
 
Abstract--This paper describes a method for modeling a
human face from a single image by using a data set
consisting of facial images and 3D-models. This allows us
to apply principal components analysis (PCA) to create a
set of related 2D and 3D eigenfaces. We then apply PCA to
the image and use the coefficients thus obtained to generate
the 3D model as a linear combination of the pertinent 3D
eigenfaces.

Index terms—eigenfaces, PCA, IBM

I. INTRODUCTION

The goal of this paper is describing a method that allows the
automatic construction of facial 3D models from single
images. Other researches have attempted to obtain facial
models from images, by using different methods. To derive a
three-dimensional model of a human face, it is possible to
use either a single image or one or more images, either taken
simultaneously from different points of view (stereo) or over
a period of time (video). Single-image techniques rely mostly
on shading information, while multiple-image techniques
tend to use corresponding points and the parameters of the
camera projection to calculate depth information. However,
most systems using a single image never use explicit 3D
information to assist the modeling.

A notable exception is described by Blanz and Vetter in [3].
Their system works by deforming an average 3D facial
model to approximate the desired face, guiding this process
by comparing the resulting rendered images –in fact, both
model and texture are synthesized at the same time. While
this system certainly works and its results are of high
quality, it requires a lot of computing power and data.
Perhaps too much data: all human faces are roughly alike -
two eyes, one nose, one mouth, all in relatively the same
position. What we propose in this paper is to apply principal
component analysis to a data set of faces to reduce the
number of faces we need to know in order to synthesize a
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face. By being able to deconstruct a 2D face, we can
reconstruct that same face, this  time in 3D space. The
following sections shall explain how this is done.

II. METHOD

The eigenface technique was proposed by Pentland in 1991
for face coding and recognition tasks and has been widely
used; some applications are described in [1,2]. While the
choice of the term eigenface may be debatable, we shall use
it in this work. Put simply, an eigenface is one of the
principal components in a given face space. The name
comes from its being the result of solving the eigenvalue
problem from a matrix built by a data set of facial images.

A. Principal Components Analysis

Principal Components Analysis is a method for expressing
the information contained in our data set in a more suitable
way from the statistical point of view. It is completely
mathematical in nature, and does not depend on a model of
the world –it just restates our data by defining a new axis
system. Each new axis is defined by having the minimum
sum of squared distances to the points in our set, while
being perpendicular to any previously defined axes. An
equivalent condition is maximizing the explained variation in
our data set by each axis. An algebraic definition follows:

Suppose that we have values for N observations of M
variables each. For convenience we shall assume our
variables have zero mean. Our first principal component is a
variable 

1U  satisfying the following conditions:
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iX  represents the i-th variable, and the 
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 are a set

of unknown constants whose sum captures the total
variance to be explained. In case of normalized variables,
this implies
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For all possible set of 
jiw ,
, evaluate 

1U  for all observations,

and find the variance of the obtained values. The one that
maximizes this variance is our first principal component. This
is equivalent to the geometric condition that the sum of
squared distances be minimum.

The second principal component, 
2U , is defined similarly

from a set of 
jw ,2
, adding the condition that 

2U  is

perpendicular to 
1U :
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We follow this procedure to find up to M principal
components (if one of our variables is a linear combination
of the others we shall find one less principal component).
One decision affects the principal components obtained:
whether all variables are considered equally important or
some are more important than others. We shall assume some
are intrinsically more important than others.

The first component explains more information than the
following components. This is true for any component and
those following it. For data reduction, we can drop one or
more of the less explaining components, effectively reducing
the dimension of our data by 1. Dropping one of our original
variables wasn´t advisable, because the information loss
would probably be too high, but being a principal
component, we know this loss is minimum and measurable,
so we can decide if our application can afford it.

B. 2D Eigenfaces

An Eigenface is just a principal component derived from a
set of face images. These images and their derived
eigenfaces both define what we call facial space. The more
representative our face base, the closer to true facial space.
Facial space is contained in image space, which is inherently
bigger.
Image space is too big and arbitrary for faces –background
is either redundant, irrelevant or distracting, and faces are
more or less equal: same number of features of roughly the
same shape located in the same relative position, and very
symmetric. The canonical base for image space simply
neglects this:

Figure 1 Canonical Base

If we take images of m rows by n columns, the dimension of
image space is nm∗ . If we take a subset of K faces, we can
provide a basis of K elements for it –each face is a trivial
linear combination of it. This trivial basis is useless for faces
outside our face base, but points to the possibility of
reducing the size of our problem. The K eigenfaces provided
by PCA not only generate our face set, but are capable of
generating other faces, provided our face set was
representative enough. One thing that should be noted is
that our eigenfaces are images of nm ∗  pixels. Each face on
face space is generated by a linear combination of our
eigenfaces. The coefficients of this combination are called
the face´s encoding.

Let E be the matrix whose K columns are our principal
components, or eigenfaces. Let x be a face on image space
and y be that same face on facial space. So to encode a face,
we use the following transformation

xEy T ∗=

where y is a vector of dimension K, while x is a vector of
dimension nm ∗ . E is a matrix of K columns and nm ∗
rows.
Since facial space is contained in image space, this is a many
to one transformation. We can attempt to reconstruct x by
doing

yPx *´=

where x´ = x plus some error. This error increases as we drop
principal components. It also increases if our original faces
are heterogeneous: differences in size, position, rotation and
background variance greatly affect PCA.

As can be seen, PCA is a kind of Auto Associative
Memory.
Following is the partial deconstruction of a face image from
outside the training set under the first four eigenfaces; the
others aren´t shown here.

Figure 2 Reconstruction using 2D Eigenfaces



C. Obtaining 3D Faces

By using PCA, we can encode a new face as the coefficients
of its linear deconstruction by the eigenfaces, provided the
face base is representative enough, and from this encoding
we can reconstruct the face as a linear combination of the
eigenfaces weighted by the coefficients. Let us concentrate
on the second part of this process –to reconstruct a face
given its encoding. We can go as far as to generate a more
or less arbitrary encoding to see what kind of face we
obtain!
Although this is mostly a game, there is an interesting idea
behind this: to create a face using an encoding not obtained
from a previous deconstruction. Going a little bit further, we
can ask ourselves if it is possible to create a 3D face using
3D eigenfaces and some encoding. It certainly is, if we have
proper 3D eigenfaces.

Neglecting the fact that so far we don´t have any 3D
eigenfaces, the next question is: If we apply an encoding
derived from a 2D face to a set of 3D eigenfaces, do we
obtain the model of that person´s face? Not necessarily, as
we can easily convince ourselves. Even if we train our
system with faces taken from the same people, there is no
way to guarantee coefficients are interchangeable. We face
the problem of correspondence between subsets (not even
subspaces in the mathematical sense) of different dimension
spaces. Worse, PCA creates its own model of the world –the
researcher can do little more than choose an “adequate”
base and hope PCA gives the “natural/right” answer.

Not wanting to make this more complicated than it needs to
be, we take a different approach -if we want interchangeable
coefficients, why not build our 3D eigenfaces to comply?
If we have corresponding faces in 2D and 3D and a set of 2D
eigenfaces, we can easily construct 3D eigenfaces by
assuming interchangeable encoding, just by solving a
determined linear system.

D. Constructing 3D Eigenfaces

Our face base consists of an equal number of 2D and 3D
faces, each pair belonging to the same person. We initialize
our system by first obtaining 2D eigenfaces from the 2D
faces in the normal way. Then we deconstruct each 2D face
to obtain their encoding. By construction, the following
holds:

2D face = 2D encoding * 2D eigenfaces

As we said earlier, a 2D face is a vector of nm ∗  dimension,
its encoding has K elements, and each of our K eigenfaces
is an  image (somewhat resembling a face) of nm ∗  pixels.
Compare this to our goal:

3D face = 2D encoding * 3D eigenfaces

We already know the corresponding 3D faces: by solving
this equation for the eigenfaces we provide the
interchangeable encoding property. Since the number of 2D
faces and 3D faces is the same, and no data reduction was
made (our encoding has as many coefficients as faces of
each dimension in our base) this is just a determined linear
system of equations which has a theoretical exact and
unique solution, one that can be easily approximated
numerically.
Clearly our system has the interchangeable encoding
property, at least when going from 2D to 3D in our training
set. If our training set is representative of 2D facial space
(perhaps restricted to certain ethnic or age group), we shall
have no problems in deconstructing new 2D faces within
this group. The representativeness of the 3D training set
and the behavior of the 3D eigenfaces on novel encodings
isn´t so clear, so we shall test it in the following section.

The following diagrams illustrate the initialization and use of
our system:

Figure 3 Obtaining 3D eigenfaces

Figure 4. Reconstructing a 3D Face

III. TESTS



For testing our system, we shall use 14 meshes and their
corresponding images, normalized in terms of scale and
position.1

The people in this base does not represent an specific sex,
ethnic or age group, so it will be a hard test. Each 3D face
consists of 360 vertices forming 660 triangular faces while
our 2D faces are 240x400 grayscale images.

Some sample scaled images of our face base follow:

Figure 5 Four faces in the 3D Face Base

A. 3D Model Generation Test

To evaluate the resulting 3D mesh, we measured the
Euclidean Distance between corresponding points in the
generated and “true” mesh. Each face is contained within a
cube of  approximately 520x849x510 units.
The errors are very small and don´t affect the overall result:
the maximum was 3.029146 units, the minimum 0.000015 and
the average distance between corresponding points was
1.169825. Since the values of our coordinates go as high as
800 units, the results are very good, since the test face
comes from outside the training set.
The face on the left is the original, the one on the right is the
generated by our system.

      
Figure 6 3D Reconstruction Results

IV. CONCLUSIONS AND FUTURE WORK
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Results are encouraging, but our work is far from over.
Currently we are processing a 2D/3D face base to be
suitable for use in our system . This face base consists of
about 100 hundred people, and it will allow us to make a
better demonstration of the technique, to explore automatic
texture placement and more elaborate lighting conditions,
which so far are assumed to be quite simple, as well as to
make detection on a given image, instead of having the user
manually editing it. 2D eigenface systems are resistant to
small changes in rotation and lighting, and we expect these
aspects to apply to our system as well. Another estimate we
want to verify is the number of required faces in the face
base: 2D systems can perform well with just a few hundreds.
Other analysis are possible, like parts-based approaches, or
the use of eigenfeatures, that is, the local application of
PCA. A more natural parameterization based on physical
characteristics of the face instead of unnatural principal
components would be desirable. A possibility yet to be
explored is the use of depth maps instead of meshes, to
facilitate the use of existing models which otherwise would
need semiautomatic processing to be used in our system,
and the effects of dimensionality reduction in modeling.
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