
A Trivial Study Case of the Application
of Ontologies in Electronic Games

#60325

Figure 1: Ontological Trail: a game developed through the integration of ontologies and XNA.

Abstract

This paper proposes the creation of a simple
architecture to separate programming tasks from
resource allocation tasks. To this end, it demonstrates
the integration of a knowledge base modeled in DL
(Description Logic) with the XNA Game Engine,
using the OwlDotNetApi library. The main goal is to
demonstrate a trivial use case of ontologies in the
domain of games. We have implemented a 2D
adventure game using this technique, which we then
compare with classical methods of development.

Keywords: ontologies, description logic, XNA

Authors’ contact:
xxx

1. Introduction

Techniques derived from ontological knowledge bases
have proven efficient for storing information for
application in several domains. In the development of
electronic games, we may cite dialog creation, textual
story generation and AI for adaptive game planning.

This article presents a different application of
ontologies: positioning NPCs in an environment and
assigning their behavior. We intend to separate the
developer's work into programming tasks and level
design tasks. During programming, the developer
defines procedures related to file loading (graphics,
sound, etc.), device control (video, keyboard input,
etc.), main game components (collision detection, AI
modules, etc.). During level design, the developer
defines the NPCs to be inserted in the environment,
their habitats (i.e., their positions) and their behavior.

2. Related Work

The main application of ontologies in game design is
story flow planning. In [SANCHEZ-RUIZ 2007] the
authors present an adaptive approach to game AI

through case-based planning and ontological
knowledge extracted from the game's environment.
There, it is shown that ontology-based extraction
results in strategies whose application is easier than
those returned by classical mechanisms using only
case-based planning.

Like first order logic (using mainly PROLOG),
ontologies can also be used for dialog creation in
games. In [PEINADO, GERVÁS and DÍAZ-AGUDO
2004] the combination of expedients such as ontologies
and formal inference (as featured in Description
Logics) has ensured the generation of semantically
correct texts. In fact, this mechanism has been explored
in automatic story generation influenced by the player's
actions. The design of the ontology has allowed
measuring the semantic distance between narrative
functions for the generation of meaningful stories.

Although current work on games and ontologies

demonstrates that this integration can be fruitful,
usually little detail is presented about it. Likewise, little
information is given about the specification of the
knowledge bases and the technologies involved. The
present work intends to fill this gap.

3. Ontologies, OWL and DL

Designing an ontology amounts to representing human
knowledge in expressive fashion while keeping
computational complexity at a minimum.

One of the main ontology languages is the Web
Ontology Language (OWL) [W3C 2009]. OWL offers
a way to build a vocabulary for the specification of a
problem domain, including a set of constructs to define
restrictions. Among the main features of OWL are
included

• Classes (“things” in the domain of interest);
• Relations (relationships that may occur

between things);
• Properties (attributes that things may have).

Esteban
UnderLine

There are different species of OWL (such as OWL

Full, OWL Lite and OWL DL), which vary in
complexity and expressivity. The approach presented
here is based on OWL DL (Description Logic), which
corresponds to a decidable fragment of first order logic
[BAADER et. al., 2007]. This species of OWL allows
for the processing of complex ontologies with
acceptable computational overhead.

4. Tools

The game developed here has been based solely on
free software tools. The development environment has
been Visual Studio, the base language has been C#, the
graphical library has been XNA. Protégé has been used
for designing the ontology, and the OwlDotNetApi
library has been used to integrate some of those
technologies.

We have selected the .NET platform as the main
development tool because it supports RAD (Rapid
Application Development) and because it allows for
interoperability between multiple languages
[LIBERTY 2001].

XNA Game Studio Express is an API in the .NET
platform that allows easy access to peripherals (such as
the keyboard), to the graphics hardware, to audio
control and data storage (in files or in databases). This
API can also be used as a basis for game development
for the XBox 360 console.

For ontology design we have chosen Protégé,
which is currently the most popular and powerful tool
for this purpose [MULLER 2008]. Protégé can be used
to specify domain models and knowledge bases. It
allows the creation, manipulation and visualization of
knowledge in several different formats, including
OWL.

The OwlDotNetApi library [MULLER 2008] is a
tool written in C# that offers support to .NET
applications. It has the following characteristics:

• It is a C#-based interpreter for the .NET

platform;
• It is compatible with the OWL specifications;
• It can be used with any .NET language;
• It can produce directed graphs.

The OwlDotNetApi is available as a precompiled

freeware DLL library.

5. Game Description

In order to develop a simple instance of integration of
DL and XNA exploring the advantages of ontologies,
we have implemented a strategy game. This mechanics
is characterized by its emphasis on analysis and
reflection in the search for the most appropriate tactics.

These are games in which there is an evident
component related to territorial or material conquest
[SATO and CARDOSO 2008]. We have selected this
style because of the diversity in the possible actions by
the NPCs (NonPlayer Characters).

 The game is called Ontological Trail (Figure 1). In
it, Onto, the main character, must find the three
magical relics scattered on Naufel Island so he can
revive his beloved, who has recently passed away on
the island. But he must dodge the wild animals living
there (which may or may not attack him). In short, it is
a simple game where the player must control a
character and avoid or confront certain NPCs while
exploring a virtual world.

 The software we have developed is highly scalable.
Some noticeable characteristics of the NPCs include
the following:

• Each NPC has a type, an attribute which may
be defined in the system. This type may be,
for example, rabbit, tiger, buzzard, or dolphin.

• Each NPC has a habitat, an attribute which
may be defined in the system. This habitat
may be, for example, sea, coast, jungle, land
or world (meaning any habitat).

• Each type of NPC has a random number of

instances, between 3 and 10, scattered
throughout its habitat.

• Each NPC has a random position inside its
habitat.

• Each type of NPC has an alignment, an
attribute which may be defined in the system.
The alignment may be one of the following:
hostile (the NPC attacks the main character),
coward (the NPC runs from the main
character), or neutral (the NPC emits sounds
upon meeting the main character, but does not
attack or run away).

These characteristics are important, as they figure

in the links between XNA and the ontology, as
described in the next sections.

6. Defining the Ontology

Defining an ontology is not an easy problem
[MULLER 2008]. The main steps in the specification
of the ontology for the game Ontological Trail were:

• Establishing the scope and the main goals of
the ontology;

• Defining the conventions for naming classes
and properties;

• Enumerating the main concepts and classes;

These principles have been applied to Ontological

Trail as follows: the scope of the ontology include the
animals in the jungle, their habitats and their behavior
(alignment). All the classes were named after nouns,

and all the properties had names that were prefixed
with the verb form has (as in hasAlignment). The
main classes were organized as shown in Figure 2.

Figure 2: Ontology used in Ontological Trail

7. Integration

The following steps have been taken during the
implementation of the software:

• Preliminary study of Description Logic;
• Preliminary study of C# and XNA;
• Integration of OwlDotNetApi and C#;
• Definition of the game mechanics;
• Development of the ontology;
• Development of the game using XNA;
• Final integration.

One of the main steps (for its importance and its

complexity) was the integration of C# with the OWL
knowledge base (Figure 3 shows the first test results).
This is explained by the need to use methods
ChildNode() and ParentNode() (Figure 5) to extract
the relationships defined in DL.

Figure 3: Prototype integrating C# and OWL

via the OwlDotNetApi in the Visual Studio console

8. Implementation and Tests

Ontological Trail was developed in Visual Studio and
compiled for the PC (Figure 4).

Figure 4: Ontological Trail interface

The main classes and components in the developed

software were (Figure 5):

• Animal: contains the attributes and methods

related to the behavior (such as collision
detection for the maze walls and for the main
character), to the alignment modules (behavior
associated to each kind of alignment) and to
the rendering of the NPCs. It also handles the
external files containing sprites (sequences of
images composing a character) and sounds.

• Habitat.owl: knowledge base containing the
associations necessary for creating an NPC.

• OwlDotNetApi: responsible for integrating C#
and Owl. Among its main classes we note: ‣ OwlParser: interprets an OWL

knowledge base; ‣ OwlGraph: generates a connected graph
from the knowledge base; ‣ OwlEdgeCollection: represents a
collection of edges. This class maps the
identification of each edge into an object
of type OwlEdge in a list; ‣ OwlEdge: represents an edge connecting
two nodes. It is needed to verify
relationships; ‣ OwlNode: represents a node in the graph.

• Habitat: delimits each type of habitat (sea,
land, etc.) and enables the generation of the
set of NPCs in the game. Uses the
OwlDotNetApi class to communicate with the
Habitat.owl component.

• Game: main class in the game. Integrates and
instantiates all classes in the system.

Figure 5: Class diagram

As a consequence of this integration, the developer

is free to conduct a substantial part of the level design
using Protégé. As shown in Figure 6, it is possible to
visualize the NPCs and their habitats in hierarchical
form, modify their alignment (changing the restrictions
associated to their respective classes) and alter their
habitats (by dragging and dropping). To insert a new
NPC type, all that is needed is to include its sprite in
the project and create a new class in Protégé.

Figure 6: Class hierarchy and equivalences for class Rabbit

in the game ontology visualized in Protégé

9. Comparison with Classical Models

For this work, we define classical models (in the
domain of strategy games) as the technique of creating
characters in dynamic fashion (using vectors of classes
for predefined characters), using hardcoded
information (without loading external constants for
support).

 The difference between this classical model and the
ontology-based model is the use of a knowledge base
for handling resources (in this case, NPCs).

 From these considerations, it is possible to identify
the following advantages of our proposed, ontology-
based model over the classical models:

• Easier visualization of data and relationships
(due to the hierarchical representation);

• Advantages inherited from OOP, such as
encapsulation, abstraction and inheritance;

• Easier level design (as the developer is
relieved from programming tasks and may
focus instead on resource management tasks);

• Easier, more agile maintenance;
• An environment suited to the production of

new information related to the resources, as
OWL DL reasoners (e.g., Pellet [CLARK &
PARSIA 2009]) may be used to infer
relationships that were only implicit in the
ontology, allowing for semi-automatic
refinement of the knowledge base.

10. Conclusion

Although the advantages of the application of
ontologies to the domain of games are being widely
explored (as in [SANCHEZ-RUIZ 2007] and
[PEINADO, GERVÁS and DÍAZ-AGUDO 2004]),
little has been detailed about a trivial integration, let
alone using free software tools.

The present work demonstrates a step-by-step
implementation, from the definition of an ontological
knowledge base to the implementation of the main
classes of a strategy game. It aims, therefore, at serving
as a basic reference for developers interested in starting
this integration.

References

BAADER, F., CALVANESE, D., MCGUINNESS, D., NARDI, D.,

PATEL-SCHNEIDER, P., EDS., 2007. The Description Logic
Handbook. 2nd edition. Cambridge University Press.

CLARKE & PARSIA, 2009. http://clarkparsia.com/pellet, last

visited July 22, 2009.

LIBERTY, J. Programming C#. O’Reilly, 2001.

MULLER, R., 2008. Ontologies in Automation. Vienna

University of Technology. Master Thesis.

SANCHEZ-RUIZ A. ET AL, 2007. Game AI for a Turn-based

Strategy Game with Plan Adaptation and Ontology-based

retrieval. Association for the Advancement of Artificial
Intelligence.

SATO, A. K. O., CARDOSO, M. V., 2008. Além do gênero: uma

possibilidade para a classificação de jogos. Proceedings
of SBGames'08.

PEINADO, F., GERVÁS, P., DÍAZ-AGUDO, B., 2004. A

Description Logic Ontology for Fairy Tale Generation.
Proceedings of the Workshop on Language Resources for
Linguistic Creativity, LREC'04.

W3C, 2009. http://www.w3.org/TR/2009/CR-owl2-

conformance-20090611, last visited July 22, 2009.

