
Hierarchical PNF Networks: A Temporal Model of Events for the
Representation and Dramatization of Storytelling

JEMS NUMBER: 60358

Abstract

Storytelling is an important feature in games and also
other types of (semi) automated entertainment systems
such as machinima and digital-TV. The majority of the
current research in storytelling use precedence-based
directed acyclic graphs, or even linear sequences, to
model the ordering of events in a story. This approach
makes it easier to plan, recognize and perform these
events in real-time, but it is also too simple to represent
complex human actions, which form the basis of the
most interesting stories in this niche. PNF-Networks
and Interval Scripting are frameworks to represent,
recognize and control action that was proposed in the
context of computer-aided theatre. In this paper we
describe two extensions to this framework that were
designed and developed to enable its use in larger scale
storytelling systems: Hierarchical PNF-Networks and a
template-based definition. Hierarchical PNF-Networks
present lower complexity propagation heuristic while
the definition language enables high-level and abstract
description of the temporal structure of the actions and
events that compose an interactive story or game.

Keywords: storytelling, PNF networks, interval
algebra

Authors’ contact:

1. Introduction

A strong trend in game design is to include storytelling
elements and narrative structures to enhance the player
experience. However, being interactive applications,
games put several challenges into this integration.
These challenges are also present in other applications
of interactive storytelling such as experiments on
machinima [Riedl et al. 2008, Jahala et al. 2008] and
interactive TV [Pozzer 2005], and can be divided into
three main categories: story modeling,
generation/planning, and dramatization. Story
modeling tackles the problem of representing the
events that make up a story, creating a solid framework
for planning and dramatization tools. Planning
algorithms have been used to create coherent story
models and to keep it in this fashion, even in the
presence of user generated events. Dramatization
systems are designed to present the storyline and to
interact with the user. Besides, the control of virtual

actors or other agents such as camera systems still
present opportunities to enrich the user experience.

Many storytelling models are constructed as
directed acyclic graphs (plans are an example of such
graphs), which can represent only incomplete temporal
relations such as precedence or causality [Charles et al.
2003, Ciarlini et al. 2005, Barros and Musse 2005].
Since these temporal models are simple, the integration
with planning and real-time dramatization systems
becomes more straightforward. However, these models
are a poor representation of complex human actions,
which are the most common type of events in stories.
This is due to the fact that these models are especially
weak regarding temporal relations between events,
being unable to directly represent certain types of
parallelism such as mutual exclusion [Allen and
Ferguson 1994]. We believe that a richer
representation can lead to stories with higher
complexity and consequently to a more interesting user
experience.

PNF Networks were introduced by Pinhanez
[Pinhanez et al. 1998] as a human action recognition
framework, which uses the qualitative temporal
predicates of James Allen's interval algebra [Allen
1983] to label the relations between the events that
compose an action. Unlike precedence-based directed
acyclic graphs, the constraints of a PNF network can
represent all possible temporal relations that are
present in the real world. The problem with interval
algebra networks is that the propagation of the
temporal constraints is NP-Hard. However, Pinhanez
proposed a heuristic for this problem, called PNF-
Propagation, which is linear on the number of
constraints for networks where the knowledge about
the temporal status of each event is discrete, restricted
to three possible values and their combinations: P
(past), N (now) and F (future). For instance, an event
that is known to have already happened is labeled P,
while an event that is known to be happening is labeled
N. An event labeled PN is currently happening or
already happened, and an event whose status is
unknown must be labeled PNF.

This framework, augmented with real-time sensor
output and past information, was used to represent and
recognize complex human actions in the context of
computer theatre. Pinhanez also proposed a script
language [Pinhanez et al. 1997] that combines PNF-
Propagation with user-defined sub-actions to control
interactive experiments in real-time. The use of these

techniques to storytelling purposes was mentioned but
not implemented by the original authors.

In this paper, we propose two extensions to
Pinhanez's PNF-Networks that were developed to
make them suitable as a model and dramatization tool
for interactive storytelling. The main contributions of
our work are: a template-based definition language that
is used to compose high level stories by using abstract,
reusable descriptions of actions; and a hierarchical
version of PNF-Networks, that is augmented with an
adaptation of the original restriction heuristic. The
adapted heuristic aims to avoid unnecessary traversal
of unaffected nodes in the network, leading to a lower
complexity that enables the use of larger
networks/stories. This Hierarchical PNF-Network was
designed, implemented and integrated with a game
engine to permit further research on interactive
storytelling.

The rest of the paper is organized as follows:
Section 2 compares the proposed system with related
work in the field. Section 3 explains PNF-Networks
and the Interval Script paradigm in more detail, while
section 4 explains the new features we are proposing to
the original approach. Section 5 brings an analysis of
how these features are related to common storytelling
concepts and constructs, which is another contribution
of the present work. Finally, section 6 concludes the
paper and shows future directions of our research.

2. Related Work

This section is organized in two parts: the first covers
some important previous research in storytelling
modeling and planning techniques. But since this work
is strongly based on the PNF-Networks temporal
model and algorithms, we also include here the origins
and more recent work in this subject.

Chris Crawford created an interactive storytelling
system, Erasmatron [Crawford 2004], in which the
user generates stories by using verbs that define the
actions of the characters. Each verb has an associated
set of roles, which can be linked to the characters and
objects in the particular setting. These verbs represent
the same concept as the actions in our framework,
while the roles are similar to the variables in our
template definition language. Although Crawford´s
approach is more align with character-based emergent
storytelling and PNF-Networks fit better plot-based
storytelling, his ideas can still benefit from PNF-
Networks to detect what actions a particular character
has already performed.

 Plans have become one the most common approach
for storytelling research partly due to their similarities
to story models that emerged from narratology studies
[Barros and Musse 2007]. Several previous researches
included planning as part of their storytelling systems
[Riedl and Young 2003, Charles et al. 2003, Ciarlini et

al. 2005, Barros and Musse 2005]. We consider our
work complementary to these, since we are not
proposing new planning algorithms, but the integration
of the Hierarchical PNF-Networks framework with
current planning approaches as a formal model for the
real-time execution and detection of the events that
compose an interactive story.

PNF-Networks are a model and recognition
framework for complex human action. It is been
implemented and tested in several experiments and
also with computer-aided theatre plays. We strongly
recommend reading some of Claudio Pinhanez’s
published work [Pinhanez 1999, Pinhanez et al. 1998,
Pinhanez et al. 1997] to better understand the extended
framework we propose in this paper.

Meyer [Meyer 2002] further experimented with
computer-aided theatre, introducing the use of XML as
the definition language for the PNF-Networks. In this
paper, we propose further extensions to Pinhanez’s
work, and also analyze some challenges and
opportunities that derive from its application in
storytelling research.

3. PNF Networks and Interval Scripts

PNF-Networks are a symbolic framework for modeling
high-level events such as human actions - and an
algorithm for detecting the occurrence of such events
in real-time - that is rich in its representation power
and features linear computational complexity, making
it suitable to runtime interactive systems. Such as other
models for representing high-level events in a story,
PNF-Networks decompose actions into simpler sub-
actions, but the detection of their occurrence is based
on temporal reasoning about the state of the other
actions in the network with a heuristic called PNF-
Propagation.

Interval scripts are a proposal for the integration of
PNF-Networks with user-scripted actions, which are
activated by a real-time engine that uses the PNF-
Propagation heuristic to determine what actions should
be started or stopped. In this section we explain some
terminology and the main concepts behind PNF-
Networks: action representation by the means of
networks of temporal constraints; the PNF-Propagation
heuristic; and the interval script approach for complex
action activation.

3.1 Terminology

Informally, an action is something performed by some
being (character, animal, machine) that can have some
consequences. An event can be understood as the
perception of an action, its consequences or a natural
phenomenon. In this paper, however, this subtle
distinction is not so important to the mathematical
formalism. More important is the perception that both
events and actions happen in intervals of time, which

states that if enough information is available, one can
distinguish if an event (or action) is currently
happening (present), already happened (past) or has not
happened yet (future). For now on, we may refer to an
event or action with the term interval.

The other important terminology is related to the
temporal relations between these intervals. Each event
or actions will be represented by a node in a graph
corresponding to its interval. PNF-Networks are graphs
where the nodes are connected by binary directional
relations. Each relation represents a constraint that
affect the temporal state of the restricted (the
destination node of the directed arc) interval based on
the state of the restrictor (the origin of the arc).

3.1 Action composition

Most human actions can be described by a composition
of simpler sub-actions. This concept is key to
storytelling systems and, for instance, lets describe the
events that can form a common drama in love stories:
the knight characters declares this love for the princess,
who is to marry a prince from another kingdom. The
component sub-events can be: a) establishing shot of
the castle; b) knight declares love; c) prince comes and
kisses the princess; and d) princess wonders about
what just happened. In order to understand this drama,
the viewer must see the characters perform each of
these sub-events in some organized fashion. Even this
simple example will be enough to show how different
models drift in representation power.

Since the occurrence of each one of these sub-
actions must happen in definite intervals of time, one
must define temporal relations between them to
properly model and control either its runtime execution
or automatic detection. A simple approach to model the
temporal relations of these intervals is to consider that
the sub-actions always occur in sequence, which would
lead to the directed acyclic graph shown in Figure 1,
where each arc represent a precedence relation. When
used to control automated characters and objects such
as a virtual camera, this model shows the order in
which the events must be performed. If used to
detection purposes, the system must perceive that the
events happened in the declared order, to properly
conclude that the described drama has actually been
presented to the viewer, in case a Finite State Machine
will easily suffice.

Figure 1: Sequential model for a common drama

The sequence in Figure 1 is enough when one just
wants to use it as a high level representation for
scripting purposes, but in many cases, some of the
component sub-events can happen in parallel or in
unknown order. For instance, this concept can be
naively represented by the graph in Figure 2, where the
two events of the knight declaring its love and the kiss
between the prince and the princess are not tied to a
specific order. However, this simple parallel model
fails to capture an important temporal restriction of the
real world: the impossibility of these two events to
happen at the same time, which would otherwise lead
to a inconsistent performance. The overall conclusion
is that models for temporal relations between events
that are based solely in precedence are not able to
represent mutual exclusion situations properly [Allen
and Ferguson 1994].

Figure 2: Naive parallel model of the drama event

Before coming back to the drama example, lets first

introduce some concepts that are important to the
understanding of PNF-Networks.

3.2 Temporal constraints: IA-Networks

To better represent high-level actions, one needs a
richer model for temporal relations between the
component sub-actions, which proper capture their
complex nature. Instead of relying only in precedence
and composition, the temporal relations defined by
James Allen's Interval Algebra [Allen 1983] are a set
of thirteen binary predicates, each representing a
unique temporal relation between two intervals. Being
an algebra, all possible knowledge about the temporal
relation between any two events is proven to be a
subset (empty included) of the predicates described by
the Interval Algebra. These predicates are illustrated in
Figure 3.

Figure 3: Allen's primitive temporal relations between two

intervals

Two illustrate how these predicates better represent
temporal relations between sub-actions, we can use
them to define the most common relation in
storytelling models: precedence. Saying that interval A
precedes interval B implies that the first must end its
execution before the second starts its own. But the
actual start of interval B can either immediately follow
the end of interval A or take some time to begin. This
means that two predicates in Allen's algebra can be
used to represent precedence: Before or Meet, which
leads to three possible interpretations for the
precedence relation:

• A <Before> B, where the start of interval B
must take some time after the end of A to
actually happen;

• A <Meet> B, where the start of interval B
immediately follows the end of A;

• A <Before,Meet> B, where interval B either
immediately follows or happens after some
time A has finished, which is the usual
meaning of precedence in more simple
models.

These three possible representations for precedence

are impossible to distinguish unless a more powerful
set of predicates is used. In Interval Algebra, high level
events (or long chains, sequences or other arbitrary sets
of events) are represented by directed (possibly cyclic)
graphs called IA-Networks, where the nodes are the
sub-events and each directed arc is a subset of the
thirteen predicates that compose Allen's Interval
Algebra. These networks are useful when one wants a
richer and finer grained representation of temporal
relations. Figure 4 uses a possible IA-Network to the
drama event of previous examples. It is important to
notice that in IA-Networks the relation between the
high-level event and the same types of predicates also
represent its component sub-events. The "castle shot"
camera sub-event marks the start of the "drama" event,
so it is restricted by a <iStart> (inverse start) relation.

Figure 4 - Drama model represented by an IA-Network

3.3 PNF Propagation

The most important feature of an IA-Network is that it
makes possible temporal reasoning, which means that
one can use the knowledge about the temporal status of
some nodes to infer about other nodes in the network.
This is possible because each (directed) relation
possibly restricts the status of the second node based
on the temporal status of the first. For instance, if node
A and B are related by the predicate Meet, and
node/interval A is known to be happening now, one
can conclude that node/interval B is yet to happen.

The problem with temporal reasoning in IA-
Networks is that propagation algorithms for them are
normally NP-Hard, which are not suitable for real-time
systems, especially when used to represent complex
stories (large IA-Networks). In order to solve this
issue, Pinhanez [Pinhanez et al. 1998] proposed the
simplification of IA-Networks by restricting the
temporal knowledge about an interval to three discrete
values and their combinations: P (past), N (now) and F
(future). For instance, an event that is known to have
already happened is labeled P, while an event that is
known to be happening is labeled N. An event labeled
PN is currently happening or already happened, and an
event whose status is unknown must be labeled PNF.

At the same time, the temporal relations defined by
Allen's interval algebra can be mapped to
correspondent constraints also using discrete PNF
values. A PNF constraint is a three-valued tuple, where
each value is a combination of the values P, N and F.
The first value in the tuple marks the possible status of
the restricted interval given that the restrictor has in its
current state the value P, the second value marks the
possible status values for the presence of N in the
origin, and finally, the third value restricts the
destination in presence of F in the origin. The complete
restriction is given by the sum set of the restrictions of
the tuple. A conversion table between interval algebra
relations and PNF constraints is given in Figure 5.

 P N F
E
B
iB
M
iM
O
iO
S
iS
D
iD
F
iF

<
<
<
<
<
<
<
<
<
<
<
<
<

P
PNF
P
PN
P
PN
P
PN
P
PN
P
P
P

,
,
,
,
,
,
,
,
,
,
,
,
,

N
F
P
F
P
NF
PN
N
PN
N

PNF
N
NF

,
,
,
,
,
,
,
,
,
,
,
,
,

F
F

PNF
F
NF
F
NF
F
F
NF
F
NF
F

>
>
>
>
>
>
>
>
>
>
>
>
>

Figure 5 - Mapping of Allen's primitives into PNF
constraints, which defines a PNF-Restriction function

For instance, the relation Meet would be

represented by the tuple <PN,F,F>. The first value PN
means that if the origin interval is possibly in the past
(P) state, the destination can either be happening now
or already happen. The second value, F, implies that if
the origin has the state N, the destination has to be in
the future. Similar constraint happens with the third
value. The sum set of the values needs to be used
because sometimes one cannot know the exact status of
a given interval, which will lead to more than one
possible restriction path. This mapping defines a
function that returns the value of the restricted interval
(Xi) based on the current value of the restrictor (Xj)
and the binary constraint between them (Cij):

Xi = PNF-Restrict(Xj, Cij);

Given this 3-valued discrete representation of the

status and restrictions for intervals (or events that
happen during this intervals), Pinhanez developed an
arc-consistency heuristic [Pinhanez et al. 1998] to
propagate changes in a PNF-Network (IA-Network
with PNF mapped relations). This arc-consistency
heuristic is linear on the number of constraints in the
network and computes the restricted temporal status for
each node (interval).

Formally, a set of PNF values for all the nodes in a

PNF-Network is a component domain. The goal of a
restriction algorithm is to find the minimal domain that
satisfies all the constraints in the network, given the
fixed PNF values of the sensor nodes. The arc-
consistency heuristic is conservative and always finds a
domain that satisfies the constraints, but its not
guaranteed that this domain is minimal. Code 1 shows
the pseudo-code for this heuristic.

Input: A PNF-Network N with values x1, x2,
 ... , xn, and the binary constraints
 Pij;
 W, a component domain of PNF values
 for N.
Output: AC-R(W), a component domain that
 satisfies the constraints

Algorithm:
queue = all variables xi where Wi ≠ PNF;
W_AUX = W;
while queue is not empty
 xq = pop(queue);
 for each xi in W
 X = PNF-Restrict(W_AUXq,Pqi);
 if (W_AUXi ≠ W_AUXi ∩ X)
 W_AUXi = W_AUXi ∩ X;
 push(xi, queue);
return W_AUX;
Code 1 - Arc-consistency heuristic [Pinhanez 1998]

PNF-Networks coupled with arc-consistency are a

framework for representing and detecting complex
actions, given that the temporal (PNF) state of some
nodes in the network are determined by the output of
real-time sensors. Each time a sensor output changes,
the PNF-Propagation routine is executed, resulting in a
new state for the nodes in the network. However, this
framework alone is not useful in a storytelling
scenario, where one needs mechanisms to
automatically control virtual actors and other AI
controlled objects.

3.4 Interval Scripts

Interval scripts are an extension to PNF-Networks that
enable its use as an engine for controlling the execution
of automated characters or other objects by using the
results of real-time detection of user (and other
automated) actions with the described PNF-
Propagation approach. An interval script is a PNF-
Network with three types of nodes:

• Sensor - node whose temporal status is given by
direct detection such as determining if an
object is touching other. Its status cannot be
changed by PNF-Propagation;

• Passive node - represents an event that cannot
be directly detected. Its temporal status is
solely given by PNF-Propagation;

• Actions - contains callback functions that are
executed every time its temporal status should
change. Its PNF status is defined by user code
instead of PNF-Propagation.

The difference from basic PNF-Networks is the

presence of action nodes, which are placeholders for
user-generated scripts. It is important to notice that the
interval script engine will never change the temporal
status of any user-generated script (action node).
Instead, whenever a change in the network implies a
temporal change in such action node, the engine
executes the callback function that is correspondent to
the expected change on the temporal status.

• Start - callback that should contain the code to
execute when the action is started. It is not
necessary that the temporal status of the
action to be N (now) after the execution of
this callback;

• Stop - must contain the code to be executed
when the action should be stopped. Similarly,

does not guarantee that the status is P (past)
after its execution;

• State - function that should return the actual
current temporal status of the action node.
This status is the combination of the values P,
N and F, as any other node in a PNF-Network.

Deciding what “start” and “stop” functions are

executed, given the current state of the nodes in the
network, does the control of the activation of action
nodes. The steps to be taken in the heuristic proposed
to this task in [ref] are:

1. Determination of the current states of all the
nodes of the network;

2. PNF-Propagation of constraints to find the
restricted desired states;

3. Thinning of the solution: the result of the last
step can possibly contain more than one
solution for the network, so a heuristic is
used. For each action node, its desired state is
computed as the intersection of its current
state and the result of the PNF-Propagation. If
the result of this intersection is empty, the
state computed by the PNF-Propagation is
used;

4. Execution of the necessary callback functions
based on the thinning process, for all action
nodes.

Table 1 describes what callback function to

execute, given current and desired temporal states,
where the later is the result of the thinning process. The
first column denotes the presence of the given state,
meaning that the current state of the action only needs
to contain the denoted value. With the thinning
process, for each action node, the heuristic actually
tries not to call either the "start" or the "stop"
callbacks, unless its actual current state contradicts the
result of the PNF-Propagation.

Table 1 - Conditions for the activation of callbacks
Current Desired Callback

F N,PN Start
N P Stop
F P Stop

4. PNF Extensions

In this section we explain our main contributions to the
existing framework: the template-based definition
language and the hierarchical PNF-Propagation
algorithm, which reduces the complexity for large
networks.

4.1 Template-based definition language

One possible benefit of PNF-Networks is its ability to
represent events based on previously-defined reusable
sub-events. However, the whole system must be

integrated with custom real-time game/graphic engines
that implement the virtual sensors and the actual user-
generated scripts with the callback functions. One of
the most important features of such integration is the
ability to represent reusable sub-events without having
to specify the exact objects and actors that compose
them. We developed a template system that provides
for an easy to use method for describing and
composing PNF-Networks in XML. The code below
shows a simple network of two nodes and the causality
constraints between them.

<network>
 <node name="cause" type="sensor" >
 <scene object="box" target="player" type="collision" />
 </node>
 <node name="consequence" />
 <constraint origin="cause" destination="consequence"

type="b,m" />
</network>
Code 2 - Simple PNF-Network in XML

This XML sample shows the basic language to
describe a network of PNF-Constraints. The <node>
tag is used to describe all the intervals, with a required
name attribute to define a label for each one. Besides
being an id for the parsing and template mechanisms,
this attribute is used in real-time to implement a query
system for the temporal state of any node. The type
attribute is optional for passive nodes and obligatory
for actions, and sensors.

The sensor node type needs a special <scene> tag

to define the attributes that specify the kind of sensor
and the real-time objects that are subject to its
"sensing" mechanism. Actual sensors are implemented
by the customized graphic engines and the role of this
XML specification is to describe its type, which can be
collision, proximity, look or grab; and other attributes
that are needed in real-time. For a sensor node, the
necessary attributes are the object that should host the
sensing mechanism and its target, which represents the
label that another object must be marked with to
properly activate the sensor. For instance, in the
example above the real-time engine should host a
collision sensor on the object named "box" and detect
the collisions with objects labeled "player". By
definition, sensor nodes are marked with the temporal
state PF (past or future) when are not activated; and N
(now) when activated.

The most useful features of the template system are

its ability to reuse previously defined actions and the
use of variables to describe the objects that compose
them. The following XML sample shows the definition
of a template, also showing how variables and action
nodes are defined.

<template name="pass-through">
 <node name="pass" />
 <node name="begin" type="sensor" >
 <scene host="$1" object="$3" type="collision" />
 </node>
 <node name="end" type="sensor" >
 <scene host="$2" object="$3" type="collision" />
 </node>
 <constraint origin="begin" destination="pass" type="s" />
 <constraint origin="end" destination="pass" type="f" />
</template>
Code 3 - Sample template with wild cards

A template is similar to any other PNF-Network,
but it is necessary to start with the definition of a
passive node, normally one whose interval bounds the
sub-network. Later on, when reusing this template to
compose higher level structures, this passive node is
the one to be connected by the constraints defined in
the higher level network. The other difference is the
inclusion of variables (marked with the $ symbol) that
can be replaced whenever the template is re-used in
another definition.

This particular example shows a simple template
that detects if a given object (represented by the
variable $3) passes through two locations (respectively
$1 and $2) in a particular order. The constraints
guarantee that the passive node "pass" will be in the N
(now) state as soon as the object touches the first
sensor and in the P (past) state only after a collision
with the second sensor (location) ceases to exist. Any
other ordering of the events will collapse the network,
meaning that the described event actually did not
happen. Code 4 shows how to compose a higher level
network by reusing previously defined templates and
action nodes, that can be used to control automated
scripts in the graphic engine.

<network>
 <node name="pass-instance" template="pass-through">
 <param name="$1" value="trigger1" />
 <param name="$2" value="trigger2" />
 <param name="$3" value="player" />
 </node>
 <node name="consequence" type="action">
 <scene object="npc" />
 </node>
 <constraint origin="pass-instance"
 destination="consequence” type="m" />
</network>
Code 4 - Reuse of a template in a higher level network

The above example defines a simple network that
activates the script represented by the "consequence"
node immediately after the end of the event
represented by the "pass-instance" node, which is an
instance of the previously defined "pass-through"
event. The activation is guaranteed by the MEET (m)
constraint between the two nodes. The sample also
shows how the variables can be replaced by the actual
values to be used by the real-time graphic engine to
implement the sensors. The definition of action nodes,
those that control the execution of user-created scripts,
also needs the specification of a scene attribute that
indicates the object that should contain the callback

functions start and stop. In our implementation, we use
the message passing API of the Unity3D Game Engine
[Unity Technologies 2009] to perform this operation.

When a template is instantiated, it acts as a wrapper
for an independent sub-network. The constraints
applied over the instanced node will be connected to
the wrapper, instead of the internal nodes themselves.
This wrapper acts as a barrier that detects when
internal or external PNF-Propagations should be
passed or not. This will happen only in the case where
the temporal state of this wrapper changes. Figure 6
shows the graph representation for the hierarchical
network presented in Code 3.

Figure 6 - hierarchical PNF-Network

4.2 Hierarchical PNF Propagation

The PNF-Propagation algorithm is linear on the
number of constraints of the network; however, this
can still be a limiting performance factor when
considering the possibility of very large networks that
represent complete narratives, especially with the
control of low level virtual actors. Due to the structure
of the most common narratives found in the literature
of storytelling research, we decided to create the
hierarchical PNF-Networks model, which can be
though as a layered graph, with the highest level
comprising a sequential or parallel plot, composed of
nodes connected only by meet constraints. The lower
levels of the graph can use more sophisticated PNF
constructs, for instance to enable the control of
multiple actors in a scene.

 For instance, in the sample network of Figure 4,
which represents an event in a plot, there is one passive
node, the higher level "drama"; being all other nodes
user-implemented actions. One can notice that all the
“internal” nodes of that network are bound by the
interval represented by the “drama” passive node. This
pattern of using a passive node to bind all internal
intervals is important to the definition of coherent
hierarchical PNF-Networks.

This guarantees that internal nodes of two different
sub-networks never overlap, and PNF constraints are
necessary only between nodes in the same level/layer.
The wrapper node encapsulates all the links of the

internal sub-network (actually the first passive node)
with the external one (the higher level network). Using
this feature, the PNF-Propagation algorithm can be
restricted to only the sub-networks that are to be
affected by its execution. For each wrapper node that
connects a sub-network to its container network, the
algorithm in Code 5 is executed every time a PNF-
Propagation occurs at the container level, while Code 6
is executed after an internal PNF-Propagation is fired.

// pNode is the passive node of the internal network
// wNode is the wrapper node that connects with the
// external network
if (pNode.state != wNode.state)
{
 pNode.state = wNode.state;
 pNode.propagate();
}
Code 5 - blocking external PNF-Propagation

Whenever an external PNF-Propagation is fired,
this algorithm will block its execution for the internal
network, including any sub-network on levels below.
This provides for a barrier that will prevent
unnecessary traversal of sub-networks that are not to
be affected anyway. The algorithm in Code 5 is the
same; the only difference being the direction of the
propagation, in this case to the external network.

// pNode is the passive node of the internal network
// wNode is the wrapper node that connects with the
// external network
if (pNode.state != wNode.state)
{
 wNode.state = pNode.state;
 wNode.propagate();
}
Code 6 - blocking internal PNF-Propagation

Simple structures like these shown here can be used
to compose complex narratives and provide for a
runtime engine that controls its execution. In the next
section we will show how this extended version of the
original PNF-Network framework relates to common
storytelling concepts and constructs.

5. Integration with storytelling
concepts

With this paper, we propose the use of the hierarchical
PNF-Network framework to model and control some
levels of an interactive storytelling system. In this
section we describe how the PNF model relates to
common concepts in storytelling research.

5.1 Planning and execution with plot-based
storytelling

Several previous works have focused on the use of
planning algorithms to generate narratives [Riedl and
Young 2003, Charles et al. 2003, Ciarlini et al. 2005,
Barros and Musse 2005]. When these algorithms are
used with a plot-based approach, the output often is an
ordered (partially or totally) set of events, composed of

subjects, verbs and objects. There is still research to be
done in this subject, but in this section we show a
possible mapping of the output of a planner to a
hierarchical PNF-Network.

The generated plot can be mapped to a high-level
PNF-Network, with each verb corresponding to a
previously defined action, which is by itself composed
of others, lower level, sub-actions. The subjects and
objects of the plot sentences are the parameters that
shall replace the variables needed by these action
templates to be complete. For instance, the following
story can be directly mapped to the (high level) PNF-
Network of Figure 7. The sentences are meant to
represent a very condensed version of the movie Star
Wars, episode IV: A new hope.

1. Imperial troopers kill Luke’s uncle and aunt
2. Luke meets Obi wan
3. Yoda trains Luke in Jedi
4. Luke joins the rebels
5. Luke destroys the death star

Figure 7 – Highest level of the Star Wars PNF-Network

In Figure 8, we chose to represent the last event of

the plot, the destruction of the death star, because it
highlights some features of the PNF-Network model.
This event is composed of several sub-actions
performed by the rebel and imperial spaceships, and
ends up with the final destruction of the star-like
weapon.

Figure 8 – Death star destruction PNF-Network

The actions that compose this mathematical model

for the death star destruction can be realized in
different ordering, but will always finish with Luke's
precise bomb drop that explodes the imperial weapon.
The "Death Star Destruction" node is the passive

internal interval that bounds the execution of the
others. The inverse start (iS) constraint to the "Rebels
Reach the Death Star" action will guarantee that the
later will be started as soon as a higher level PNF-
Propagation changes the temporal state of the first to N
(now). The rest of the relations will bring parallel
actions such as "Luke Flights Through the Channels"
and a mutual exclusion between the two killing actions.

For now, our system is suitable for plot-based

stories whose sentences are based in verbs that can be
mapped to high-level PNF defined events. There is still
work to be done to enable runtime planning in the case
of user intervention. This is our main research interest
at this moment.

5.2 Virtual cinematography

Many previous research, and this work is no exception,
on modeling and planning for storytelling tend to
describe the plots as high level events, leaving room
for the use of different techniques to enhance the
viewer experience. One important research area in
interactive storytelling is the use of traditional
cinematography concepts as automated agents.

 We are experimenting with two approaches for the
integration of cinematography agents with hierarchical
PNF-Networks: camera actions and director agents.
With camera actions we include action nodes in our
PNF templates so that every time that template is used
in a story it already comes integrated with the camera
shots (as action nodes linked to pre-defined camera
scripts). Figure 9 shows a PNF template for the sub-
events of the drama that was analyzed in section 3,
including camera actions that are tied to the sub-events
with the constraint equal (E).

Figure 9 - Drama event with camera actions (gray nodes)

 Another option, that is more flexible than the latter
is to establish a communication protocol with an
independent agent that chooses the camera shots to be
used. The general idea is to send all Start and Stop
messages to this director agent as well. The message to
this director agent must include a reference to the PNF
action that received it originally, so that useful
information can be extracted from the mathematical
model such as the name of the action (verb that
possibly defines the type of shot to be used) and the
parameters that link this action to the real-time

characters and objects on the graphic engine. Figure 10
shows a schematic representation for this
communication architecture.

Figure 10 - Communication between the PNF engine and a

director agent

5.3 Flashbacks and out-of-order execution

A narrative concept that helps the viewer to mind
important events, while at the same time enhances the
storyteller possibilities is the use of flashbacks [Bae
and Young 2008], a replay of a part of the story
already told/seen. The PNF-Networks original
framework was not design with this possibility in
mind, but the hierarchical feature of our model
provides for partial independency of (lower level)
events, meaning that the whole internal structure of a
sub-network can be reset, leaving room for its (re)
execution, possibly with a different approach from the
director agent, highlighting the flashback timing with
image filters or different shots.

 This idea can be extended to out-order-execution if
the first level of the network (plot) is controlled by
another engine, which uses different decision rules to
choose the ordering of the events. The plot events are
now independent PNF-Networks that can be started in
any desired order, but still benefitting from the features
of the temporal model behind it at the lower levels.

5.4 Character-based emergent storytelling

Character based storytelling relies on the interaction of
virtual actors that are agents directly driven by goals or
assisted by some sort of planning. Creating coherent
and interesting stories in real-time with this approach is
still the objective of this research field, and one of the
challenges is related to the way virtual actors perceive
the environment.

 PNF-Networks can be used with this approach to
model and recognize the actions of all the virtual
actors, providing for a flexible framework for the
agents to perceive and react accordingly to its plan or
drives.

 These are some integration ideas made possible by
Hierarchical PNF-Networks. We are still investigating

if and how other key storytelling concepts can be used
with this framework.

6. Conclusions and Future Work

With this paper we presented the Hierarchical PNF-
Networks and its template-based definition language,
two extensions over the original PNF-Network
framework, a fine-grained representation for temporal
relations between intervals that can be used to describe
high level events such as complex human action. The
two extensions made possible the use of PNF-
Networks to represent large sets of interdependent
events such as interactive. The XML schema used to
describe the networks facilitates the description of a
library of events and actions to be used by a
storytelling system.

We are currently researching more extensions to
Hierarchical PNF-Networks. For instance, we are
trying to integrate planning algorithms to create and
modify PNF-based stories in real-time. It is easy to
adapt a current planning algorithm to only generate a
PNF-Network that is solely composed of precedence
relations such as Meet, but that approach would not
make any use of the richer representation that these
networks can bring to interactive storytelling models.
Our goal is to create a system that can be used in multi-
user scenarios such as emergent stories in massive
games or user-influenced plot-based narratives for
digital-TV.

References

ALLEN, J. F., 1983. Maintaining Knowledge about Temporal

Intervals. 1983. Communications of the ACM, 26 (26),
Pages 832-843.

ALLEN, J. F. AND FERGUSON, G., 1994. Actions and Events in

Interval Temporal Logic. 1994. Journal of Logic and
Computation, vol. 4 (5), Pages 531-579.

BAE, B., AND YOUNG, R. M., 2008. A Use of Flashback and

Foreshadowing for Surprise Arousal in Narrative Using a
Plan-Based Approach. In: Proceedings of the 1st Joint
International Conference on Interactive Digital
Storytelling: Interactive Storytelling, 2008 Erfurt,
Germany. Pages 156-167.

BARROS, L. M. AND MUSSE, S. R., 2007. Planning algorithms

for interactive storytelling. 2007. Computers in
Entertainment (CIE), vol. 5 (1), Article No. 4.

BARROS, L. M. AND MUSSE, S. R., 2005. Introducing

narrative principles into planning-based interactive
storytelling. In: Proceedings of the 2005 ACM SIGCHI
International Conference on Advances in computer
entertainment technology, 2005 Valencia, Spain. Pages
35-42.

CAVAZZA, M. AND CHARLES, F. 2005. Dialogue generation in

character-based interactive storytelling. In: Proceedings
of the AAAI First Annual Artificial Intelligence and

Interactive Digital Entertainment Conference, 2005
Marina del Rey, CA, USA

CHARLES, F., IBÁÑEZ, M. L., MEAD, S. J., BISQUERRA, A. F.

AND CAVAZZA, M. 2003. Planning formalisms and
authoring in interactive storytelling. In: Proceedings of
TIDSE'03: Technologies for Interactive Digital
Storytelling and Entertainment, 2003 S. Göbel et al. eds.
Fraunhofer IRB Verlag, Darmstadt, Germany.

CIARLINI, A. E. M., POZZER, C. T., FURTADO, A. L. AND

FEIJÓ, B. 2005. A logic-based tool for interactive
generation and dramatization of stories. In: Proceedings
of the 2005 ACM SIGCHI International Conference on
Advances in computer entertainment technology, 2005
Valencia, Spain. Pages 133-140

CRAWFORD, C. 2004. Chris Crawford on Interactive

Storytelling. New Riders Games, Indianapolis, IN.

JAHALA, A., RAWLS, C. AND YOUNG, R. M. 2008. Longboard:

A Sketch Based Intelligent Storyboarding Tool for
Creating Machinima. In: Proceedings of the 2008
Florida Artificial Intelligence Research Society
Conference, 2008 Florida, USA.

MEYER, T. A., 2002. Development of Computer-Actors

within the Interval Script Paradigm. Unpublished
Dissertation, Massey University. Available
from:http://www.massey.ac.nz/~tameyer/research/compu
tertheatre/docs/thesis.pdf [Accessed 10 June 2009].

PINHANEZ, C. S., 1999. Representation and Recgnition of

Action in Interactive Spaces. PhD thesis, Massachusetts
Institute of Technology.

PINHANEZ, C. S., MASE, K. AND BOBICK, A., 1998. Human

action detection using PNF propagation of temporal
constraints. In: Proceedings of the 1998 IEEE Computer
Society Conference in Computer Vision and Pattern
Recognition, June 23-25 1998 Santa Barbara, CA, USA.
Pages 898-904.

PINHANEZ, C. S., MASE, K. AND BOBICK, A., 1997. Interval

scripts: a design paradigm for story-based interactive
systems. In: Proceedings of the SIGCHI conference on
Human factors in computing systems, 1997 Atlanta,
Georgia, United States. Pages 287-294

POZZER, C. T., 2005. Um Sistema para Geração, Interação e

Visualização 3D de Histórias para TV Interativa. PhD
thesis, Pontifícia Universidade Católica do Rio de
Janeiro.

RIEDL, M. O., ROWE, J. P. AND ELSON, D. K., 2008. Towards

Intelligent Support of Authoring Machinima Media
Content: Story and Visualization. In: Proceedings of the
2nd international conference on intelligent technologies
for interactive entertainment, 2008 Cancun, Mexico.

RIEDL, M. O. AND YOUNG, R. M., 2003. Character-focused

narrative generation for execution in virtual worlds. In:
Proceedings of ICVS 2003: International Conference on
Virtual Storytelling, 2003 Toulouse, France. Pages 47-56

UNITY TECHNOLOGIES. 2009. Unity3D Game Engine

[software, game development tool] Available from:
www.unity3d.com [Accessed 01 January 2009].

