Aprendizado de máquina na saúde - 2021.1

De Flavio Luiz Seixas
Ir para navegação Ir para pesquisar

Logística

Objetivo

Analisar e avaliar problemas, criar soluções e aplicações envolvendo o aprendizado de máquina nas áreas de saúde. Dentre os tópicos na disciplina, incluem:

  • Desafios da heterogeneidade dos dados clínicos;
  • Aplicações do aprendizado de máquina para:
    • Estratificação de risco;
    • Auxílio aos processos de triagem e raciocínio diagnóstico;
    • Modelagem da progressão da doença (prognóstico);
    • Avaliação do tratamento;
    • Auxílio aos processos de reabilitação do paciente.

Tópicos abordados

  • Redes Bayesianas;
  • Causalidade;
  • Séries temporais e sinais fisiológicos;
  • Imagens médicas;
  • Processamento em linguagem natural (PNL);
  • Aprendizado profundo;
  • Interpretabilidade;
  • Interoperabilidade;
  • Automatização de diretrizes clínicas;
  • Aprendizado por transferência;
  • Fairness;
  • Ética.

Avaliação

  • Análise e apresentação de artigos. Peso: 4.
  • Apresentação e documentação do Projeto de Aplicação. Peso: 4.
  • Outros. Peso: 2.

Implementação

Cronograma

Data Conteúdo
17/mar Apresentação da disciplina
18/mar Contexto da inteligência artificial e aprendizado de máquina na saúde
24/mar Características da área clínica - Parte 1
25/mar Características da área clínica - Parte 2
31/mar Mergulhando nos dados da saúde
01/abr Implementação: correção da Atividade 1
07/abr Palestra:
Aprendizado de Máquina aplicado na cardiologia - Prof. Érito Marques
08/abr Implementação: correção da atividade 2
Estratificação de riscos - Parte 1
14/abr Preparação de artigos: apresentação do Artigo 1
15/abr Estratificação de riscos - Parte 2
21/abr Feriado: Tiradentes
22/abr Modelo de sobrevivência
28/abr Projeto de aplicação: apresentação do problema e indicação das técnicas de aprendizado de máquina
29/abr Implementação: correção da Atividade 3
05/mai Revisão: modelos de regressão linear generalizados
06/mai Palestra:
Modelagem causal - Profa. Valéria Baltar
12/mai Inferência causal - Parte 1
13/mai Palestra:
Processamento de sinais fisiológicos - Prof. Pedro Paulo (Instituto Biomédico)
19/mai Inferência causal - Parte 2
20/mai Palestra:
Análise de imagens médicas - José Ramon
26/mai Inferência causal - Parte 3
27/mai Diagnóstico diferencial
02/jun Palestra:
Sistemas de apoio à decisão para o diagnóstico de Demência, Doença de Alzheimer e Transtorno Cognitivo Leve - Prof. Flávio Seixas
03/jun Feriado: Corpus Christi
09/jun Preparação de artigos: apresentação do Artigo 2
10/jun Palestra:
Empreendedorismo na saúde - Pedro Gemal
16/jun Aplicações do aprendizado por reforço na saúde
17/jun Correção das atividades 4 e 5
23/jun Apresentação dos projetos de aplicação - Parte 1
24/jun Apresentação dos projetos de aplicação - Parte 2

Lista de artigos

Tema Referência
Dados clínicos
  • Agniel, Denis, Isaac Kohane, and Griffin Weber. "Biases in Electronic Health Record Data Due to Processes Within the Healthcare System: Retrospective Observational Study." BMJ, 2018.
  • Eapen, Bell Raj, et al. "FHIRForm: An Open-Source Framework for the Management of Electronic Forms in Healthcare." ITCH. 2019.
  • Ulriksen, Gro-Hilde, Rune Pedersen, and Gunnar Ellingsen. "Infrastructuring in healthcare through the openEHR architecture." Computer Supported Cooperative Work (CSCW) 26.1-2 (2017): 33-69.
Estratificação de riscos
  • Razavian, Narges, Saul Blecker, et al. "Population-Level Prediction of Type 2 Diabetes From Claims Data and Analysis of Risk Factors." Big Data 3, no. 4 (2015): 277–87.
  • Pozen, Michael, Ralph D'Agostino, et al. "A Predictive Instrument to Improve Coronary-Care-Unit Admission Practices in Acute Ischemic Heart Disease." New England Journal of Medicine 310, no. 20 (1984): 1273–78.
  • Futoma, Joseph, Sanjay Hariharan, et al. "An Improved Multi-Output Gaussian Process RNN With Real-Time Validation for Early Sepsis Detection." arXiv preprint arXiv:1708.05894 (2017).
  • Caruana, Rich, Yin Lou, et al. "Intelligible Models for HealthCare." Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 15, 2015.
  • Rodríguez, G. (2007). "Chapter 7: Survival Models." In Lecture Notes on Generalized Linear Models.
Séries temporais
  • Quinn, J.A., C.K.I. Williams, and N. Mcintosh. "Factorial Switching Linear Dynamical Systems Applied to Physiological Condition Monitoring." IEEE Transactions on Pattern Analysis and Machine Intelligence 31, no. 9 (2009): 1537–51.
  • Hannun, Awni, Pranav Rajpurkar, et al. "Cardiologist-Level Arrhythmia Detection and Classification in Ambulatory Electrocardiograms Using a Deep Neural Network." Nature Medicine 25, no. 3 (2019): 65–69.
Processamento de Linguagem Natural (PLN)
  • Leaman, Robert, Ritu Khare, and Zhiyong Lu. "Challenges in Clinical Natural Language Processing for Automated Disorder Normalization." Journal of Biomedical Informatics 57 (2015): 28–37.
Diagnóstico Diferencial
  • Rotmensch, Maya, Yoni Halpern, et al. "Learning a Health Knowledge Graph from Electronic Medical Records." Scientific Reports 7, no. 1 (2017): 5994.
Inferência Causal
  • Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC, forthcoming. Chapter 1. 2019.
Aprendizado por Reforço
  • Komorowski, Matthieu, Leo Celi, et al. "The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care." Nature Medicine 24, no. 11 (2018): 1716.
Progressão de Doenças
  • Schulam, Peter, and Suchi Saria. "Integrative Analysis Using Coupled Latent Variable Models for Individualizing Prognoses." The Journal of Machine Learning Research 17, no. 232 (2016): 1–35.
  • Young, Alexandra, Razvan Marinescu, et al. "Uncovering the Heterogeneity and Temporal Complexity of Neurodegenerative Diseases with Subtype and Stage Inference." Nature Communications 9, no. 1 (2018): 4273.
Automatização de workflows clínicos
  • Zhang, Yiye, Rema Padman, and Nirav Patel. "Paving the COWpath: Learning and Visualizing Clinical Pathways from Electronic Health Record Data." Journal of Biomedical Informatics 58 (2015): 186–97.
  • Gawande, Atul. "A Life-Saving Checklist." The New Yorker. The New Yorker, December 3, 2007
Medicina de Precisão
  • Udler, Miriam S., Jaegil Kim, et al. "Type 2 Diabetes Genetic Loci Informed by Multi-Trait Associations Point to Disease Mechanisms and Subtypes: A Soft Clustering Analysis." PLoS Medicine 15, no. 9 (2018): e1002654.
Redes Bayesianas
  • Kyrimi, Evangelia, et al. "A comprehensive scoping review of bayesian networks in healthcare: Past, present and future." arXiv preprint arXiv:2002.08627 (2020).
  • Velikova, Marina, et al. "Exploiting causal functional relationships in Bayesian network modelling for personalised healthcare." International Journal of Approximate Reasoning 55.1 (2014): 59-73.
  • Seixas, Flávio Luiz, et al. "A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer׳ s disease and mild cognitive impairment." Computers in biology and medicine 51 (2014): 140-158.

Referências

  • GEISS, Linda S. et al. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980-2012. Jama, v. 312, n. 12, p. 1218-1226, 2014.
  • WANG, Ping; LI, Yan; REDDY, Chandan K. Machine learning for survival analysis: A survey. ACM Computing Surveys (CSUR), v. 51, n. 6, p. 1-36, 2019.