
An Event Tree for Assisting the Director Agent in
Automatic Camera Positioning

#60340 #60340 #60340 #60340

#60340

Figure 1: Non-interactive replay generated through the technique of recognition and prediction of physical actions.

Abstract

The camera freedom in 3D virtual environments is
enabling applications to use techniques similar to those
used in cinematographical presentations. However,
with the presence of interactivity in these
environments, there is no predetermined sequence of
events that enables optimal dynamic positioning.
Hence, it is necessary to use techniques for the
recognition and prediction of actions in order to
position the camera in a satisfactory manner. This
paper presents an Event Tree to help an agent director
in the automatic placement of cameras that uses
techniques for the recognition and prediction of actions
in an interactive virtual environment based on the
physical state of the simulation.

Keywords: virtual cameras, actions prediction,
cinematography, tree structures

Author’s contact:
#60340

1. Introduction

Nowadays it is very common to see non-interactive
sequences in 3D games which enrich the story and
draws more attention and interest from the player.
However, these sequences are strongly linked with a
story script with actions of the characters and default
camera settings. In applications where we want to real-
time broadcast a game match for an audience, where
there is no knowledge of what may happen, or even in
games where the creation of an instant replay is
reasonable, it is practically impossible to get good
results by using preset camera takes.

In cinematography, the camera is one of the main
components used to highlight what we want to show,
and to introduce subjectivity to the scene, depending
on the viewing angle, on what is receiving focus and
on the time of taking of the scene [Martin 1985] 3D
game developers have noticed very soon that the
movies productions used very interesting effects which
could be adapted for the production of games. By
incorporating similar techniques, developers could add
more effects and excitement to their productions
[Hawkins 2005]. Terms such as zoom and pan were
added to the internal handling of the virtual camera. In
fact, the programming of a virtual camera is becoming
increasingly similar to the commands that a camera
operator receives in the real world, with instructions at
a very high level of abstraction. The experience of the
film industry explains and justifies the use of each type
of camera-taking, constituting a proper language,
which today is also used in the production of 3D
presentations and games.

In interactive 3D applications, the proper use of a

virtual camera is very difficult due to the
unpredictability of the events. In applications with pre-
defined sequences, the director already knows exactly
what will happen with the elements of the scene, and
this makes possible the optimal placement and
orientation of the camera, according to the desired
results. But when the changes that will occur with the
objects of the 3D environment are not known in
advance, it is necessary to use alternative techniques
for camera handling to achieve good results. We must,
above all, recognize the actions and identify the
relevant objects for the scene to be transmitted in an
appropriate way, still considering the probability of
occurrence of another event. After the recognition of
actions in the interactive environment, the system still
needs to choose which is the most relevant at each
moment, displaying it in a convenient way to get the

expected emotion. To do this we must choose a good
position for the camera, define which objects will get
the focus and determine the time of taking. At this
moment the decision tree enters into activity.

When an event has been chosen to be filmed, a low

computational cost strategy to position the camera is to
predict what will happen in the next few moments
inside the virtual environment, based on the physical
simulation [Pires et al. 2008]. To illustrate the use of
the technique, a game was developed, where the user
has his view at gameplay, and after that, when level is
complete or player dies, his moves are shown again as
a replay of all past actions. This also represents the
view that the audience should have when watching.

Trees are one of the most important data structures

with innumerous applications in Computer Science.
They are composed of a finite number of elements,
allowing a hierarchical arrangement of its elements,
enabling processes such as indexing and search to be
performed very efficiently. Different problems and
applications have led to the development of several
variants of tree data structures, such as binary trees,
AVL trees and octrees [Cormen et al. 2001].

This work aims to show the use of an Event Tree,

whose goal is to assist the director agent in the
placement of an automatic camera in a virtual 3D
environment. The Event Tree takes into account the
main objects in a given virtual environment, and yields
an acceptable configuration that can be used by the
application to position the camera in the environment
and to frame the target by the camera, including some
film effects such as tilts and trajectories.

2. Related Work

Since the emergence of cinema in the nineteenth
century, several authors have been studying new
techniques to make their products more attractive to
the spectators. Cinematography schools have also
multiplied and grown. Today one can find very good
articles and books on film techniques, such as the work
of Martin [1985], and specialized websites such as
Mnemocine [2008]. More recently, these same
techniques have been widely adopted by games, to
increase the player's immersion in the 3D environment.
Moreover, they began to think about the possibility to
show a 3D game match just as in sports broadcasts.
Drucker’s work [1994] explores the feasibility of this
use of film techniques for computer games, showing a
very positive outlook.

There are several works aiming to facilitate the

problem of positioning the camera in the virtual
environment, such as the ones of He et al. [1996] and
Amerson & Kime [2001]. Some of them use Domain-
Specific Languages (DSLs), which are extremely more
useful for positioning the camera through higher level
commands than the conventional programming

languages, but have the disadvantage of presetting the
placement of cameras and activating one camera or
another depending on the events happening in the
environment.

In other works, such as Drucker’s [1994], Hermann

& Celes’ [2005] and Pires et al. [2008], the camera is
positioned in a more automatic way, without user
intervention. But these methods provide a poor result if
compared to the use of DSLs. The system of Hermann
and Celes [2005] also distributes the work of
positioning the camera into 3 modules: screenwriter,
director and videographer. The experiments of Pires et
al. [2008] used Microsoft’s XNA framework to
develop a complete game that shows the player a non-
interactive replay of his moves, using action
recognition and physical prediction to assemble a
satisfactory way to film the scene. However, with this
framework, the proposed module videographer is
merged with the actual mechanism for rendering
images. With this, the director module can output this
data directly to the graphics pipeline of the application.

Pinhanez [1999] is one of the main works dealing

with action recognition in virtual environments. His
work proposes a formal representation for actions in
the context of interactive narrative systems involving
real and virtual actors. This representation is based on
the decomposition of actions in elementary sub-
actions, being context-sensitive, with the possible
temporal relations between sub-actions and the main
action, represented by a network of constraints with
three possible values: past, present and future (PNF
networks). The recognition of actions within the virtual
environments is done through the propagation of the
temporal state of these PNF networks, taking into
account the state of elementary sensors. However, in
his work, there is no experiment with systems
including physical simulation engines, which could
provide more information about the state of the objects,
or even predict events before they occur. In such
environments with physics engines, a collision may be
predicted depending on the speed and direction of the
movement of an object, its distance to an obstacle and
its maximum coefficient of friction or diversion.

The XNA framework, launched by Microsoft in

2006, became very popular for academic and
commercial use. Its focus is to produce games for
Windows and X-box 360. Within the target audience of
XNA there are students and independent developers.
Its documentation is full of examples and with
complete explanations about the mathematics involved
in graphical processing and programming techniques.
With its growth, several websites specialized in this
tool have been created; they offer from tutorials to
ready-to-use classes and libraries. There are now many
studies demonstrating different techniques for camera
implementation in XNA. Among them there are
Riemers’ [2008] and Fegelein’s [2008] websites. They
explain all mathematical fundaments in the
manipulation of virtual cameras in 3D environments.

There are also many books on the XNA framework,
such as the Nitschke’s [2007] and Carter’s [2007].

This paper is an extension of Pires et al. [2008]

work, using the same experimental game to illustrate
the technique. It presents an application capable of
recognizing the actions occurring in the environment
and positioning the camera in a way that the events of
the virtual environment and future predicted events can
be considered, through physical calculations and use of
information passed by the game engine.

3. Simulation Prediction System

Below are described the main techniques that support
the functionality of dynamically placing cameras in the
virtual environment. These are action recognition, the
prediction of physical simulation and prediction of
state machines. Figure 2 shows a fluxogram of an
application’s game-loop.

Figure 2: A game-loop cycle.

3.1 Recognition of actions

A virtual environment is usually composed of objects
that are able to perform certain actions within its
domain. These actions can be simple or have the ability
to affect other objects, or even be able to change
drastically the entire environment. For the
cinematography, even static objects have semantics
within the environment and will influence the scene in
some way. Therefore it is necessary an appropriate
mechanism to recognize what each object is doing and
what kind of influence a given set of objects have on
their neighborhood or on the virtual environment as a
whole. Shortly speaking, to recognize the actions of a
virtual environment means to correctly identify what is
happening at any given moment within the virtual
environment.

More objective or specific actions make up the

game engine itself, or are part of a state machine of
some object, or are represented as properties of some
class. In these cases, to realize that an action just

occurred becomes a trivial task, since there may be a
marker or a variable indicating that it occurred or is
occurring. Below are some examples of objective
actions at different types of games:

• Level start;
• Character begins to move;
• Car collides with a wall;
• Enemy dies;
• The tick of a timer.

However, modeling all the actions in the game

engine or those included in the objects’s behavior can
be, sometimes, a very difficult task due to the
subjectivity of some actions and events. These are
known as subjective actions [Pires 2009]. For example,
in a soccer game match, is not easy to recognize that a
user prefers and tends to make his moves on the right
side of the field. In a racing game, the player can for
some reason choose to never overtake a certain car.
Actions that depend on the player's behavior are much
more difficult to recognize because it is necessary an
interpretation of events over time.

In order to facilitate the recognition of such type of

events it is possible to use an agent that stays
monitoring the actions of objects and the state of the
environment in time, and that informs the application
whether it finds a pattern of behavior that is similar to
the expected events or relevant to the construction of
the film scene. This ends up with the camera
positioning and their next moves. The term "agent"
denotes a software engineering concept that describes
an entity capable of acting with a degree of autonomy
in order to complete tasks [Barella et al. 2007], in this
case, in regular intervals of time, observing what
happens in the environment.

3.2 Actions Recognition Agent

The actions recognition agent keeps track of the
actions of the objects and the state of the environment
in time, and warns the application when it finds a
pattern of behavior that is similar to the expected
events or relevant to the construction of the film scene.
Figures 3, 4 and 5 show the main data structures used
by this agent.

Figure 3: A list Hi of the few past events.

Figure 4: A set Ωi of expected events Lx.

Figure 5: A list Vi of cinematographical meanings.

Firstly, at design time, we must define which set of

objects O = [o1, o2, ..., on] will be monitored and how
many past events will be considered. So, every game-
loop, the state of each object oi ∈ O will be stored in a
list called Hi. This list is responsible for storing the
object’s states history. There must be a list Hi for each
object instance oi we want to monitor. Alternatively,
the current state of an object oi ∈ O can be stored in Hi
as new events occur, or at regular intervals of game-
loops. Moreover, instead of storing states of objects,
the list Hi can be completed with sets of sentences
involving boolean variables relevant to the assembly of
the scene. This must be decided, modeled and set at
design time.

The list Hi is then compared with a set Ωi = [L1, L2,

..., Lm] of behaviors or actions L. Each element L
represents an expected action or behavior for that
object for the entire game and must be defined at
design time. Each entry of this set Ωi is a list L = [ε1,
ε2, ..., εk], containing a sequence of states for the object
or boolean expressions involving any element of the
application. A list Lx is very similar to the list Hi, but it
represents an action or condition with relevant
cinematographical meaning. At the defined rate, the
history Hi has to be compared with all the m entries in
Lx of the set Ωi, until the agent concludes that the past
events form a relevant event for filming, or not. The
comparison between the list Lx and the history Hi is
done by evaluating the similarity between their
elements. If both lists are sufficiently similar, then the
action represented in Lx is given as recognized, and a
new reference to Lx will be added to the list Ri of
recognized actions. Ri is an ordinary list that is always
empty at the start of the process.

If the few past events, represented by Hi, are similar

to an expected action, represented by Lx, then this
action is understood as an important action to film,

thus having a cinematographical meaning, such as
distress, calm, caution, expectations etc. Every action
Lx has a corresponding index x in a vector Vi, which
stores the cinematographical meanings for each Lx ∈
Ωi. Each position x ∈ Vi keeps the cinematographical
meaning of the action Lx. This is easily done just
associating the indices of Ωi and ones of the vector Vi,
according to Figures 4 and 5. This will influence the
decisions of the director agent later when it starts
operating.

Alternatively, the algorithm for the recognition of

actions can be performed at regular intervals of game-
loops or when a new event happens. The choice of
which approach to use depends on the mechanics of the
game and how much work the system can bear. If, in a
testing phase, the system becomes overloaded, a
solution may be to decrease the frequency of work of
this agent.

3.3 Physical Simulation Prediction

The prediction of the physical simulation is a technique
that helps to find out what will happen in the next few
moments. It almost always refers to movements and
the update of positions in any way, since these are the
main object of physical simulations [Pires 2009]. Since
an object in a virtual environment may be under
various influences, the prediction helps to determine
the likelihood that a given event is going to occur or a
given event can be concluded. The prediction returns a
value depending on the probability of occurrence of an
event, and it will be evaluated by the director agent.

At design time the designer has to define what he

wants to predict so that he can implement the required
calculations. Later in the scene assembly process, the
event tree will consider every predicted event and so
the director agent can choose a good camera angle to
film the scene.

The prediction of events in the virtual environment

can be used to assist the recognition of subjective
actions, and is especially useful for automatic
placement of cameras. For example, in a virtual
environment where a motorcycle is riding onto a ramp,
it is possible, through kinematics calculations, to find
out where and how it will fall, thus taking the
appropriate action accordingly to it, to show the fact in
the best way possible, even before the motorcycle
jumps. Of course, by using such prediction techniques,
the application can perform other processes, such as
making the pilot leave the motorcycle if the jump is
going to be disastrous. Physical prediction is also
useful for improving artificial intelligence. For
example, the behavior of a smart fighter who calculates
his next attack, according to time remaining to the
enemy land after a jump [Pires et al. 2008].

Figure 6: A tank A launches a missile targetting tank B.

For example, in a scene with a war tank A that
launches a missile against another tank B, and one tank
is 500 meters (or any measurement unit) away from the
another, in a 3D environment with physics that ignores
air resistance, as in Figure 6, the success of the tank A
can be calculated at the moment of the shot. If that
missile was launched with a speed v0 of 100 m / loop
and angle Φ equal to 30 degrees, and gravity g equal to
10 meters / loop, by applying kinematics formulas we
can determine where the projectile will fall (range A)
and the time (Δt) it takes to travel the path:

Figure 7: Formulas for parabolic movement [Taveira et al.

2009]

Applying the formulas, we would know that the

missile will fall to 809 meters from tank A, nine game
loops after its shot, concluding that the tank B remains
untouched. In this case, the system can now be
prepared to film the action in an interesting way for the
viewer [Pires 2009].

To achieve a reliable prediction, it is necessary to

be careful with some problems. It is always necessary
to consider which movements the object tends to do,
like gravity force and other forces applied to the object.
The other objects that are around should also be
considered, especially to know the distance from the
subject and how this distance will vary in the next few
moments. The arrangement of objects in the area is
also an important issue for the cinematography.
Finally, it should be considered how the user or other
components may intervene in the scene. If these are not
taken into account, it may in some cases reduce the
predictability of actions, leading the director agent to
think that nothing important is going to happen.

Due to the computational complexity of some

physical calculations or to obtain information about
many objects, other data structures can be used, in
order to speed up these operations. For example, it is
very fast to get the positions of objects in a discretized
space, where these objects are represented by a matrix
[Pires et al. 2008]. In this case, we simply calculate the

position of an object in the environment by the position
which is stored in the matrix.

3.4 State Machine Prediction

The prediction through the state machine of an object
is made in cases where an event with relevant meaning
for filming can be identified by the sequence of states
that the object undergoes. For example, a soccer player
can very likely get tired after running hard for a given
period. So, when this player runs too hard, the director
agent can get ready to film him getting tired. If this
really happens, the camera will film the fact precisely.

The implementation of prediction based on state

machines structures may involve the study of graphs
and their theoretical aspects, which are not in the scope
of this work. However, it is also an important way to
improve the viewer experience when watching a real-
time game match.

4. Event Tree Operation

The camera positioning is the result of all the previous
steps. The game engine is responsible for raising the
events relating to the game logic or to the properties of
a given object. Using this information, it is possible to
recognize subjective events and also predict future
events. Then, the director agent can position the
camera according to the cinematographical language
being used, because it has access to all the information
it needs.

Figure 8: Director Agent input and output.

As in Figure 8, the director agent receives as input

the state of the environment and a reference to the
main objects involved, i.e., a list of pointers O = [o1,
o2, ..., on] to access the properties of the main
characters and their enemies or any other objects oi that
have some influence on the scene. In practice, it is
easier to make the director agent to have direct access
to the state of the virtual environment, the characters’
classes and lists of enemies or other objects. Moreover,
for each object, the director agent has access to the list
of recognized subjective actions R and the results of
physical prediction. With this, the desired result is a
scene with satisfactory camera settings.

At this point the director agent begins to assemble a

way to film the scene. A decision tree A, called Event
Tree, is built dynamically and through this the final
result C will be reached. The root of A serves only as a
starting point; A will have as many children as the

number of objects in the list O = [o1, o2, ..., on], The
notation nk indicates the number of nodes in the k-th
level of the tree. For instance, n2 represents the number
of nodes in the second level of the tree. Afterwards ,
the director chooses one of the leaves at random and
begins to pursue a path C in the tree; the other leaves
are discarded to minimize memory consumption. This
movement means that the object oi was chosen to be
the main subject of the scene. From this node on, new
leaves are generated; the number of leaves is an n-tuple
with the same number of recognized subjective actions
r, plus the number of predicted actions p, plus the
number of recent past actions u. That is, the number of
leaves on the third level of the Event Tree is:

n3 = r + p + u

Again the director agent chooses a leaf randomly;
this time the choice represents the action to be filmed.
This action in the third level of the tree is related to the
object chosen in the second level. According to the
elements in this third level, the director’s choice may
be an action that just happened, a recognized subjective
action or a predicted action that can happen in a few
moments. Each one of those has its corresponding
cinematographical value, which was set at design time.
For performance issues, after the director chooses a
leaf, the others are ignored.

Finally, the director agent creates its last set of
leaves in the Event Tree. This time the number of
leaves will be equal to the number of objects involved
in the action chosen by the previous step. The last
random selection of the director determines which
objects are framed and how the camera will be actually
positioned, following the concepts of the film language
set at design time. Figures 9, 10 and 11 show the entire
process:

Figure 9: Step 1: monitored objects are represented as tree
nodes.

Figure 10: Step 2: recognized subjective actions, predicted
actions and past objective actions are represented as tree

nodes.

Figure 11: Step 3: objects related to the action are
represented as tree nodes.

The experimental game makes use of this structure.

The director agent works all the time to assemble a
good camera setting while the game logic executes
[Pires et al. 2008]. Suppose that the ship is trying to get
the blue crystals, which are needed, in an area
completely surrounded by red crystals that are lethal,
according to Figure 12. The scene will be built based
on the Event Tree. At the second level of the tree (the
first is the root) there will be only one node, because
the ship (object o1) is the only object being monitored.
At the third level there are the following nodes:

• The ship has turned right (objective action ε4);
• A blue crystal was collected (objective action

ε7);
• The ship has turned left (objective action ε5);
• A blue crystal was collected (objective action

ε7);
• It was recognized that the player is trying to

get blue crystals in a certain order to gain more points
(subjective action L1);

• There is a high collision probability with a red
crystal (predicted action p1);

Figure 12: Black arrow represents the path of the ship.

Figure 13: An example of a full Event Tree.

As shown in Figure 13, the Event Tree will have 6

nodes at the third level, each representing a situation.
The director chooses randomly one node to continue.
Choosing the path ε7, the other nodes are ignored and
two new leaves are created for this node, each
representing an object involved in the action: the ship
and the newly collected crystal (represented as C[3,2],
because crystals are arranged in a matrix C). Each leaf
in this fourth level has parameters such as position,
size and speed of the objects oi and will interfere in the
way of positioning the camera, acting as a local
modifier.

The path taken by the director agent on the tree is

stored, because the actions previously selected have to
be consulted again later to read their cinematographical
meaning. Hence the importance of borrowing the film
industry experience in the development of this type of
application. Based on those cinematographical
information, the minimum time for the take can be
determined, certain camera movements can be applied,
and the position of the camera related to its target can
be set.

After that, the scene is rendered and the time of the
take starts to be counted. When the time is over, the

director agent looks up all data structures again in
order to repeat the entire process. Depending on the
type of environment or how the user controls or
interferes in it, this can happen more quickly or more
slowly. As this approach is susceptible to problems,
mainly due to the difficulty to predict the user's
commands, it is interesting to make the engine throw a
control action at a fixed time rate, to force the director
agent to reset its parameters [Pires 2009].

The random factor in the behavior of the director
agent is due to two reasons: the first is to guarantee that
the process does not become fully deterministic. The
second is due to the limitation of working in real time.
To make the director evaluate each action and the
suitability of every object could bring a much greater
computational effort than the game itself, and also
involve theoretical issues that are outside the scope of
this work. The random selection has also the advantage
that a single replay, can have different camera settings,
each time it is seen. For transmission in real time, each
viewer can get a different picture filmed from a
different angle.

5. Conclusion

This paper presented a decision tree structure for
assisting a director agent in the assembly of a non-
interactive scene. The proposed method combines
techniques of action recognition, prediction of events
through physics simulation within the virtual
environment, and cinema concepts. The idea around
the Event Tree for assisting the director agent in its
choices was introduced, and its usage was explained.
In association with film techniques, the Event Tree aids
the director to reach good results.

The experimental game built in Pires et al. [2008]
was used in order to test the technique. With some
adjustments in the virtual environment, the technique
could be applied correctly and in an optimized manner.
Another essential factor for the success of the
technique was the addition of a randomness factor,
which avoids the determinism and is computationally
faster than analysing all possibilities. As a final result,
it produces more interesting scene viewing effects.

The experiments have shown that the technique
does not introduce any major overhead, mainly
because of the use of random choices by the director
agent. Nevertheless, with this approach, the director is
not aware of the relevance of the actions. The approach
presented in this paper do not rely on the use of more
intricate artificial inteligence techinques such as neural
networks to evaluate which path would bring the best
camera setting. By doing this it avoids large numbers
of computational steps and thus being appropriate for
real time applications such as games.

References

AMERSON, D. AND KIME, S., 2000. Real-time Cinematic

Camera Control for Interactive Narratives.

CORMEN, T. ET AL, 2001. Introduction to Algorithms. MIT

Press, 2001.

DRUCKER, S., 1994. Intelligent Camera Control for

Graphical Environments. Doctoral Thesis, Massachusetts
Institute of Technology.

ERLEBEN, K., 2002. Module Based Design for Rigid Body

Simulators.

FEGELEIN, 2008. Microsoft XNA Framework; Creating a

Freelook Camera [online]. Available from:
http://www.fegelein.com/?p=18 [Accessed 8 August
2008].

HAWKINS, B., 2005. Real-Time Cinematography for Games.

Charles River Media Publishing, 2005.

HE, L. ET AL., 1996. The Virtual Cinematographer: A

Paradigm for Automatic Real-Time Camera Control and
Directing.

HERMANN, R. AND CELES, W., 2005. Posicionamento

Automático de Câmeras em Ambientes Virtuais
Dinâmicos.

MARCHAND, É. AND COURTY, N., 2002. Controlling a Camera

in a Virtual Environment.

MARTIN, M., 1985. A Linguagem Cinematográfica. Editora

Brasiliense, 1985.

MNEMOCINE, 2008. Linguagem e técnica cinematográfica

[online]. Available from: http://www.mnemocine.com.br
[Accessed 8 August 2008].

NITSCHKE, B., 2007. Professional XNA Game Programming

for Xbox 360 and Windows. Wrox Publishing, 2007.

PINHANEZ, C., 1999. Representation and Recognition of

Action in Interactive Spaces. Doctoral Thesis,
Massachusetts Institute of Technology.

PIRES, D. ET AL., 2008. Posicionamento de Câmeras através

de Previsão das Simulações Físicas.

PIRES, D., 2009. Posicionamento de Câmeras por meio da

Simulação Física. Master Thesis, Universidade Federal
Fluminense.

RIEMERS, 2008. Quaternion Camera [online]. Available

from:
http://www.riemers.net/eng/Tutorials/XNA/Csharp/Serie
s2/Quaternions.php [Accessed 8 August 2008].

SEUGLING, A. AND RÖLIN, M., 2006. Evaluation of Physics

Engines and Implementation of a Physics Module in a 3D
Authoring Tool. Master Thesis, Umea University.

http://www.fegelein.com/?p=18
http://www.mnemocine.com.br
http://www.riemers.net/eng/Tutorials/XNA/Csharp/Serie

