the next task to run based on the priority values
of the tasks in the queue.

One of the major features of the proposed architecture is scheduling
a task to run on another processor (CPU core to GPU or GPU to
CPU core or CPU core to other CPU core) during its execution.
In these cases, the task state is pushed to the tasks own stack(and
later restored) regardless of the processor type. For example, in
time t1 the GPU processes a Physics task and in timet2 this task is
scheduled to the CPU. When the task starts to run again (now inthe
CPU), the Task Manager reloads the task state from the tasks stack
and signals it that the processor type has changed. The task priority
is changed to a value of zero, which means that the task is placed
on the front of the task queue. This measure is a way to guarantee
that the task will keep on running.

The Task Manager performs load balancing according to the usage
rate of processors. Another class, named Hardware Check, isre-
sponsible for providing the information about usage rates.Section
4.3 describes this class.

4.3 The Hardware Check Class

The Hardware Check is implemented as a task that runs on the CPU.
There is only one instance of this class in the application. This
class keeps track of the number of CPU cores and GPUs available
in the system. While the application is running, it watches each
processor to calculate the usage rates. The class informs the Task
Manager about the current state of the processors and their cores.
The possible states are: ”waiting” and ”running”.

The class uses an ordered data structure to store information about
the usage rates of each processor. In this case, using a simple vec-
tor is enough. Keeping the vector ordered guarantees that the first
element will be that represents the highest usage rate.

To keep the Task Manager informed about the usage rates and pro-
cessor states, it is necessary to establish a communicationchannel
between them. Figure 8 illustrates this communication scheme.

4.4 Ways to Distribute the Tasks

The architecture perfoms the initial task distribution based on
heuristics by reading a script file that contains the rules. This script
file is written with the Lua language [R. Ierusalimschy 1996]. This
script should not be complex to avoid delaying application startup.

The distribution of the tasks is done based on heuristics described
and load before the execution of the application and it is written in
LUA language . Despite the script of the heuristic is being loaded
and processed during the start of application, it should notbe com-
plex to avoid spending time processing.

The architecture supports two kinds of heuristics. The firstone is
manual, which means specifying tasks for specify processor, ignor-
ing performance. This heuristic is used to test task performance.
The second one is the automatic heuristic.

The automatic heuristic should describe all tasks used by the appli-
cation, their ordering and the types of processors the tasksuse, as
well as the rules to apply for changing processors. The elapsed time
or frames per second are the only information the heuristic uses. It
is a simple measure and can be applied for GPUs and CPUs. The
input parameters are the processor ID and the time elapsed bythe
processor to process it. It returns the processor ID for the processor
that should run the task after that execution.

The algorithm 1 is an example of an initial condition of the heuris-
tic. It is configured to loop in the following state: execute 5frames

in the CPU and 5 frames in the GPU and decide to for the faster
processor to execute the next 200 frames. It also specifies the num-
ber of CPU threads and the number of GPU threads to use. The
script also specifies the number of frames to use when calculating
the fastest processor and the measurement interval [blind for review
blind for reviewa]. The number of CPU and GPU threads defines
how many threads the application starts.

The architecture automatically distributes tasks betweenprocessor
cores. If a core takes longer to process a task than other cores, the
Task Manager removes some of the load of the heaviest task, the
Task Manager removes some of the load of the heaviest task (i.e the
task that is taking longer to run), and put in the lightest task (i.e the
task that is taking less time to run).

Algorithm 1 INICIAL CONDITION

INITFRAMES ⇐ 20

DISCARDFRAMES ⇐ 5

LOOPFRAMES ⇐ 50

EXECITEFRAMES ⇐ 5

CPUTHREAD ⇐ 4

GPUTHREAD ⇐ 2

4.5 The Architecture Execution

This subsection is dedicated to illustrate the execution ofthe archi-
tecture, so the reader can better understand it. Figure 8 illustrates
the process.

First if there are GPGPU tasks, the Hardware Check queries ifthere
is a GPU card that can process the task. If this is the case, it informs
the Task Manager that this task is able to run either in the CPUor
the GPU. After that, Hardware Check queries how many CPU cores
are available in the system, and pass this information to theTask
Manager. The Task Manager, in turn, distribute the tasks through
the available hardware.

5 Conclusion

The development and evolution of multi-cores processors, GPUs
and video games indicates that multhitread architectures is a trend.

This work discussed the concept of game loops, a subject thatis not
very discussed in the literature. Our contribution lies on extending
a previous work by providing an architecture for game loops that is
able to distribute tasks between the CPU and the GPU.

The proposed architecture is able to detect the available hardware,
and then to break tasks into CPU cores and, if it is available,send
them to the GPU.
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