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Abstract

In this paper we address power conservation for clusters of worksta-
tions or PCs. Our approach is to develop systems that dynamically
turn cluster nodes on – to be able to handle the load imposed on the
system efficiently – and off – to save power under lighter load. The
key component of our systems is an algorithm that makes load bal-
ancing and unbalancing decisions by considering both the total load
imposed on the cluster and the power and performance implications
of turning nodes off. The algorithm is implemented in two differ-
ent ways: (1) at the application level for a cluster-based, locality-
conscious network server; and (2) at the operating system level for
an operating system for clustered cycle servers. Our experimental
results are very favorable, showing that our systems conserve both
power and energy in comparison to traditional systems.

1 Introduction

Power and energy consumption have always been critical concerns
for laptop and hand-held devices, as these devices generally run on
batteries and are not connected to the electrical power grid. Over the
years, a large amount of research has been devoted to low-power and
low-energy design and conservation (e.g. [17, 33, 22, 11, 13]).

In contrast with this line of research, in this paper we focus on
power and energy conservation for clusters of workstations or PCs,
such as those that support a large number of research and teaching
organizations and most Internet companies. Our approach to con-
serving power and energy is to develop systems that can leverage the
widespread replication of resources in clusters. In particular, we de-
velop systems that can dynamically turn cluster nodes on – to be able
to handle the load imposed on the system efficiently – and off – to
save power under lighter load.

This research is inspired by previous work in cluster-wide load
balancing (e.g. [2, 15, 24, 26, 9, 4]). When performing load bal-
ancing, the goal is to evenly spread the work over the available clus-
ter resources in such a way that idle nodes can be used and perfor-
mance can be promoted. The inverse of the load balancing opera-
tion concentrates work in fewer nodes, idling other nodes that can be
turned off. This load concentration or unbalancing operation saves
the power consumed by the powered-down nodes, but can degrade
the performance of the remaining nodes and potentially increase their
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power consumption. Thus, load concentration involves an interest-
ing performance vs. power tradeoff.

Our systems exploit load concentration to conserve power. Their
key component is an algorithm that makes load balancing and con-
centration decisions by considering both the total load imposed on
the cluster and the power and performance of different cluster con-
figurations. In more detail, the algorithm periodically considers
whether nodes should be added to or removed from the cluster, based
on the expected performance and power consumption that would re-
sult, and decides how the existing load should be re-distributed in
case of a configuration change. To be able to understand the impli-
cations of our algorithm, we implemented it for two popular types
of cluster-based systems: a locality-conscious network server and a
load balancing distributed operating system (OS) for clustered cycle
servers. The implementations were performed in two ways: (1) at
the application level for the network server; and (2) at the OS level
for the cycle server. In a previous technical report [27], we also con-
sidered implementations that rely on application/OS interaction.

Even though we target power conservation primarily, our exper-
imental results show that our secondary goal of saving energy is
achieved as well. Our results show that the modified network server
can reduce the total power consumption by as much as 86% and the
energy consumptionby 43% in comparison to the original server run-
ning on a static cluster configuration with 8 nodes. The modified OS
can reduce power consumption by as much as 86% for a synthetic
workload, while attempting to keep performance degradation below
20%, again in comparison to the original system on a static 8-node
cluster. The energy savings it accrues in this case is 32%.

The remainder of this paper is organized as follows. The next sec-
tion discussesour motivation. Section 3 describes our cluster config-
uration and load distribution algorithm and its different implementa-
tions. Section 4 describes our experimental set-up and the method-
ology used. Section 5 discusses our experimental results. Section 6
discussesthe related work. Finally, section 7 concludes the paper and
mentions our future work.

2 Motivation

Our motivation in pursuing this research is that large clusters con-
sume significant amounts of power and energy. Power consump-
tion is an important concern for clusters as it directly influences
their cooling requirements. In fact, a medium to large number of
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high-performance nodes racked closely together in the same room,
as is usually the case with clusters, requires a significant invest-
ment in cooling, both in terms of sophisticated racks and heavy-
duty air conditioning systems. Besides cooling under normal opera-
tion, power consumption also influences the required investments in
backup cooling and backup power-generation equipment for clusters
that can never be unavailable, such as those of companies that pro-
vide services on the Internet. The recent trend towards ultra-dense
clusters [29] will only worsen the cooling problem.

Taking a broader perspective, the power requirements of clus-
ters have become a major issue for several states, such as California
and New York. Even if these states make a tremendous investment
in new power plants in the next several years, power conservation
should still be an important goal in that most power-generation tech-
nologies (such as nuclear and coal-based generation) have a negative
impact on the environment.

Energy consumption is also an important concern for clusters in
that both the computational and the air conditioning infrastructures
consume energy. This energy consumption is reflected in the elec-
tricity bill, which can be significant for a large and/or dense cluster
in a heavily air-conditioned room. Research and teaching organiza-
tions, in particular, may find it difficult to cover high energy costs.

The bottom line is that to conserve the power and energy con-
sumed by clusters eases deployment and installation, protects the en-
vironment, and can potentially save a lot of money. In fact, even
when it is not possible to reduce the maximum power requirements of
a cluster (i.e. it is not possible to cut down the one-time cost of cool-
ing and backup power-generation systems), reducing the common-
case power and energy consumption reduces the operational cost of
these systems and the electricity cost.

3 The Algorithm

3.1 Overview

Power vs. performance. We consider the tradeoff between power
and two types of performance, namely throughput and execution
time performance. Throughput is the key issue for systems such as
modern network servers, in which the goal is to service as many re-
quests as possible; the latency of each request at the server is usually
a small fraction of the overall latency of wide-area client-server com-
munication. Execution time is key for systems such as cycle servers,
as users may object to significant delays in the executionof their jobs.

The cluster configuration and load distribution algorithm we pro-
pose decides whether to add (turn on) or remove (turn off) nodes, ac-
cording to the expected performance and power implications of the
decision. Decisions are made dynamically for each cluster configu-
ration and currently offered load.

For simplicity, the algorithm assumes that the cluster is comprised
of homogeneousmachines. Furthermore, the algorithm assumesthat
the removal of a node does not cripple the file system. This is a valid
assumption, since: (1) in certain environments it is possible to repli-
cate files at all nodes; and (2) when this is not the case, the file servers
can transparently be run on machines that do not strictly belong to the
cluster or that are not subject to the algorithm.

Addition/removal decision. To make node addition or removal
decisions, the algorithm requires the ability to predict the perfor-

mance and the power consumption of different cluster configura-
tions. Exact power consumption predictions are not straightforward.
The problem is that it is difficult to predict the power to be consumed
by a node after it receives some arbitrary load. Conversely, it is dif-
ficult to predict the power to be consumed by a node after some of its
load is moved elsewhere.

Nevertheless, exact power consumption predictions are not really
necessary for the algorithm to achieve its main goal, namely to con-
serve power. The reason for this is that each of our cluster nodes
consumes approximately 70 Watts when idle and approximately 94
Watts when all resources, i.e. CPU, caches, memory, network inter-
face, and disk, are stretched to the maximum. These measurements
mean that: (a) there is a relatively small difference in power con-
sumption between an idle node and a fully utilized node; and (b) the
penalty for keeping a node powered on is high, even if it is idle. Thus,
we find in practice that turning a node off always saves power, even
if its load has to be moved to one or more other nodes. Thus, our
algorithm always decreases the number of nodes, provided that the
expected performance of applications is acceptable.

Performance predictions can also be difficult to make. We predict
performance by keeping track of the demand for (not the utilization
of) resources on all cluster nodes. With this information, our algo-
rithm can estimate the performance degradation that can be imposed
on a node when new load is sent to it. There is a caveat here, though.
A degradation prediction is made based on past resource demand his-
tory of the load to be moved on its current node, so the prediction
does not consider demand changes due to unexpected future behav-
ior or due to migrations. In particular, the initial settle-down period
during which the caches are warmed up with the new load is disre-
garded; we are more interested in steady-state performance.

A throughput prediction can easily be made based on the resource
demand information. To see how this works, let us consider the
throughput of a cluster-based network server. Suppose a scenario
with 3 cluster nodes, each of which with demands for disk of 80%,
30%, and 20% of their nominal bandwidth. By adding up all of these
disk demands (and disregarding other resources to simplify the ex-
ample), we find that the server could run with no throughput degrada-
tion on 2 nodes (130< 200) and with a 30% throughput degradation
on 1 node (130 - 100 = 30). Our algorithm should decide to remove
one at least; two nodes if a 30% degradation is acceptable.

Execution time predictions are much more complex, as they de-
pend heavily on the specific characteristics of the applications and
on the amount and timing of the demand imposed on the different
resources. Therefore, we have to settle for optimistic execution time
predictions based on the demand for resources. The predictions are
optimistic because they assume that the use of resources is fully
pipelined and overlapped. To see how this works, let us consider
the execution time performance of applications running on a cluster
of cycle servers. Suppose a scenario with 2 cluster nodes with de-
mands for their CPUs of 80% and 40%. Our optimistic prediction
strategy says that these applications could run with a 20% execution
time degradation on 1 node (120 - 100 = 20). Our algorithm should
decide to remove one of the nodes, if a 20% degradation is accept-
able. (In reality, 20% is a lower bound on the degradation.)

The acceptable performance degradation can be specified by the
cluster administrator or by each application (i.e. user). Ideally,
the algorithm could also try to guarantee a maximum performance
degradation. This is clearly not possible for execution time perfor-
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Periodically do
if removal is acceptable

choose nodes (victims) with low demand to be turned off
if necessary, determine nodes to receive load of victims

and ask victims to migrate their load out
ask victims to turn themselves off

else
if addition is necessary

turn on new nodes
if necessary, determine load to be sent to added nodes and

ask nodes to share their load with added nodes

Figure 1: Pseudo-code for cluster configuration and load distribu-
tion algorithm.

mance, but is conceivable for throughput performance. However,
even in the case of throughput, such a strong guarantee cannot be
made, given that the load on the cluster may increase faster than the
system can react to such increase. Rather, we use our performance
degradation parameter to trigger actions that can reduce or eliminate
any degradation.

Load (re-)distribution decision. After an addition or removal
decision is made, the load may have to be re-distributed. If the deci-
sion is to add one or more nodes, the algorithm must determine what
part of the current load should be sent to the added nodes. Obviously,
the load to be migrated should come from nodes undergoing exces-
sive demand for resources.

If the decision is to remove one or more nodes, the algorithm must
determine which nodes should be removed and, if necessary, where
to send the load currently assigned to the soon-to-be-removed nodes.
Obviously, the algorithm should give preference to lightly loaded
victim nodes and destination nodes that would not undergo excessive
demand for resources after receiving the new load.

The details of how to select victim nodes and of how to migrate
load around the cluster depend heavily on the system for which the
algorithm is implemented, so we leave the description of these deci-
sions for the next subsection.

General form. In its most general form, our algorithm can be de-
scribed as in figure 1. Node removal is acceptable if the expectedper-
formance degradation to any application on any node is smaller than
a certain threshold, degrad, and the time since the last reconfigu-
ration is larger than another threshold, elapse. Node addition is
necessary if the current degradation is at least degrad and the time
since the last reconfiguration is larger than elapse.

3.2 Implementations

Our algorithm has been implemented with minor variations in two
different environments: (1) at the application level for a locality-
conscious network server that runs alone on a cluster; and (2) at the
system level for an OS for clustered cycle servers.

In both implementations, the algorithm is run by a master node
(node 0), which is a regular node except that it receives periodic re-
source demand messagesfrom all other nodes and it cannot be turned
off. We chose centralized implementations of the algorithm due to
their simplicity and the fact that load messagescan be infrequent. For
fault tolerance, a distributed implementation would be best, but that
is beyond the scope of this paper.

Given that reconfigurationoperations are time-consuming, the im-
plementations of our algorithm are conservative and only remove or
add a single node at a time. More aggressive implementations can be
produced by simply changing a runtime parameter.

Power-aware cluster-based network server. We modified
PRESS [5], a cluster-based, event-driven WWW server to imple-
ment our algorithm completely at the application level. The server
is based on the observation that serving a request from any memory
cache, even a remote cache, is substantially more efficient than serv-
ing it from a disk, even a local disk. Essentially, the server distributes
HTTP requests across nodes based on cache locality and load balanc-
ing considerations, so that files are unlikely to be read from disk if
there is a cached copy somewhere in the cluster. Since the cacheable
files are static, each node stores a copy of all files on its local disk.

We implemented the cluster configuration and load distribution al-
gorithm in the server making all nodes periodically inform the mas-
ter node about their CPU, disk, and network interface demands. The
CPU demand is computed by reading information from the /proc
directory, whereas network and disk demands are computed based
on internal server information. To smooth out short bursts of activity,
each of these demandsis exponentially amortized over time using the
following formula: α×old demand+(1−α)×current demand.
For our experiments,α = 0.8 and the interval between demand com-
putations is 10 seconds. In case of the server, we are interested in
throughput performance.

Note that at the application level it is impossible to determine
the demand for network interface (due to buffering in the kernel)
and CPU (due to the fact that the server is single-process) resources,
so our server cannot deal with a throughput degradation (degrad)
greater than 0%. We experiment with two values for elapse: 200
and 300 seconds.

With information from all nodes, the master runs the cluster con-
figuration and load distribution algorithm described in the previous
section. If a removal decision is made, the master determines the
maximum demand for any resource at each node and picks the node
with the lowest of the maximum demands as the victim. For the
WWW server, it is not necessary to migrate load from a node to be
excluded from the cluster. The load can be naturally redistributed
among the remaining nodes, by the server’s own HTTP request dis-
tribution algorithm and/or a load balancing front-end. Similarly, the
addition of a new node to the cluster does not require migrating any
load from other nodes to it. A node addition is deemed necessary if
any resource of any node is more highly demanded than a threshold,
90% in our experiments. Setting the threshold at 90% rather than at
100% provides some slack to compensate for the time it takes for a
node to be rebooted, approximately 100 seconds.

Power-aware OS for clusters. We modified Nomad [26], a
Linux-based distributed OS for clusters of uni and/or multiproces-
sor cycle servers. For the purposes of this paper, the most important
characteristics of the OS are that (a) it has a shared file system; (b) it
starts each application on the most lightly loaded node of the cluster
at the moment; and (c) it performs dynamic checkpointing and mi-
gration of whole applications (with all its processesand state, includ-
ing open file descriptors, static libraries, data, stack, registers and the
like) between nodes to balance load. Resource demand is computed
for each node in the OS, by checking the resource queues every sec-
ond. Whenever the average CPU demand, the memory consumption,
or the I/O demand by a node remains higher than a threshold for 10
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seconds, the OS considers the node to be undergoing excessive de-
mand and attempts to migrate some of its load out to a more lightly-
loaded node with respect to the heavily demanded resource.

To avoid excessivemigration activity, the migration of an applica-
tion can only happen if a few conditions are verified. First, an appli-
cation can only be migrated if it has already executed at least as long
as the estimated time to migrate a process of its size. Second, a node
that has just migrated an application elsewhere will not migrate an-
other one until a period of stabilization, currently set to 80 seconds,
has elapsed. Third, no incoming migration will be acceptedby a node
that has been either the source or the destination of a migration during
the stabilization period. Finally, the OS was designed for clustered
cycle servers, i.e. time-shared execution of sequential applications
on uniprocessor nodes and of parallel applications on multiproces-
sor nodes, so applications that do not conform to these restrictions
cannot be migrated by the system.

Like for the WWW server, we implemented the cluster configura-
tion and load distribution algorithm in the OS making all nodes pe-
riodically inform the master node about their CPU, memory, and I/O
demands. The CPU demand and the memory consumption are com-
puted by reading information from /proc, whereas I/O demandsare
determined by instrumenting read and write system calls and getting
swap information from /proc. To smooth out short bursts of ac-
tivity, again the demands are amortized using the same formula as
before. For our experiments, α = 0.8 and the interval between de-
mand computations is 1 second. In case of the OS implementation of
our algorithm, we are interested in execution time performance. The
degrad parameter in our experiments is 20%. We experiment with
two values for elapse: 90 and 180 seconds.

With information from all nodes, the master can run our algo-
rithm. If a removal decision is made, the master selects the nodes
with the lowest demands for each resource as candidate victims. Ob-
viously, the master never selects itself as a candidate victim. Unlike
the WWW server, in the OS case the load of the victim must be mi-
grated to other nodes, so the master selects the two nodes with the
lightest load with respect to each resource (CPU, I/O and memory)
and selects the source/destination pair that would lead to the lowest
overall demand for resources. To simplify our prototype implemen-
tation, the destination node receives all applications that are running
on the victim node. Any load imbalances are later corrected by the
OS according to its load balancing policy.

In the modified OS, a node addition is deemed necessary when the
execution time degradationis at leastdegrad and more than one ap-
plication is responsible for the excessive demand. After a new node
is turned on, the OS will start migrating applications to it, so that the
load will be balanced again. Given that adding nodes takes a signifi-
cant amount of time and that our system only adds one node at a time
to the cluster, it might take a while before the demand for resources
becomes acceptable again, after a long-lasting surge of activity.

4 Methodology

To study the performance of our algorithm and systems, we per-
formed experiments with a cluster of 8 PCs connected by a Fast Eth-
ernet switch and a Giganet switch. Each of the nodes contains an
800-MHz Pentium III processor, 512 MBytes of memory, two 7200
rpm disks (only one disk is used in our experiments), and two net-
work interfaces. Shutting a node down takes approximately 45 sec-

onds and bringing it back up takes approximately 100 seconds.

All machines are connected to a power strip that allows for re-
mote control of the outlets. Machines can be turned on and off by
sending commands to the IP address of the power strip. The total
amount of power consumed by the cluster nodes is then monitored
by a multimeter connected to the power strip. The multimeter col-
lects instantaneous power measurements 3-4 times per second and
sends these measurement to another computer, which stores them in
a log for later use. We obtain the power consumed by different clus-
ter configurations by aligning the log and our systems’ statistics. To
compress these data and smooth out the curves, our figures show only
1 power measurement per as many as 9-10 seconds.

WWW server experiments. Besides the main cluster, we use an-
other 12 Pentium-based machines to generate load for the modified
WWW server. For simplicity, we did not experiment with a front-
end device that would hide the powering down of cluster nodes from
clients. Instead, clients poll all servers every 10 seconds and can thus
detect cluster reconfigurations and adapt their behavior accordingly.
The clients send requests to the available nodes of the server in ran-
domized fashion and reproduce the accesses made to the main server
for the Computer Science Department of Rutgers University in the
first 25 days of March 2000. Requests are directed to the cluster with
a bell-shaped distribution. To shorten the length of the experiments,
we generate significant changes in offered demand in very little time.

Distributed OS experiments. The synthetic workload used for
our modified OS experiments draws applications from a number of
sources: all integer applications from the SPEC2000 benchmark, the
Berkeley MPEG movie encoder, and two I/O benchmarks, IOcall and
IOzone. IOcall is a benchmark to measure OS performance on I/O
calls, especially file read system calls. IOzone is a file system bench-
marking tool [20]; it generatesand measures the performance of a va-
riety of file operations. Applications are arbitrarily assigned to nodes
and are run in arbitrary groups. Because the cluster size varies dy-
namically according to the resource demand imposed on it, we start
with only one machine powered on (the master), which is responsible
for launching all applications in the workload. The offered demand
conforms to a bell-shaped curve. Again, to shorten the length of the
experiments, we generate significant changes in offered demand in
very little time.

Note that several parameters for our implementations of the clus-
ter configuration algorithm (section 3.2) were picked intuitively
based on the characteristics of these “accelerated” workloads. Our
future work includes experimenting with non-acceleratedworkloads,
for which we will more carefully determine implementation param-
eters and will consider adjusting some of them dynamically.

5 Experimental Results

Power-aware cluster-based network server. Figure 2 presents the
evolution of the cluster configuration and demands for each resource
as a function of time in seconds. The demand of each resource is plot-
ted as a percentage of the nominal throughput of the same resource
in one node. The figure shows that for this particular workload the
network interface is the bottleneck resource throughout the whole ex-
ecution of the experiment (1 hour and 20 minutes), followed closely
by the disk. We started the experiment with a single-node configura-
tion. As the traffic directed to the server increases, the disk and net-
work demands increase and eventually trigger the addition of a new
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Figure 2: Cluster evolution and resource demands for the WWW
server. elapse = 200 seconds.
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Figure 3: Power consumption for the WWW server under static
and dynamic cluster configurations. elapse = 200 seconds.
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Figure 4: Throughput of the WWW server under static and dy-
namic cluster configurations. elapse = 200 seconds.

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
h

ro
u

g
h

p
u

t 
(R

e
q

u
e

st
s/

se
c)

Time (seconds)

Static Configuration
Dynamic Configuration

Figure 5: Throughput of the WWW server under static and dy-
namic cluster configurations. elapse = 300 seconds.

node. The load on the server keeps increasing, triggering the addi-
tion of several other nodes. The addition of a new node occurs once
every 200 seconds (the elapse value). At about halfway through
the experiment, the load on the cluster starts to subside. The server
responds to this change in load by excluding cluster nodes, one at a
time, again respecting the elapse parameter.

Figure 3 presents the power consumption of the whole cluster for
two versions of the same experiment as a function of time. The lower
curve (labeled “Dynamic Configuration”) represents the version in
which we run the power-aware server, i.e. the cluster configuration
is dynamically adapted to respond to variations in resource demand.
The higher curve (labeled “Static Configuration”) represents a sit-
uation where we run the original server, i.e. the cluster configura-
tion is fixed at 8 nodes. As can be seen in the figure, our modified
WWW server can reduce power consumption significantly for most
of the execution of our experiment. Power savings actually reach
86% when the resource demands require only a single node. Our en-
ergy savings are also significant. Calculating the area below the two
curves, we find that the modified WWW server saves 43% in energy.
Thus, the load on the cooling infrastructure is also reduced by 43%.

Finally, it is important to make sure that throughput is not sac-
rificed excessively in favor of power and energy savings. Figure 4
shows the throughput of the server in requests serviced per second
for the two versions mentioned above as a function of time. The fig-
ure shows that throughput only suffers significantly in comparison
to the static system during the times in which nodes are being added
to or removed from the system. During these times, each node of
the server has to update its internal data structures and communica-
tion channels. A new node has to load its cache. All of these op-
erations, especially the latter, induce overheads that are responsible
for the lower throughput. Overall, the dynamic configuration ser-
vices 19% fewer requests than its static counterpart in this experi-
ment. This degradation is relatively small compared to the signif-
icant reductions in power and energy consumption obtained by the
dynamic system.

Besides reconfiguration overheads, the other factor that may cause
a significant loss in throughput is a mismatch between the value
of the elapse parameter and the rate with which the workload
changes. Comparing figures 4 and 5 we can see this clearly. Fig-
ure 5 again plots the throughput of two versions of the server, but
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Figure 6: Cluster evolution and resource demands in the power-
aware OS. elapse = 90 seconds.
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Figure 7: Power consumption for the power-aware OS under static
and dynamic cluster configurations. elapse = 90 seconds.

this time the power-aware server useselapse = 300 seconds. Even
though our power and energy savings are roughly the same as in the
previous experiment, this figure suggests that the load on the cluster
increases too fast in the beginning of our experiment for the power-
aware server to keep up. During this phase, the time it takes to add
new nodes becomes a problem and the dynamic system ends up ser-
vicing 27% fewer requests than the static system. Overall, the dy-
namic system services 23% fewer requests than the static system.

Mismatches between the rate of workload change and cluster re-
configurations can be alleviated by either changingelapse (maybe
dynamically) or allowing the addition or removal of more than one
node at a time. We believe however that in practice a value of a few
minutes for elapse and one addition/removal at a time should work
just fine, since real network server workloads are likely to change
more slowly than in our experiments.

Power-aware OS for clusters. Figure 6 presents the evolution
of the cluster configuration and demands for each resource with
elapse = 90 seconds and degrad = 20%, as a function of time.
The experiment lasted 50 minutes. Either CPU or I/O is the bottle-
neck resource during the experiment, whereas memory was never
used to its maximum. The experiment starts with a single-node con-
figuration. This node is responsible for starting all the applications in
the workload. As new applications are started, CPU and I/O demands
increase and eventually trigger the addition of a new node. When
the new node is added by the master, the OS attempts to balance the
load by migrating some applications to the new node. As the num-
ber of applications started increases, they trigger the addition of other
nodes, one at a time. The OS is able to track the demand increases
fairly well by increasing the size of the cluster. At about half way
through the experiment, the demand for CPU becomes much higher
than can be managed by an 8-node cluster. Right after this peak in de-
mand however, some applications start to finish and the demand for
resources drops quickly. The master responds to this change in load
by excluding the now idle nodes, one at a time. Again, the system
does a good job of tracking the decrease in resource demand.

Figure 7 presents the power consumption of the whole cluster for
two versions of the same experiment as a function of time. As can be
seen in the figure, our power-aware OS can reduce power consump-
tion significantly for most of the execution time of the experiment.
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Figure 8: Cluster evolution and resource demands in the power-
aware OS. elapse = 180 seconds.

Power savings actually reach 86% when the resource demands re-
quire only a single node. Energy savings are also significant. The
area below the two curves indicates that the power-aware OS saves
32% in energy for this workload.

It is interesting to note that the workload used in this experiment
finishes earlier on the static configuration (around 33 minutes) than
on the dynamic one (around 46 minutes). If we compare the en-
ergy consumed by the static configuration during the first 33 minutes
of the experiment against that of the dynamic configuration for the
whole experiment, we find that our energy savings are smaller but
still significant, 20%. (This comparison is not really fair however,
since real, i.e. static, cycle servers are never turned off). In any case,
it is clear that the load on the cooling infrastructure is reduced by at
least 20% under the dynamic system.

We now turn to the execution time of the applications. The fact
that the resource demands are frequently lower than the cluster ca-
pacity in figure 6 shows that applications experienced little degrada-
tion. The main reason is that the low value for the elapse parame-
ter (90 seconds) allowed the OS to track the rapid changes in offered
load. Figure 8 shows that a longer time between reconfigurations,
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180 seconds, would cause applications to suffer much greater per-
formance degradations. Even though performance becomes worse
in this experiment, our savings in power and energy are almost ex-
actly the same as before, 86% and 36%, respectively. Considering
that applications finish sooner on the static configuration, our energy
gains are 19%.

6 Related Work

Single-processor systems. Most of the previous work on conserva-
tion has been focused on laptop computers and embedded and hand-
held devices. Research on these devices has included optimizations
for the processor (e.g. [33, 17, 19]), for the memory (e.g. [22, 32]),
for the disk (e.g. [23, 11, 18]), and for offloading computation from
them to non-battery-operated computers (e.g. [28, 21]).

The OS has been the target of power and energy research as well
(e.g. [33, 30, 22, 3, 13]). Vahdat et al. [30] suggest aspects that
the OS should take into account when running on batteries and what
could be done to avoid using energy unnecessarily, like turning off
unnecessary portions of the memory subsystem. In a later study,
Lebeck et al. [22] further exploited the memory subsystem by di-
recting memory accesses to certain memory banks and turning off
the unused banks. In [3], Benini et al. suggest that the OS should
monitor resource usage so that shutdowns can be determined by the
system more accurately than by applications or hardware alone.

Flinn et al. [13] developed a user-level middleware to filter and
transcode data that applications fetch. Transcoding changes data
quality in order for applications to use the minimum amount of en-
ergy when processing it. Vahdat et al. [6] and De Lara et al. [10]
also concerned themselves with transcoding.

A few previous papers considered application/OS interactions in-
tended to optimize for power and energy [25, 13].

Clusters. Some of the research mentioned above can be used to
optimize each node of a cluster independently, so we can also benefit
from it. However, our research is orthogonal to these contributions in
the sense that we focus on cluster-wide power and energy conserva-
tion, i.e. conservation that considers all of the cluster resources and
the load offered to the cluster as a whole.

This paper is a shorter and slightly revised version of our previous
technical report [27]. Recently we found out that an upcoming paper
[7] also deals with power and energy research for clusters. The paper
tackles the general problem of resource allocation in hosting centers
using market-based policies. In terms of power and energy conserva-
tion, the authors evaluate a resource allocation policy for a clustered
WWW server that is similar to the cluster configuration algorithm we
study here. The paper exploits ideas from a previous paper [8].

As aforementioned, load concentration is inspired by previous
work in cluster-wide load balancing (e.g. [2, 15, 24, 12, 26, 9, 4]).
Some systems do use some form of load concentration, but only as
a remedial technique like in systems that harvest idle workstations
(e.g. [2, 24]) or as a management technique for manually excluding
a cluster node. We use load concentration as a first-class technique
for conserving power and energy in clusters.

A few other projects deal with cluster reconfiguration (e.g. [14,
1, 31, 16]). Even though these projects do not consider power and
energy issues, they lend themselves nicely to the powering down of
unused systems.

The technique that is closest in spirit to load concentration for
power and energy is offloading computation from a battery-operated
device to a remote non-battery-operated computer (e.g. [28, 21]).
However, load concentration as described here involves different
challenges and tradeoffs, mainly because the load on the cluster and
the effect of applying the technique must be determined before any
action can be taken.

7 Conclusions and Future Work

In this paper we addressed power conservation for clusters. In this
context, we proposed a simple cluster configuration and load distri-
bution algorithm and applied it under two different scenarios. Our
experiments showed that it is possible to conserve significant power
and energy in the context of clusters. Based on our experimental re-
sults, we conclude that our algorithm and systems should be useful
for organizations and companies that rely on large clusters of servers.

This paper reported on preliminary work. In the near future, we
plan to improve and extend our work in several ways. First, we will
extend our algorithm and implementations to transition multiple de-
vices between multiple sleep states, rather than just turning entire
nodes on and off. This will give us finer control of power and perfor-
mance. Second, we will extend our algorithm and implementations
to consider load migration and state transition costs (in terms of both
power and performance) explicitly. By considering these costs, we
expect to be able to predict the effect of algorithm decisions more
accurately, as well as increase our ability to conserve power without
degrading performance. Third, we will extend our algorithm and im-
plementations to explicitly consider energy as well as power trade-
offs. Fourth, we will investigate a more detailed model of the power
and energy consumption as a function of the cluster configuration
and the offered load. Finally, we plan to experiment with real, non-
accelerated workloads.
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