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Abstract 
 
Storytelling is an important feature in games and also 
other types of (semi) automated entertainment systems 
such as machinima and digital-TV. The majority of the 
current research in storytelling use precedence-based 
directed acyclic graphs, or even linear sequences, to 
model the ordering of events in a story. This approach 
makes it easier to plan, recognize and perform these 
events in real-time, but it is also too simple to represent 
complex human actions, which form the basis of the 
most interesting stories in this niche. PNF-Networks 
and Interval Scripting are frameworks to represent, 
recognize and control action that was proposed in the 
context of computer-aided theatre. In this paper we 
describe two extensions to this framework that were 
designed and developed to enable its use in larger scale 
storytelling systems: Hierarchical PNF-Networks and a 
template-based definition. Hierarchical PNF-Networks 
present lower complexity propagation heuristic while 
the definition language enables high-level and abstract 
description of the temporal structure of the actions and 
events that compose an interactive story or game. 
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1. Introduction 
 
A strong trend in game design is to include storytelling 
elements and narrative structures to enhance the player 
experience. However, being interactive applications, 
games put several challenges into this integration. 
These challenges are also present in other applications 
of interactive storytelling such as experiments on 
machinima [Riedl et al. 2008, Jahala et al. 2008] and 
interactive TV [Pozzer 2005], and can be divided into 
three main categories: story modeling, 
generation/planning, and dramatization. Story 
modeling tackles the problem of representing the 
events that make up a story, creating a solid framework 
for planning and dramatization tools. Planning 
algorithms have been used to create coherent story 
models and to keep it in this fashion, even in the 
presence of user generated events. Dramatization 
systems are designed to present the storyline and to 
interact with the user. Besides, the control of virtual 

actors or other agents such as camera systems still 
present opportunities to enrich the user experience. 
 

Many storytelling models are constructed as 
directed acyclic graphs (plans are an example of such 
graphs), which can represent only incomplete temporal 
relations such as precedence or causality [Charles et al. 
2003, Ciarlini et al. 2005, Barros and Musse 2005]. 
Since these temporal models are simple, the integration 
with planning and real-time dramatization systems 
becomes more straightforward. However, these models 
are a poor representation of complex human actions, 
which are the most common type of events in stories. 
This is due to the fact that these models are especially 
weak regarding temporal relations between events, 
being unable to directly represent certain types of 
parallelism such as mutual exclusion [Allen and 
Ferguson 1994]. We believe that a richer 
representation can lead to stories with higher 
complexity and consequently to a more interesting user 
experience. 
 

PNF Networks were introduced by Pinhanez 
[Pinhanez et al. 1998] as a human action recognition 
framework, which uses the qualitative temporal 
predicates of James Allen's interval algebra [Allen 
1983] to label the relations between the events that 
compose an action. Unlike precedence-based directed 
acyclic graphs, the constraints of a PNF network can 
represent all possible temporal relations that are 
present in the real world. The problem with interval 
algebra networks is that the propagation of the 
temporal constraints is NP-Hard. However, Pinhanez 
proposed a heuristic for this problem, called PNF-
Propagation, which is linear on the number of 
constraints for networks where the knowledge about 
the temporal status of each event is discrete, restricted 
to three possible values and their combinations: P 
(past), N (now) and F (future). For instance, an event 
that is known to have already happened is labeled P, 
while an event that is known to be happening is labeled 
N. An event labeled PN is currently happening or 
already happened, and an event whose status is 
unknown must be labeled PNF. 
 

This framework, augmented with real-time sensor 
output and past information, was used to represent and 
recognize complex human actions in the context of 
computer theatre. Pinhanez also proposed a script 
language [Pinhanez et al. 1997] that combines PNF-
Propagation with user-defined sub-actions to control 
interactive experiments in real-time. The use of these 



techniques to storytelling purposes was mentioned but 
not implemented by the original authors. 
 

In this paper, we propose two extensions to 
Pinhanez's PNF-Networks that were developed to 
make them suitable as a model and dramatization tool 
for interactive storytelling. The main contributions of 
our work are: a template-based definition language that 
is used to compose high level stories by using abstract, 
reusable descriptions of actions; and a hierarchical 
version of PNF-Networks, that is augmented with an 
adaptation of the original restriction heuristic. The 
adapted heuristic aims to avoid unnecessary traversal 
of unaffected nodes in the network, leading to a lower 
complexity that enables the use of larger 
networks/stories. This Hierarchical PNF-Network was 
designed, implemented and integrated with a game 
engine to permit further research on interactive 
storytelling. 
 

The rest of the paper is organized as follows: 
Section 2 compares the proposed system with related 
work in the field. Section 3 explains PNF-Networks 
and the Interval Script paradigm in more detail, while 
section 4 explains the new features we are proposing to 
the original approach. Section 5 brings an analysis of 
how these features are related to common storytelling 
concepts and constructs, which is another contribution 
of the present work. Finally, section 6 concludes the 
paper and shows future directions of our research. 
 
2. Related Work 
 
This section is organized in two parts: the first covers 
some important previous research in storytelling 
modeling and planning techniques. But since this work 
is strongly based on the PNF-Networks temporal 
model and algorithms, we also include here the origins 
and more recent work in this subject. 
 

Chris Crawford created an interactive storytelling 
system, Erasmatron [Crawford 2004], in which the 
user generates stories by using verbs that define the 
actions of the characters. Each verb has an associated 
set of roles, which can be linked to the characters and 
objects in the particular setting. These verbs represent 
the same concept as the actions in our framework, 
while the roles are similar to the variables in our 
template definition language. Although Crawford´s 
approach is more align with character-based emergent 
storytelling and PNF-Networks fit better plot-based 
storytelling, his ideas can still benefit from PNF-
Networks to detect what actions a particular character 
has already performed. 

 
 Plans have become one the most common approach 
for storytelling research partly due to their similarities 
to story models that emerged from narratology studies 
[Barros and Musse 2007]. Several previous researches 
included planning as part of their storytelling systems 
[Riedl and Young 2003, Charles et al. 2003, Ciarlini et 

al. 2005, Barros and Musse 2005]. We consider our 
work complementary to these, since we are not 
proposing new planning algorithms, but the integration 
of the Hierarchical PNF-Networks framework with 
current planning approaches as a formal model for the 
real-time execution and detection of the events that 
compose an interactive story. 
 

PNF-Networks are a model and recognition 
framework for complex human action. It is been 
implemented and tested in several experiments and 
also with computer-aided theatre plays. We strongly 
recommend reading some of Claudio Pinhanez’s 
published work [Pinhanez 1999, Pinhanez et al. 1998, 
Pinhanez et al. 1997] to better understand the extended 
framework we propose in this paper. 
  

Meyer [Meyer 2002] further experimented with 
computer-aided theatre, introducing the use of XML as 
the definition language for the PNF-Networks. In this 
paper, we propose further extensions to Pinhanez’s 
work, and also analyze some challenges and 
opportunities that derive from its application in 
storytelling research. 
 
3. PNF Networks and Interval Scripts 
 
PNF-Networks are a symbolic framework for modeling 
high-level events such as human actions - and an 
algorithm for detecting the occurrence of such events 
in real-time - that is rich in its representation power 
and features linear computational complexity, making 
it suitable to runtime interactive systems. Such as other 
models for representing high-level events in a story, 
PNF-Networks decompose actions into simpler sub-
actions, but the detection of their occurrence is based 
on temporal reasoning about the state of the other 
actions in the network with a heuristic called PNF-
Propagation. 
 

Interval scripts are a proposal for the integration of 
PNF-Networks with user-scripted actions, which are 
activated by a real-time engine that uses the PNF-
Propagation heuristic to determine what actions should 
be started or stopped. In this section we explain some 
terminology and the main concepts behind PNF-
Networks: action representation by the means of 
networks of temporal constraints; the PNF-Propagation 
heuristic; and the interval script approach for complex 
action activation. 
 
3.1 Terminology 
 
Informally, an action is something performed by some 
being (character, animal, machine) that can have some 
consequences. An event can be understood as the 
perception of an action, its consequences or a natural 
phenomenon. In this paper, however, this subtle 
distinction is not so important to the mathematical 
formalism. More important is the perception that both 
events and actions happen in intervals of time, which 



states that if enough information is available, one can 
distinguish if an event (or action) is currently 
happening (present), already happened (past) or has not 
happened yet (future). For now on, we may refer to an 
event or action with the term interval. 
 

The other important terminology is related to the 
temporal relations between these intervals. Each event 
or actions will be represented by a node in a graph 
corresponding to its interval. PNF-Networks are graphs 
where the nodes are connected by binary directional 
relations. Each relation represents a constraint that 
affect the temporal state of the restricted (the 
destination node of the directed arc) interval based on 
the state of the restrictor (the origin of the arc). 
 
3.1 Action composition 
 
Most human actions can be described by a composition 
of simpler sub-actions. This concept is key to 
storytelling systems and, for instance, lets describe the 
events that can form a common drama in love stories: 
the knight characters declares this love for the princess, 
who is to marry a prince from another kingdom. The 
component sub-events can be: a) establishing shot of 
the castle; b) knight declares love; c) prince comes and 
kisses the princess; and d) princess wonders about 
what just happened. In order to understand this drama, 
the viewer must see the characters perform each of 
these sub-events in some organized fashion. Even this 
simple example will be enough to show how different 
models drift in representation power. 
 

Since the occurrence of each one of these sub-
actions must happen in definite intervals of time, one 
must define temporal relations between them to 
properly model and control either its runtime execution 
or automatic detection. A simple approach to model the 
temporal relations of these intervals is to consider that 
the sub-actions always occur in sequence, which would 
lead to the directed acyclic graph shown in Figure 1, 
where each arc represent a precedence relation. When 
used to control automated characters and objects such 
as a virtual camera, this model shows the order in 
which the events must be performed. If used to 
detection purposes, the system must perceive that the 
events happened in the declared order, to properly 
conclude that the described drama has actually been 
presented to the viewer, in case a Finite State Machine 
will easily suffice. 
 

 
Figure 1: Sequential model for a common drama 

 

The sequence in Figure 1 is enough when one just 
wants to use it as a high level representation for 
scripting purposes, but in many cases, some of the 
component sub-events can happen in parallel or in 
unknown order. For instance, this concept can be 
naively represented by the graph in Figure 2, where the 
two events of the knight declaring its love and the kiss 
between the prince and the princess are not tied to a 
specific order. However, this simple parallel model 
fails to capture an important temporal restriction of the 
real world: the impossibility of these two events to 
happen at the same time, which would otherwise lead 
to a inconsistent performance. The overall conclusion 
is that models for temporal relations between events 
that are based solely in precedence are not able to 
represent mutual exclusion situations properly [Allen 
and Ferguson 1994]. 
 

 
Figure 2: Naive parallel model of the drama event 

 
Before coming back to the drama example, lets first 

introduce some concepts that are important to the 
understanding of PNF-Networks. 
 
3.2 Temporal constraints: IA-Networks 
 
To better represent high-level actions, one needs a 
richer model for temporal relations between the 
component sub-actions, which proper capture their 
complex nature. Instead of relying only in precedence 
and composition, the temporal relations defined by 
James Allen's Interval Algebra [Allen 1983] are a set 
of thirteen binary predicates, each representing a 
unique temporal relation between two intervals. Being 
an algebra, all possible knowledge about the temporal 
relation between any two events is proven to be a 
subset (empty included) of the predicates described by 
the Interval Algebra. These predicates are illustrated in 
Figure 3. 
 



 
Figure 3: Allen's primitive temporal relations between two 

intervals 
 

Two illustrate how these predicates better represent 
temporal relations between sub-actions, we can use 
them to define the most common relation in 
storytelling models: precedence. Saying that interval A 
precedes interval B implies that the first must end its 
execution before the second starts its own. But the 
actual start of interval B can either immediately follow 
the end of interval A or take some time to begin. This 
means that two predicates in Allen's algebra can be 
used to represent precedence: Before or Meet, which 
leads to three possible interpretations for the 
precedence relation: 
 

• A <Before> B, where the start of interval B 
must take some time after the end of A to 
actually happen; 

• A <Meet> B, where the start of interval B 
immediately follows the end of A; 

• A <Before,Meet> B, where interval B either 
immediately follows or happens after some 
time A has finished, which is the usual 
meaning of precedence in more simple 
models. 

 
These three possible representations for precedence 

are impossible to distinguish unless a more powerful 
set of predicates is used. In Interval Algebra, high level 
events (or long chains, sequences or other arbitrary sets 
of events) are represented by directed (possibly cyclic) 
graphs called IA-Networks, where the nodes are the 
sub-events and each directed arc is a subset of the 
thirteen predicates that compose Allen's Interval 
Algebra. These networks are useful when one wants a 
richer and finer grained representation of temporal 
relations. Figure 4 uses a possible IA-Network to the 
drama event of previous examples. It is important to 
notice that in IA-Networks the relation between the 
high-level event and the same types of predicates also 
represent its component sub-events. The "castle shot" 
camera sub-event marks the start of the "drama" event, 
so it is restricted by a <iStart> (inverse start) relation. 
 

 
Figure 4 - Drama model represented by an IA-Network 

 
3.3 PNF Propagation 
 
The most important feature of an IA-Network is that it 
makes possible temporal reasoning, which means that 
one can use the knowledge about the temporal status of 
some nodes to infer about other nodes in the network. 
This is possible because each (directed) relation 
possibly restricts the status of the second node based 
on the temporal status of the first. For instance, if node 
A and B are related by the predicate Meet, and 
node/interval A is known to be happening now, one 
can conclude that node/interval B is yet to happen. 
 

The problem with temporal reasoning in IA-
Networks is that propagation algorithms for them are 
normally NP-Hard, which are not suitable for real-time 
systems, especially when used to represent complex 
stories (large IA-Networks). In order to solve this 
issue, Pinhanez [Pinhanez et al. 1998] proposed the 
simplification of IA-Networks by restricting the 
temporal knowledge about an interval to three discrete 
values and their combinations: P (past), N (now) and F 
(future). For instance, an event that is known to have 
already happened is labeled P, while an event that is 
known to be happening is labeled N. An event labeled 
PN is currently happening or already happened, and an 
event whose status is unknown must be labeled PNF. 
 

At the same time, the temporal relations defined by 
Allen's interval algebra can be mapped to 
correspondent constraints also using discrete PNF 
values. A PNF constraint is a three-valued tuple, where 
each value is a combination of the values P, N and F. 
The first value in the tuple marks the possible status of 
the restricted interval given that the restrictor has in its 
current state the value P, the second value marks the 
possible status values for the presence of N in the 
origin, and finally, the third value restricts the 
destination in presence of F in the origin. The complete 
restriction is given by the sum set of the restrictions of 
the tuple. A conversion table between interval algebra 
relations and PNF constraints is given in Figure 5. 
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Figure 5 - Mapping of Allen's primitives into PNF 
constraints, which defines a PNF-Restriction function 

 
For instance, the relation Meet would be 

represented by the tuple <PN,F,F>. The first value PN 
means that if the origin interval is possibly in the past 
(P) state, the destination can either be happening now 
or already happen. The second value, F, implies that if 
the origin has the state N, the destination has to be in 
the future. Similar constraint happens with the third 
value. The sum set of the values needs to be used 
because sometimes one cannot know the exact status of 
a given interval, which will lead to more than one 
possible restriction path. This mapping defines a 
function that returns the value of the restricted interval 
(Xi) based on the current value of the restrictor (Xj) 
and the binary constraint between them (Cij): 

 
Xi = PNF-Restrict(Xj, Cij); 

 
Given this 3-valued discrete representation of the 

status and restrictions for intervals (or events that 
happen during this intervals), Pinhanez developed an 
arc-consistency heuristic [Pinhanez et al. 1998] to 
propagate changes in a PNF-Network (IA-Network 
with PNF mapped relations). This arc-consistency 
heuristic is linear on the number of constraints in the 
network and computes the restricted temporal status for 
each node (interval). 

 
Formally, a set of PNF values for all the nodes in a 

PNF-Network is a component domain. The goal of a 
restriction algorithm is to find the minimal domain that 
satisfies all the constraints in the network, given the 
fixed PNF values of the sensor nodes. The arc-
consistency heuristic is conservative and always finds a 
domain that satisfies the constraints, but its not 
guaranteed that this domain is minimal. Code 1 shows 
the pseudo-code for this heuristic. 

 
Input:  A PNF-Network N with values x1, x2,  
   ... , xn, and the binary constraints  
   Pij; 
   W, a component domain of PNF values  
   for N. 
Output: AC-R(W), a component domain that   
   satisfies the constraints 
 
 
 

Algorithm: 
queue = all variables xi where  Wi ≠ PNF; 
W_AUX = W; 
while queue is not empty 
 xq = pop(queue); 
 for each xi in W 
  X = PNF-Restrict(W_AUXq,Pqi); 
  if (W_AUXi ≠ W_AUXi ∩ X) 
   W_AUXi = W_AUXi ∩ X; 
   push(xi, queue); 
return W_AUX; 
Code 1 - Arc-consistency heuristic [Pinhanez 1998] 

 
PNF-Networks coupled with arc-consistency are a 

framework for representing and detecting complex 
actions, given that the temporal (PNF) state of some 
nodes in the network are determined by the output of 
real-time sensors. Each time a sensor output changes, 
the PNF-Propagation routine is executed, resulting in a 
new state for the nodes in the network. However, this 
framework alone is not useful in a storytelling 
scenario, where one needs mechanisms to 
automatically control virtual actors and other AI 
controlled objects. 
 
3.4 Interval Scripts 
 
Interval scripts are an extension to PNF-Networks that 
enable its use as an engine for controlling the execution 
of automated characters or other objects by using the 
results of real-time detection of user (and other 
automated) actions with the described PNF-
Propagation approach. An interval script is a PNF-
Network with three types of nodes: 
 

• Sensor - node whose temporal status is given by 
direct detection such as determining if an 
object is touching other. Its status cannot be 
changed by PNF-Propagation; 

• Passive node - represents an event that cannot 
be directly detected. Its temporal status is 
solely given by PNF-Propagation; 

• Actions - contains callback functions that are 
executed every time its temporal status should 
change. Its PNF status is defined by user code 
instead of PNF-Propagation. 

 
The difference from basic PNF-Networks is the 

presence of action nodes, which are placeholders for 
user-generated scripts. It is important to notice that the 
interval script engine will never change the temporal 
status of any user-generated script (action node). 
Instead, whenever a change in the network implies a 
temporal change in such action node, the engine 
executes the callback function that is correspondent to 
the expected change on the temporal status. 
 

• Start - callback that should contain the code to 
execute when the action is started. It is not 
necessary that the temporal status of the 
action to be N (now) after the execution of 
this callback; 

• Stop - must contain the code to be executed 
when the action should be stopped. Similarly, 



does not guarantee that the status is P (past) 
after its execution; 

• State - function that should return the actual 
current temporal status of the action node. 
This status is the combination of the values P, 
N and F, as any other node in a PNF-Network. 

 
Deciding what “start” and “stop” functions are 

executed, given the current state of the nodes in the 
network, does the control of the activation of action 
nodes. The steps to be taken in the heuristic proposed 
to this task in [ref] are: 
 

1. Determination of the current states of all the 
nodes of the network; 

2. PNF-Propagation of constraints to find the 
restricted desired states; 

3. Thinning of the solution: the result of the last 
step can possibly contain more than one 
solution for the network, so a heuristic is 
used. For each action node, its desired state is 
computed as the intersection of its current 
state and the result of the PNF-Propagation. If 
the result of this intersection is empty, the 
state computed by the PNF-Propagation is 
used; 

4. Execution of the necessary callback functions 
based on the thinning process, for all action 
nodes. 

 
Table 1 describes what callback function to 

execute, given current and desired temporal states, 
where the later is the result of the thinning process. The 
first column denotes the presence of the given state, 
meaning that the current state of the action only needs 
to contain the denoted value. With the thinning 
process, for each action node, the heuristic actually 
tries not to call either the "start" or the "stop" 
callbacks, unless its actual current state contradicts the 
result of the PNF-Propagation. 
 

Table 1 - Conditions for the activation of callbacks 
Current Desired Callback 

F N,PN Start 
N P Stop 
F P Stop 

 
 
4. PNF Extensions 
 
In this section we explain our main contributions to the 
existing framework: the template-based definition 
language and the hierarchical PNF-Propagation 
algorithm, which reduces the complexity for large 
networks. 
 
4.1 Template-based definition language 
 
One possible benefit of PNF-Networks is its ability to 
represent events based on previously-defined reusable 
sub-events. However, the whole system must be 

integrated with custom real-time game/graphic engines 
that implement the virtual sensors and the actual user-
generated scripts with the callback functions. One of 
the most important features of such integration is the 
ability to represent reusable sub-events without having 
to specify the exact objects and actors that compose 
them. We developed a template system that provides 
for an easy to use method for describing and 
composing PNF-Networks in XML. The code below 
shows a simple network of two nodes and the causality 
constraints between them. 
 
<network> 
    <node name="cause" type="sensor" > 
        <scene object="box" target="player" type="collision" /> 
    </node> 
    <node name="consequence" /> 
    <constraint origin="cause" destination="consequence"  

type="b,m" /> 
</network> 
Code 2 - Simple PNF-Network in XML 
 

This XML sample shows the basic language to 
describe a network of PNF-Constraints. The <node> 
tag is used to describe all the intervals, with a required 
name attribute to define a label for each one. Besides 
being an id for the parsing and template mechanisms, 
this attribute is used in real-time to implement a query 
system for the temporal state of any node. The type 
attribute is optional for passive nodes and obligatory 
for actions, and sensors. 

 
The sensor node type needs a special <scene> tag 

to define the attributes that specify the kind of sensor 
and the real-time objects that are subject to its 
"sensing" mechanism. Actual sensors are implemented 
by the customized graphic engines and the role of this 
XML specification is to describe its type, which can be 
collision, proximity, look or grab; and other attributes 
that are needed in real-time. For a sensor node, the 
necessary attributes are the object that should host the 
sensing mechanism and its target, which represents the 
label that another object must be marked with to 
properly activate the sensor. For instance, in the 
example above the real-time engine should host a 
collision sensor on the object named "box" and detect 
the collisions with objects labeled "player". By 
definition, sensor nodes are marked with the temporal 
state PF (past or future) when are not activated; and N 
(now) when activated. 

 
The most useful features of the template system are 

its ability to reuse previously defined actions and the 
use of variables to describe the objects that compose 
them. The following XML sample shows the definition 
of a template, also showing how variables and action 
nodes are defined. 
 
 
 
 
 
 
 
 



<template name="pass-through"> 
    <node name="pass" /> 
    <node name="begin" type="sensor" > 
        <scene host="$1" object="$3" type="collision" /> 
    </node> 
    <node name="end" type="sensor" > 
        <scene host="$2" object="$3" type="collision" /> 
    </node> 
    <constraint origin="begin" destination="pass" type="s" /> 
    <constraint origin="end" destination="pass" type="f" /> 
</template> 
Code 3 - Sample template with wild cards 
 

A template is similar to any other PNF-Network, 
but it is necessary to start with the definition of a 
passive node, normally one whose interval bounds the 
sub-network. Later on, when reusing this template to 
compose higher level structures, this passive node is 
the one to be connected by the constraints defined in 
the higher level network. The other difference is the 
inclusion of variables (marked with the $ symbol) that 
can be replaced whenever the template is re-used in 
another definition. 
 

This particular example shows a simple template 
that detects if a given object (represented by the 
variable $3) passes through two locations (respectively 
$1 and $2) in a particular order. The constraints 
guarantee that the passive node "pass" will be in the N 
(now) state as soon as the object touches the first 
sensor and in the P (past) state only after a collision 
with the second sensor (location) ceases to exist. Any 
other ordering of the events will collapse the network, 
meaning that the described event actually did not 
happen. Code 4 shows how to compose a higher level 
network by reusing previously defined templates and 
action nodes, that can be used to control automated 
scripts in the graphic engine. 
 
<network> 
    <node name="pass-instance" template="pass-through"> 
        <param name="$1" value="trigger1" /> 
        <param name="$2" value="trigger2" /> 
        <param name="$3" value="player" /> 
    </node> 
    <node name="consequence" type="action"> 
        <scene object="npc" /> 
    </node> 
    <constraint origin="pass-instance"              
       destination="consequence”  type="m" /> 
</network> 
Code 4 - Reuse of a template in a higher level network 
 

The above example defines a simple network that 
activates the script represented by the "consequence" 
node immediately after the end of the event 
represented by the "pass-instance" node, which is an 
instance of the previously defined "pass-through" 
event. The activation is guaranteed by the MEET (m) 
constraint between the two nodes. The sample also 
shows how the variables can be replaced by the actual 
values to be used by the real-time graphic engine to 
implement the sensors. The definition of action nodes, 
those that control the execution of user-created scripts, 
also needs the specification of a scene attribute that 
indicates the object that should contain the callback 

functions start and stop. In our implementation, we use 
the message passing API of the Unity3D Game Engine 
[Unity Technologies 2009] to perform this operation.  
 

When a template is instantiated, it acts as a wrapper 
for an independent sub-network. The constraints 
applied over the instanced node will be connected to 
the wrapper, instead of the internal nodes themselves. 
This wrapper acts as a barrier that detects when 
internal or external PNF-Propagations should be 
passed or not. This will happen only in the case where 
the temporal state of this wrapper changes. Figure 6 
shows the graph representation for the hierarchical 
network presented in Code 3. 
 

 
Figure 6 - hierarchical PNF-Network 

 
4.2 Hierarchical PNF Propagation 
 
The PNF-Propagation algorithm is linear on the 
number of constraints of the network; however, this 
can still be a limiting performance factor when 
considering the possibility of very large networks that 
represent complete narratives, especially with the 
control of low level virtual actors. Due to the structure 
of the most common narratives found in the literature 
of storytelling research, we decided to create the 
hierarchical PNF-Networks model, which can be 
though as a layered graph, with the highest level 
comprising a sequential or parallel plot, composed of 
nodes connected only by meet constraints. The lower 
levels of the graph can use more sophisticated PNF 
constructs, for instance to enable the control of 
multiple actors in a scene. 
 
 For instance, in the sample network of Figure 4, 
which represents an event in a plot, there is one passive 
node, the higher level "drama"; being all other nodes 
user-implemented actions. One can notice that all the 
“internal” nodes of that network are bound by the 
interval represented by the “drama” passive node. This 
pattern of using a passive node to bind all internal 
intervals is important to the definition of coherent 
hierarchical PNF-Networks. 
 

This guarantees that internal nodes of two different 
sub-networks never overlap, and PNF constraints are 
necessary only between nodes in the same level/layer. 
The wrapper node encapsulates all the links of the 



internal sub-network (actually the first passive node) 
with the external one (the higher level network). Using 
this feature, the PNF-Propagation algorithm can be 
restricted to only the sub-networks that are to be 
affected by its execution. For each wrapper node that 
connects a sub-network to its container network, the 
algorithm in Code 5 is executed every time a PNF-
Propagation occurs at the container level, while Code 6 
is executed after an internal PNF-Propagation is fired. 
 
// pNode is the passive node of the internal network 
// wNode is the wrapper node that connects with the 
// external network 
if (pNode.state != wNode.state) 
{ 
    pNode.state = wNode.state; 
    pNode.propagate(); 
} 
Code 5 - blocking external PNF-Propagation 
 

Whenever an external PNF-Propagation is fired, 
this algorithm will block its execution for the internal 
network, including any sub-network on levels below. 
This provides for a barrier that will prevent 
unnecessary traversal of sub-networks that are not to 
be affected anyway. The algorithm in Code 5 is the 
same; the only difference being the direction of the 
propagation, in this case to the external network. 
 
// pNode is the passive node of the internal network 
// wNode is the wrapper node that connects with the 
// external network 
if (pNode.state != wNode.state) 
{ 
    wNode.state = pNode.state; 
    wNode.propagate(); 
} 
Code 6 - blocking internal  PNF-Propagation 
 

Simple structures like these shown here can be used 
to compose complex narratives and provide for a 
runtime engine that controls its execution. In the next 
section we will show how this extended version of the 
original PNF-Network framework relates to common 
storytelling concepts and constructs. 
 
5. Integration with storytelling 
concepts 
 
With this paper, we propose the use of the hierarchical 
PNF-Network framework to model and control some 
levels of an interactive storytelling system. In this 
section we describe how the PNF model relates to 
common concepts in storytelling research. 
 
5.1 Planning and execution with plot-based 
storytelling 
 
Several previous works have focused on the use of 
planning algorithms to generate narratives [Riedl and 
Young 2003, Charles et al. 2003, Ciarlini et al. 2005, 
Barros and Musse 2005]. When these algorithms are 
used with a plot-based approach, the output often is an 
ordered (partially or totally) set of events, composed of 

subjects, verbs and objects. There is still research to be 
done in this subject, but in this section we show a 
possible mapping of the output of a planner to a 
hierarchical PNF-Network. 
 

The generated plot can be mapped to a high-level 
PNF-Network, with each verb corresponding to a 
previously defined action, which is by itself composed 
of others, lower level, sub-actions. The subjects and 
objects of the plot sentences are the parameters that 
shall replace the variables needed by these action 
templates to be complete. For instance, the following 
story can be directly mapped to the (high level) PNF-
Network of Figure 7. The sentences are meant to 
represent a very condensed version of the movie Star 
Wars, episode IV: A new hope. 
 

1. Imperial troopers kill Luke’s uncle and aunt 
2. Luke meets Obi wan 
3. Yoda trains Luke in Jedi 
4. Luke joins the rebels 
5. Luke destroys the death star 

 
Figure 7 – Highest level of the Star Wars PNF-Network 

 
In Figure 8, we chose to represent the last event of 

the plot, the destruction of the death star, because it 
highlights some features of the PNF-Network model. 
This event is composed of several sub-actions 
performed by the rebel and imperial spaceships, and 
ends up with the final destruction of the star-like 
weapon. 

 
Figure 8 – Death star destruction PNF-Network 

 
The actions that compose this mathematical model 

for the death star destruction can be realized in 
different ordering, but will always finish with Luke's 
precise bomb drop that explodes the imperial weapon. 
The "Death Star Destruction" node is the passive 



internal interval that bounds the execution of the 
others. The inverse start (iS) constraint to the "Rebels 
Reach the Death Star" action will guarantee that the 
later will be started as soon as a higher level PNF-
Propagation changes the temporal state of the first to N 
(now). The rest of the relations will bring parallel 
actions such as "Luke Flights Through the Channels" 
and a mutual exclusion between the two killing actions. 

 
For now, our system is suitable for plot-based 

stories whose sentences are based in verbs that can be 
mapped to high-level PNF defined events. There is still 
work to be done to enable runtime planning in the case 
of user intervention. This is our main research interest 
at this moment. 
 
5.2 Virtual cinematography 
 
Many previous research, and this work is no exception, 
on modeling and planning for storytelling tend to 
describe the plots as high level events, leaving room 
for the use of different techniques to enhance the 
viewer experience. One important research area in 
interactive storytelling is the use of traditional 
cinematography concepts as automated agents. 
 
 We are experimenting with two approaches for the 
integration of cinematography agents with hierarchical 
PNF-Networks: camera actions and director agents. 
With camera actions we include action nodes in our 
PNF templates so that every time that template is used 
in a story it already comes integrated with the camera 
shots (as action nodes linked to pre-defined camera 
scripts). Figure 9 shows a PNF template for the sub-
events of the drama that was analyzed in section 3, 
including camera actions that are tied to the sub-events 
with the constraint equal (E). 

 
Figure 9 - Drama event with camera actions (gray nodes) 

 
 Another option, that is more flexible than the latter 
is to establish a communication protocol with an 
independent agent that chooses the camera shots to be 
used. The general idea is to send all Start and Stop 
messages to this director agent as well. The message to 
this director agent must include a reference to the PNF 
action that received it originally, so that useful 
information can be extracted from the mathematical 
model such as the name of the action (verb that 
possibly defines the type of shot to be used) and the 
parameters that link this action to the real-time 

characters and objects on the graphic engine. Figure 10 
shows a schematic representation for this 
communication architecture. 
 

 
Figure 10 - Communication between the PNF engine and a 

director agent 
 
5.3 Flashbacks and out-of-order execution 
 
A narrative concept that helps the viewer to mind 
important events, while at the same time enhances the 
storyteller possibilities is the use of flashbacks [Bae 
and Young 2008], a replay of a part of the story 
already told/seen. The PNF-Networks original 
framework was not design with this possibility in 
mind, but the hierarchical feature of our model 
provides for partial independency of (lower level) 
events, meaning that the whole internal structure of a 
sub-network can be reset, leaving room for its (re) 
execution, possibly with a different approach from the 
director agent, highlighting the flashback timing with 
image filters or different shots. 
 
 This idea can be extended to out-order-execution if 
the first level of the network (plot) is controlled by 
another engine, which uses different decision rules to 
choose the ordering of the events. The plot events are 
now independent PNF-Networks that can be started in 
any desired order, but still benefitting from the features 
of the temporal model behind it at the lower levels. 
 
5.4 Character-based emergent storytelling 
 
Character based storytelling relies on the interaction of 
virtual actors that are agents directly driven by goals or 
assisted by some sort of planning. Creating coherent 
and interesting stories in real-time with this approach is 
still the objective of this research field, and one of the 
challenges is related to the way virtual actors perceive 
the environment. 
 
 PNF-Networks can be used with this approach to 
model and recognize the actions of all the virtual 
actors, providing for a flexible framework for the 
agents to perceive and react accordingly to its plan or 
drives. 
 
 These are some integration ideas made possible by 
Hierarchical PNF-Networks. We are still investigating 



if and how other key storytelling concepts can be used 
with this framework. 
 
6. Conclusions and Future Work 
 
With this paper we presented the Hierarchical PNF-
Networks and its template-based definition language, 
two extensions over the original PNF-Network 
framework, a fine-grained representation for temporal 
relations between intervals that can be used to describe 
high level events such as complex human action. The 
two extensions made possible the use of PNF-
Networks to represent large sets of interdependent 
events such as interactive. The XML schema used to 
describe the networks facilitates the description of a 
library of events and actions to be used by a 
storytelling system. 
 

We are currently researching more extensions to 
Hierarchical PNF-Networks. For instance, we are 
trying to integrate planning algorithms to create and 
modify PNF-based stories in real-time. It is easy to 
adapt a current planning algorithm to only generate a 
PNF-Network that is solely composed of precedence 
relations such as Meet, but that approach would not 
make any use of the richer representation that these 
networks can bring to interactive storytelling models. 
Our goal is to create a system that can be used in multi-
user scenarios such as emergent stories in massive 
games or user-influenced plot-based narratives for 
digital-TV. 
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