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Figure 1: Non-interactive replay generated through the technique of recognition and prediction of physical actions. 
 
 
Abstract 
 
The camera freedom in 3D virtual environments is 
enabling applications to use techniques similar to those 
used in cinematographical presentations. However, 
with the presence of interactivity in these 
environments, there is no predetermined sequence of 
events that enables optimal dynamic positioning. 
Hence, it is necessary to use techniques for the 
recognition and prediction of actions in order to 
position the camera in a satisfactory manner. This 
paper presents an Event Tree to help an agent director 
in the automatic placement of cameras that uses 
techniques for the recognition and prediction of actions 
in an interactive virtual environment based on the 
physical state of the simulation. 
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1. Introduction 
 
Nowadays it is very common to see non-interactive 
sequences in 3D games which enrich the story and 
draws more attention and interest from the player. 
However, these sequences are strongly linked with a 
story script with actions of the characters and default 
camera settings. In applications where we want to real-
time broadcast a game match for an audience, where 
there is no knowledge of what may happen, or even in 
games where the creation of an instant replay is 
reasonable, it is practically impossible to get good 
results by using preset camera takes. 

 

In cinematography, the camera is one of the main 
components used to highlight what we want to show, 
and to introduce subjectivity to the scene, depending 
on the viewing angle, on what is receiving focus and 
on the time of taking of the scene [Martin 1985] 3D 
game developers have noticed very soon that the 
movies productions used very interesting effects which 
could be adapted for the production of games. By 
incorporating similar techniques, developers could add 
more effects and excitement to their productions 
[Hawkins 2005]. Terms such as zoom and pan were 
added to the internal handling of the virtual camera. In 
fact, the programming of a virtual camera is becoming 
increasingly similar to the commands that a camera 
operator receives in the real world, with instructions at 
a very high level of abstraction. The experience of the 
film industry explains and justifies the use of each type 
of camera-taking, constituting a proper language, 
which today is also used in the production of 3D 
presentations and games. 

 
In interactive 3D applications, the proper use of a 

virtual camera is very difficult due to the 
unpredictability of the events. In applications with pre-
defined sequences, the director already knows exactly 
what will happen with the elements of the scene, and 
this makes possible the optimal placement and 
orientation of the camera, according to the desired 
results. But when the changes that will occur with the 
objects of the 3D environment are not known in 
advance, it is necessary to use alternative techniques 
for camera handling to achieve good results. We must, 
above all, recognize the actions and identify the 
relevant objects for the scene to be transmitted in an 
appropriate way, still considering the probability of 
occurrence of another event. After the recognition of 
actions in the interactive environment, the system still 
needs to choose which is the most relevant at each 
moment, displaying it in a convenient way to get the 



expected emotion. To do this we must choose a good 
position for the camera, define which objects will get 
the focus and determine the time of taking. At this 
moment the decision tree enters into activity. 

 
When an event has been chosen to be filmed, a low 

computational cost strategy to position the camera is to 
predict what will happen in the next few moments 
inside the virtual environment, based on the physical 
simulation [Pires et al. 2008]. To illustrate the use of 
the technique, a game was developed, where the user 
has his view at gameplay, and after that, when level is 
complete or player dies, his moves are shown again as 
a replay of all past actions. This also represents the 
view that the audience should have when watching. 

 
Trees are one of the most important data structures 

with innumerous applications in Computer Science. 
They are composed of a finite number of elements, 
allowing a hierarchical arrangement of its elements, 
enabling processes such as indexing and search to be 
performed very efficiently. Different problems and 
applications have led to the development of several 
variants of tree data structures, such as binary trees, 
AVL trees and octrees [Cormen et al. 2001]. 

 
This work aims to show the use of an Event Tree, 

whose goal is to assist the director agent in the 
placement of an automatic camera in a virtual 3D 
environment. The Event Tree takes into account the 
main objects in a given virtual environment, and yields 
an acceptable configuration that can be used by the 
application to position the camera in the environment 
and to frame the target by the camera, including some 
film effects such as tilts and trajectories. 
 
2. Related Work 
 
Since the emergence of cinema in the nineteenth 
century, several authors have been studying new 
techniques to make their products more attractive to 
the spectators. Cinematography schools have also 
multiplied and grown. Today one can find very good 
articles and books on film techniques, such as the work 
of Martin [1985], and specialized websites such as 
Mnemocine [2008]. More recently, these same 
techniques have been widely adopted by games, to 
increase the player's immersion in the 3D environment. 
Moreover, they began to think about the possibility to 
show a 3D game match just as in sports broadcasts. 
Drucker’s work [1994] explores the feasibility of this 
use of film techniques for computer games, showing a 
very positive outlook. 

 
There are several works aiming to facilitate the 

problem of positioning the camera in the virtual 
environment, such as the ones of He et al. [1996] and 
Amerson & Kime [2001]. Some of them use  Domain-
Specific Languages (DSLs), which are extremely more 
useful for positioning the camera through higher level 
commands than the conventional programming 

languages, but have the disadvantage of presetting the 
placement of cameras and activating one camera or 
another depending on the events happening in the 
environment.  

 
In other works, such as Drucker’s [1994], Hermann 

& Celes’ [2005] and Pires et al. [2008], the camera is 
positioned in a more automatic way, without user 
intervention. But these methods provide a poor result if 
compared to the use of DSLs. The system of Hermann 
and Celes [2005] also distributes the work of 
positioning the camera into 3 modules: screenwriter, 
director and videographer. The experiments of Pires et 
al. [2008] used Microsoft’s XNA framework to 
develop a complete game that shows the player a non-
interactive replay of his moves, using action 
recognition and physical prediction to assemble a 
satisfactory way to film the scene. However, with this 
framework, the proposed module videographer is 
merged with the actual mechanism for rendering 
images. With this, the director module can output this 
data directly to the graphics pipeline of the application. 

 
Pinhanez [1999] is one of the main works dealing 

with action recognition in virtual environments. His 
work proposes a formal representation for actions in 
the context of interactive narrative systems involving 
real and virtual actors. This representation is based on 
the decomposition of actions in elementary sub-
actions, being context-sensitive, with the possible 
temporal relations between sub-actions and the main 
action, represented by a network of constraints with 
three possible values: past, present and future (PNF 
networks). The recognition of actions within the virtual 
environments is done through the propagation of the 
temporal state of these PNF networks, taking into 
account the state of elementary sensors. However, in 
his work, there is no experiment with systems 
including physical simulation engines, which could 
provide more information about the state of the objects, 
or even predict events before they occur. In such 
environments with physics engines, a collision may be 
predicted depending on the speed and direction of the 
movement of an object, its distance to an obstacle and 
its maximum coefficient of friction or diversion. 

 
The XNA framework, launched by Microsoft in 

2006, became very popular for academic and 
commercial use. Its focus is to produce games for 
Windows and X-box 360. Within the target audience of 
XNA there are students and independent developers. 
Its documentation is full of examples and with 
complete explanations about the mathematics involved 
in graphical processing and programming techniques. 
With its growth, several websites specialized in this 
tool have been created; they offer from tutorials to 
ready-to-use classes and libraries. There are now many 
studies demonstrating different techniques for camera 
implementation in XNA. Among them there are 
Riemers’ [2008] and Fegelein’s [2008] websites. They 
explain all mathematical fundaments in the 
manipulation of virtual cameras in 3D environments. 



There are also many books on the XNA framework, 
such as the Nitschke’s [2007] and Carter’s [2007]. 

 
This paper is an extension of Pires et al. [2008] 

work, using the same experimental game to illustrate 
the technique. It presents an application capable of 
recognizing the actions occurring in the environment 
and positioning the camera in a way that the events of 
the virtual environment and future predicted events can 
be considered, through physical calculations and use of 
information passed by the game engine. 
 
3. Simulation Prediction System 
 
Below are described the main techniques that support 
the functionality of dynamically placing cameras in the 
virtual environment. These are action recognition, the 
prediction of physical simulation and prediction of 
state machines. Figure 2 shows a fluxogram of an 
application’s game-loop. 
 

 
 

Figure 2: A game-loop cycle. 
 
3.1 Recognition of actions 

 
A virtual environment is usually composed of objects 
that are able to perform certain actions within its 
domain. These actions can be simple or have the ability 
to affect other objects, or even be able to change 
drastically the entire environment. For the 
cinematography, even static objects have semantics 
within the environment and will influence the scene in 
some way. Therefore it is necessary an appropriate 
mechanism to recognize what each object is doing and 
what kind of influence a given set of objects have on 
their neighborhood or on the virtual environment as a 
whole. Shortly speaking, to recognize the actions of a 
virtual environment means to correctly identify what is 
happening at any given moment within the virtual 
environment. 

 
More objective or specific actions make up the 

game engine itself, or are part of a state machine of 
some object, or are represented as properties of some 
class. In these cases, to realize that an action just 

occurred becomes a trivial task, since there may be a 
marker or a variable indicating that it occurred or is 
occurring. Below are some examples of objective 
actions at different types of games: 

 
• Level start; 
• Character begins to move; 
• Car collides with a wall; 
• Enemy dies; 
• The tick of a timer. 
 
However, modeling all the actions in the game 

engine or those included in the objects’s behavior can 
be, sometimes, a very difficult task due to the 
subjectivity of some actions and events. These are 
known as subjective actions [Pires 2009]. For example, 
in a soccer game match, is not easy to recognize that a 
user prefers and tends to make his moves on the right 
side of the field. In a racing game, the player can for 
some reason choose to never overtake a certain car. 
Actions that depend on the player's behavior are much 
more difficult to recognize because it is necessary an 
interpretation of events over time. 

 
In order to facilitate the recognition of such type of 

events it is possible to use an agent that stays 
monitoring the actions of objects and the state of the 
environment in time, and that informs the application 
whether it finds a pattern of behavior that is similar to 
the expected events or relevant to the construction of 
the film scene. This ends up with the camera 
positioning and their next moves. The term "agent" 
denotes a software engineering  concept that  describes 
an entity capable of acting with a degree of autonomy 
in order to complete tasks [Barella et al. 2007], in this 
case, in regular intervals of time, observing what 
happens in the environment. 

 
3.2 Actions Recognition Agent 

 
The actions recognition agent keeps track of the 
actions of the objects and the state of the environment 
in time, and warns the application when it finds a 
pattern of behavior that is similar to the expected 
events or relevant to the construction of the film scene. 
Figures 3, 4 and 5 show the main data structures used 
by this agent. 

 
 

 
 

Figure 3: A list Hi of the few past events. 
 



 
Figure 4: A set Ωi of expected events Lx. 

 
 

 
Figure 5: A list Vi of cinematographical meanings. 

 
Firstly, at design time, we must define which set of 

objects O = [o1, o2, ..., on] will be monitored and how 
many past events will be considered. So, every game-
loop, the state of each object oi ∈ O will be stored in a 
list called Hi. This list is responsible for storing the 
object’s states history. There must be a list Hi for each 
object instance oi we want to monitor. Alternatively, 
the current state of an object oi ∈ O can be stored in Hi 
as new events occur, or at regular intervals of game-
loops. Moreover, instead of storing states of objects, 
the list Hi can be completed with sets of sentences 
involving boolean variables relevant to the assembly of 
the scene. This must be decided, modeled and set at 
design time. 

 
The list Hi is then compared with a set Ωi = [L1, L2, 

..., Lm] of behaviors or actions L. Each element L 
represents an expected action or behavior for that 
object for the entire game and must be defined at 
design time. Each entry of this set Ωi is a list L = [ε1, 
ε2, ..., εk], containing a sequence of states for the object 
or boolean expressions involving any element of the 
application. A list Lx is very similar to the list Hi, but it 
represents an action or condition with relevant 
cinematographical meaning. At the defined rate, the 
history Hi has to be compared with all the m entries in 
Lx of the set Ωi, until the agent concludes that the past 
events form a relevant event for filming, or not. The 
comparison between the list Lx and the history Hi is 
done by evaluating the similarity between their 
elements. If both lists are sufficiently similar, then the 
action represented in Lx is given as recognized, and a 
new reference to Lx will be added to the list Ri of 
recognized actions. Ri is an ordinary list that is always 
empty at the start of the process. 

 
If the few past events, represented by Hi, are similar 

to an expected action, represented by Lx, then this 
action is understood as an important action to film, 

thus having a cinematographical meaning, such as 
distress, calm, caution, expectations etc. Every action 
Lx has a corresponding index x in a vector Vi, which 
stores the cinematographical meanings for each Lx ∈ 
Ωi. Each position x ∈ Vi keeps the cinematographical 
meaning of the action Lx. This is easily done just 
associating the indices of Ωi and ones of the vector Vi, 
according to Figures 4 and 5. This will influence the 
decisions of the director agent later when it starts 
operating. 

 
Alternatively, the algorithm for the recognition of 

actions can be performed at regular intervals of game-
loops or when a new event happens. The choice of 
which approach to use depends on the mechanics of the 
game and how much work the system can bear. If, in a 
testing phase, the system becomes overloaded, a 
solution may be to decrease the frequency of work of 
this agent. 

 
3.3 Physical Simulation Prediction 

 
The prediction of the physical simulation is a technique 
that helps to find out what will happen in the next few 
moments. It almost always refers to movements and 
the update of positions in any way, since these are the 
main object of physical simulations [Pires 2009]. Since 
an object in a virtual environment may be under 
various influences, the prediction helps to determine 
the likelihood that a given event is going to occur or a 
given event can be concluded. The prediction returns a 
value depending on the probability of occurrence of an 
event, and it will be evaluated by the director agent. 

 
At design time the designer has to define what he 

wants to predict so that he can implement the required 
calculations. Later in the scene assembly process, the 
event tree will consider every predicted event and so 
the director agent can choose a good camera angle to 
film the scene. 

 
The prediction of events in the virtual environment 

can be used to assist the recognition of subjective 
actions, and is especially useful for automatic 
placement of cameras. For example, in a virtual 
environment where a motorcycle is riding onto a ramp, 
it is possible, through kinematics calculations, to find 
out where and how it will fall, thus taking the 
appropriate action accordingly to it, to show the fact in 
the best way possible, even before the motorcycle 
jumps. Of course, by using such prediction techniques, 
the application can perform other processes, such as 
making the pilot leave the motorcycle if the jump is 
going to be disastrous. Physical prediction is also 
useful for improving artificial intelligence. For 
example, the behavior of a smart fighter who calculates 
his next attack, according to time remaining to the 
enemy land after a jump [Pires et al. 2008]. 

 
 



 
 

Figure 6: A tank A launches a missile targetting tank B. 
 

For example, in a scene with a war tank A that 
launches a missile against another tank B, and one tank 
is 500 meters (or any measurement unit) away from the 
another, in a 3D environment with physics that ignores 
air resistance, as in Figure 6, the success of the tank A 
can be calculated at the moment of the shot. If that 
missile was launched with a speed v0 of 100 m / loop 
and angle Φ equal to 30 degrees, and gravity g equal to 
10 meters / loop, by applying kinematics formulas we 
can determine where the projectile will fall (range A) 
and the time (Δt) it takes to travel the path: 
 

 
Figure 7: Formulas for parabolic movement [Taveira et al. 

2009] 
 
Applying the formulas, we would know that the 

missile will fall to 809 meters from tank A, nine game 
loops after its shot, concluding that the tank B remains 
untouched. In this case, the system can now be 
prepared to film the action in an interesting way for the 
viewer [Pires 2009]. 

 
To achieve a reliable prediction, it is necessary to 

be careful with some problems. It is always necessary 
to consider which movements the object tends to do, 
like gravity force and other forces applied to the object. 
The other objects that are around should also be 
considered, especially to know the distance from the 
subject and how this distance will vary in the next few 
moments. The arrangement of objects in the area is 
also an important issue for the cinematography. 
Finally, it should be considered how the user or other 
components may intervene in the scene. If these are not 
taken into account, it may in some cases reduce the 
predictability of actions, leading the director agent to 
think that nothing important is going to happen. 

 
Due to the computational complexity of some 

physical calculations or to obtain information about 
many objects, other data structures can be used, in 
order to speed up these operations. For example, it is 
very fast to get the positions of objects in a discretized 
space, where these objects are represented by a matrix 
[Pires et al. 2008]. In this case, we simply calculate the 

position of an object in the environment by the position 
which is stored in the matrix. 

 
3.4 State Machine Prediction 

 
The prediction through the state machine of an object 
is made in cases where an event with relevant meaning 
for filming can be identified by the sequence of states 
that the object undergoes. For example, a soccer player 
can very likely get tired after running hard for a given 
period. So, when this player runs too hard, the director 
agent can get ready to film him getting tired. If this 
really happens, the camera will film the fact precisely. 

 
The implementation of prediction based on state 

machines structures may involve the study of graphs 
and their theoretical aspects, which are not in the scope 
of this work. However, it is also an important way to 
improve the viewer experience when watching a real-
time game match. 

 
4. Event Tree Operation 
 
The camera positioning is the result of all the previous 
steps. The game engine is responsible for raising the 
events relating to the game logic or to the properties of 
a given object. Using this information, it is possible to 
recognize subjective events and also predict future 
events. Then, the director agent can position the 
camera according to the cinematographical language 
being used, because it has access to all the information 
it needs. 
 

 
Figure 8: Director Agent input and output. 

 
As in Figure 8, the director agent receives as input 

the state of the environment and a reference to the 
main objects involved, i.e., a list of pointers O = [o1, 
o2, ..., on] to access the properties of the main 
characters and their enemies or any other objects oi that 
have some influence on the scene. In practice, it is 
easier to make the director agent to have direct access 
to the state of the virtual environment, the characters’ 
classes and lists of enemies or other objects. Moreover, 
for each object, the director agent has access to the list 
of recognized subjective actions R and the results of 
physical prediction. With this, the desired result is a 
scene with satisfactory camera settings. 

 
At this point the director agent begins to assemble a 

way to film the scene. A decision tree A, called Event 
Tree, is built dynamically and through this the final 
result C will be reached. The root of A serves only as a 
starting point; A will have as many children as the 



number of objects in the list O = [o1, o2, ..., on], The 
notation nk indicates the number of nodes in the k-th 
level of the tree. For instance, n2 represents the number 
of nodes in the second level of the tree. Afterwards , 
the director chooses one of the leaves at random and 
begins to pursue a path C in the tree; the other leaves 
are discarded to minimize memory consumption. This 
movement means that the object oi was chosen to be 
the main subject of the scene. From this node on, new 
leaves are generated; the number of leaves is an n-tuple 
with the same number of recognized subjective actions 
r, plus the number of predicted actions p, plus the 
number of recent past actions u. That is, the number of 
leaves on the third level of the Event Tree is: 
 

n3 = r + p + u 
 

Again the director agent chooses a leaf randomly; 
this time the choice represents the action to be filmed. 
This action in the third level of the tree is related to the 
object chosen in the second level. According to the 
elements in this third level, the director’s choice may 
be an action that just happened, a recognized subjective 
action or a predicted action that can happen in a few 
moments. Each one of those has its corresponding 
cinematographical value, which was set at design time. 
For performance issues, after the director chooses a 
leaf, the others are ignored. 
 

Finally, the director agent creates its last set of 
leaves in the Event Tree. This time the number of 
leaves will be equal to the number of objects involved 
in the action chosen by the previous step. The last 
random selection of the director determines which 
objects are framed and how the camera will be actually 
positioned, following the concepts of the film language 
set at design time. Figures 9, 10 and 11 show the entire 
process: 

 

 
 

Figure 9: Step 1: monitored objects are represented as tree 
nodes. 

 
 

 
 

Figure 10: Step 2: recognized subjective actions, predicted 
actions and past objective actions are represented as tree 

nodes. 
 
 

 
 

Figure 11: Step 3: objects related to the action are 
represented as tree nodes. 

 
The experimental game makes use of this structure. 

The director agent works all the time to assemble a 
good camera setting while the game logic executes 
[Pires et al. 2008]. Suppose that the ship is trying to get 
the blue crystals, which are needed, in an area 
completely surrounded by red crystals that are lethal, 
according to Figure 12. The scene will be built based 
on  the Event Tree. At the second level of the tree (the 
first is the root) there will be only one node, because 
the ship (object o1) is the only object being monitored. 
At the third level there are the following nodes: 
 

• The ship has turned right (objective action ε4); 
• A blue crystal was collected (objective action 

ε7); 
• The ship has turned left (objective action ε5); 
• A blue crystal was collected (objective action 

ε7); 
• It was recognized that the player is trying to 

get blue crystals in a certain order to gain more points 
(subjective action L1); 

• There is a high collision probability with a red 
crystal (predicted action p1); 



 
 

Figure 12: Black arrow represents the path of the ship. 
 

 
 

Figure 13: An example of a full Event Tree. 
 
As shown in Figure 13, the Event Tree will have 6 

nodes at the third level, each representing a situation. 
The director chooses randomly one node to continue. 
Choosing the path ε7, the other nodes are ignored and 
two new leaves are created for this node, each 
representing an object involved in the action: the ship 
and the newly collected crystal (represented as C[3,2], 
because crystals are arranged in a matrix C). Each leaf 
in this fourth level has parameters such as position, 
size and speed of the objects oi and will interfere in the 
way of positioning the camera, acting as a local 
modifier. 

 
The path taken by the director agent on the tree is 

stored, because the actions previously selected have to 
be consulted again later to read their cinematographical 
meaning. Hence the importance of borrowing the film 
industry experience in the development of this type of 
application. Based on those cinematographical 
information, the minimum time for the take can be 
determined, certain camera movements can be applied, 
and the position of the camera related to its target can 
be set. 
 

After that, the scene is rendered and the time of the 
take starts to be counted. When the time is over, the 

director agent looks up all data structures again in 
order to repeat the entire process. Depending on the 
type of environment or how the user controls or 
interferes in it, this can happen more quickly or more 
slowly. As this approach is susceptible to problems, 
mainly due to the difficulty to predict the user's 
commands, it is interesting to make the engine throw a 
control action at a fixed time rate, to force the director 
agent to reset its parameters [Pires 2009]. 
 

The random factor in the behavior of the director 
agent is due to two reasons: the first is to guarantee that 
the process does not become fully deterministic. The 
second is due to the limitation of working in real time. 
To make the director evaluate each action and the 
suitability of every object could bring a much greater 
computational effort than the game itself, and also 
involve theoretical issues that are outside the scope of 
this work. The random selection has also the advantage 
that a single replay, can have different camera settings, 
each time it is seen. For transmission in real time, each 
viewer can get a different picture filmed from a 
different angle. 
 
5. Conclusion 
 
This paper presented a decision tree structure for 
assisting a director agent in the assembly of a non-
interactive scene. The proposed method combines 
techniques of action recognition, prediction of events 
through physics simulation within the virtual 
environment, and cinema concepts. The idea around 
the Event Tree for assisting the director agent in its 
choices was introduced, and its usage was explained. 
In association with film techniques, the Event Tree aids 
the director to reach good results. 
 

The experimental game built in Pires et al. [2008] 
was used in order to test the technique. With some 
adjustments in the virtual environment, the technique 
could be applied correctly and in an optimized manner. 
Another essential factor for the success of the 
technique was the addition of a randomness factor, 
which avoids the determinism and is computationally 
faster than analysing all possibilities. As a final result, 
it  produces more interesting scene viewing effects. 
 

The experiments have shown that the technique 
does not introduce any major overhead, mainly 
because of the use of random choices by the director 
agent. Nevertheless, with this approach, the director is 
not aware of the relevance of the actions. The approach 
presented in this paper do not rely on the use of more 
intricate artificial inteligence techinques such as neural 
networks to evaluate which path would bring the best 
camera setting. By doing this it avoids large numbers 
of computational steps and thus being appropriate for 
real time applications such as games. 
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