Tema |
Referência
|
Dados clínicos
|
- Agniel, Denis, Isaac Kohane, and Griffin Weber. "Biases in Electronic Health Record Data Due to Processes Within the Healthcare System: Retrospective Observational Study." BMJ, 2018.
- Eapen, Bell Raj, et al. "FHIRForm: An Open-Source Framework for the Management of Electronic Forms in Healthcare." ITCH. 2019.
- Ulriksen, Gro-Hilde, Rune Pedersen, and Gunnar Ellingsen. "Infrastructuring in healthcare through the openEHR architecture." Computer Supported Cooperative Work (CSCW) 26.1-2 (2017): 33-69.
|
Estratificação de riscos
|
- Razavian, Narges, Saul Blecker, et al. "Population-Level Prediction of Type 2 Diabetes From Claims Data and Analysis of Risk Factors." Big Data 3, no. 4 (2015): 277–87.
- Pozen, Michael, Ralph D'Agostino, et al. "A Predictive Instrument to Improve Coronary-Care-Unit Admission Practices in Acute Ischemic Heart Disease." New England Journal of Medicine 310, no. 20 (1984): 1273–78.
- Futoma, Joseph, Sanjay Hariharan, et al. "An Improved Multi-Output Gaussian Process RNN With Real-Time Validation for Early Sepsis Detection." arXiv preprint arXiv:1708.05894 (2017).
- Caruana, Rich, Yin Lou, et al. "Intelligible Models for HealthCare." Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 15, 2015.
- Rodríguez, G. (2007). "Chapter 7: Survival Models." In Lecture Notes on Generalized Linear Models.
|
Séries temporais
|
- Quinn, J.A., C.K.I. Williams, and N. Mcintosh. "Factorial Switching Linear Dynamical Systems Applied to Physiological Condition Monitoring." IEEE Transactions on Pattern Analysis and Machine Intelligence 31, no. 9 (2009): 1537–51.
- Hannun, Awni, Pranav Rajpurkar, et al. "Cardiologist-Level Arrhythmia Detection and Classification in Ambulatory Electrocardiograms Using a Deep Neural Network." Nature Medicine 25, no. 3 (2019): 65–69.
|
Processamento de Linguagem Natural (PLN)
|
- Leaman, Robert, Ritu Khare, and Zhiyong Lu. "Challenges in Clinical Natural Language Processing for Automated Disorder Normalization." Journal of Biomedical Informatics 57 (2015): 28–37.
|
Diagnóstico Diferencial
|
- Rotmensch, Maya, Yoni Halpern, et al. "Learning a Health Knowledge Graph from Electronic Medical Records." Scientific Reports 7, no. 1 (2017): 5994.
|
Inferência Causal
|
- Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC, forthcoming. Chapter 1. 2019.
|
Aprendizado por Reforço
|
- Komorowski, Matthieu, Leo Celi, et al. "The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care." Nature Medicine 24, no. 11 (2018): 1716.
|
Progressão de Doenças
|
- Schulam, Peter, and Suchi Saria. "Integrative Analysis Using Coupled Latent Variable Models for Individualizing Prognoses." The Journal of Machine Learning Research 17, no. 232 (2016): 1–35.
- Young, Alexandra, Razvan Marinescu, et al. "Uncovering the Heterogeneity and Temporal Complexity of Neurodegenerative Diseases with Subtype and Stage Inference." Nature Communications 9, no. 1 (2018): 4273.
|
Automatização de workflows clínicos
|
- Zhang, Yiye, Rema Padman, and Nirav Patel. "Paving the COWpath: Learning and Visualizing Clinical Pathways from Electronic Health Record Data." Journal of Biomedical Informatics 58 (2015): 186–97.
- Gawande, Atul. "A Life-Saving Checklist." The New Yorker. The New Yorker, December 3, 2007
|
Medicina de Precisão
|
- Udler, Miriam S., Jaegil Kim, et al. "Type 2 Diabetes Genetic Loci Informed by Multi-Trait Associations Point to Disease Mechanisms and Subtypes: A Soft Clustering Analysis." PLoS Medicine 15, no. 9 (2018): e1002654.
|
Redes Bayesianas
|
- Kyrimi, Evangelia, et al. "A comprehensive scoping review of bayesian networks in healthcare: Past, present and future." arXiv preprint arXiv:2002.08627 (2020).
- Velikova, Marina, et al. "Exploiting causal functional relationships in Bayesian network modelling for personalised healthcare." International Journal of Approximate Reasoning 55.1 (2014): 59-73.
- Seixas, Flávio Luiz, et al. "A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer׳ s disease and mild cognitive impairment." Computers in biology and medicine 51 (2014): 140-158.
|