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Data Mining

Concept

Automatic extraction of knowledge or patterns that are interesting (novel,
useful, implicit, etc.) from large volumes of data.

Tasks

Data engineering

Characterization

Prediction
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Data Mining Models

Concept

A model aims to represent the nature or reality from a specific perspective. A
model is an artificial construction where all extraneous details have been
removed or abstracted, while keeping the key features necessary for analysis
and understanding.

Meira Jr. (UFMG) Four Paradigms in Data Mining Preamble 6 / 283



Data Mining Models
Frequent Patterns

Task

Among all possible sets of entities, which ones are the most frequent? Or
better, determine the sets of items that co-occur in a database more frequently
than a given threshold.

Application Scenario

Market-basket problem: Given that a customer purchased items in set A, what
are the most likely items to be purchased in the future?
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Data Mining Models
Clustering

Task

Given a similarity criterion, what is the entity partition that groups together the
most similar entities?

Application Scenario

Customer segmentation: Partition a customer base into groups of similar
customers, supporting different policies and strategies for each group.
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Data Mining Models
Classification

Task

Given some knowledge about a domain, including classes or categories of
entities, and a sample whose class is unknown, predict the class of the latter
based on the existing knowledge.

Application Scenario

Credit scoring: A bank needs to decide whether it will loan money to a given
person. It may use past experience with other persons who present a similar
profile to decide whether or not it is worth giving the loan.
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Data Mining

Paradigms

Combinatorial

Probabilistic

Algebraic

Graph-based
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Data Mining
Combinatorial

Domain

Models partition (or select) entities based on their attributes and their
combinations. Search space is discrete and finite, although potentially very
large.

Task

Determine the best model according to a quality metric.

Strategies

Pruning exhaustive search

Heuristic approximation
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Data Matrix

Data can often be represented or abstracted as an n×d data matrix, with n
rows and d columns, given as

D=




X1 X2 · · · Xd

x1 x11 x12 · · · x1d

x2 x21 x22 · · · x2d

...
...

...
. . .

...

xn xn1 xn2 · · · xnd




Rows: Also called instances, examples, records, transactions, objects,
points, feature-vectors, etc. Given as a d-tuple

xi = (xi1,xi2, . . . ,xid)

Columns: Also called attributes, properties, features, dimensions, variables,
fields, etc. Given as an n-tuple

Xj = (x1j,x2j, . . . ,xnj)
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Iris Dataset Extract




Sepal Sepal Petal Petal
Class

length width length width
X1 X2 X3 X4 X5

x1 5.9 3.0 4.2 1.5 Iris-versicolor
x2 6.9 3.1 4.9 1.5 Iris-versicolor
x3 6.6 2.9 4.6 1.3 Iris-versicolor
x4 4.6 3.2 1.4 0.2 Iris-setosa
x5 6.0 2.2 4.0 1.0 Iris-versicolor
x6 4.7 3.2 1.3 0.2 Iris-setosa
x7 6.5 3.0 5.8 2.2 Iris-virginica
x8 5.8 2.7 5.1 1.9 Iris-virginica
...

...
...

...
...

...

x149 7.7 3.8 6.7 2.2 Iris-virginica
x150 5.1 3.4 1.5 0.2 Iris-setosa



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Attributes

Attributes may be classified into two main types

Numeric Attributes: real-valued or integer-valued domain

Interval-scaled: only differences are meaningful
e.g., temperature
Ratio-scaled: differences and ratios are meaningful
e..g, Age

Categorical Attributes: set-valued domain composed of a set of symbols

Nominal: only equality is meaningful
e.g., domain(Sex) = { M, F}
Ordinal: both equality (are two values the same?) and inequality (is one value
less than another?) are meaningful
e.g., domain(Education) = { High School, BS, MS, PhD}
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Data Mining
Combinatorial

Frequent Itemset Mining

k-Means

DBScan

Decision trees
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Frequent Itemset Mining

In many applications one is interested in how often two or more objects of
interest co-occur, the so-called itemsets.

The prototypical application was market basket analysis, that is, to mine the sets
of items that are frequently bought together at a supermarket by analyzing the
customer shopping carts (the so-called “market baskets”).

Frequent itemset mining is a basic exploratory mining task, since the since the
basic operation is to find the co-occurrence, which gives an estimate for the
joint probability mass function.

Once we mine the frequent sets, they allow us to extract association rules

among the itemsets, where we make some statement about how likely are two
sets of items to co-occur or to conditionally occur.
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Frequent Itemsets: Terminology

Itemsets: Let I = {x1,x2, . . . ,xm} be a set of elements called items. A set X⊆ I is
called an itemset. An itemset of cardinality (or size) k is called a k-itemset.
Further, we denote by I(k) the set of all k-itemsets, that is, subsets of I with size
k.

Tidsets: Let T = {t1, t2, . . . , tn} be another set of elements called transaction
identifiers or tids. A set T⊆ T is called a tidset. Itemsets and tidsets are kept
sorted in lexicographic order.

Transactions: A transaction is a tuple of the form 〈t,X〉, where t ∈ T is a unique
transaction identifier, and X is an itemset.

Database: A binary database D is a binary relation on the set of tids and items,
that is, D⊆ T ×I. We say that tid t ∈ T contains item x ∈ I iff (t,x) ∈D. In
other words, (t,x) ∈D iff x ∈ X in the tuple 〈t,X〉. We say that tid t contains

itemset X= {x1,x2, . . . ,xk} iff (t,xi) ∈D for all i= 1,2, . . . ,k.
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Database Representation

Let 2X denote the powerset of X, that is, the set of all subsets of X. Let
i : 2T → 2I be a function, defined as follows:

i(T)= {x | ∀t ∈ T, t contains x}

where T⊆ T , and i(T) is the set of items that are common to all the transactions
in the tidset T. In particular, i(t) is the set of items contained in tid t ∈ T .

Let t : 2I→ 2T be a function, defined as follows:

t(X)= {t | t ∈ T and t contains X} (1)

where X⊆ I, and t(X) is the set of tids that contain all the items in the itemset X.
In particular, t(x) is the set of tids that contain the single item x ∈ I.

The binary database D can be represented as a horizontal or transaction

database consisting of tuples of the form 〈t, i(t)〉, with t ∈ T .

The binary database D can also be represented as a vertical or tidset database

containing a collection of tuples of the form 〈x, t(x)〉, with x ∈ I.
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Binary Database: Transaction and Vertical Format

D A B C D E
1 1 1 0 1 1

2 0 1 1 0 1

3 1 1 0 1 1

4 1 1 1 0 1

5 1 1 1 1 1

6 0 1 1 1 0

t i(t)
1 ABDE
2 BCE
3 ABDE
4 ABCE
5 ABCDE
6 BCD

t(x)

A B C D E
1 1 2 1 1
3 2 4 3 2
4 3 5 5 3
5 4 6 6 4

5 5
6

Binary Database Transaction Database Vertical Database

This dataset D has 5 items, I = {A,B,C,D,E} and 6 tids T = {1,2,3,4,5,6}.
The the first transaction is 〈1,{A,B,D,E}〉, where we omit item C since
(1,C) 6∈D. Henceforth, for convenience, we drop the set notation for itemsets
and tidsets. Thus, we write 〈1,{A,B,D,E}〉 as 〈1,ABDE〉.
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Support and Frequent Itemsets

The support of an itemset X in a dataset D, denoted sup(X), is the number of
transactions in D that contain X:

sup(X)=
∣∣{t | 〈t, i(t)〉 ∈D and X⊆ i(t)}

∣∣= |t(X)|

The relative support of X is the fraction of transactions that contain X:

rsup(X)= sup(X)

|D|

It is an estimate of the joint probability of the items comprising X.

An itemset X is said to be frequent in D if sup(X)≥minsup, where minsup is a
user defined minimum support threshold.

The set F to denotes the set of all frequent itemsets, and F (k) denotes the set of
frequent k-itemsets.
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Frequent Itemsets
Minimum support: minsup= 3

t i(t)
1 ABDE
2 BCE
3 ABDE
4 ABCE
5 ABCDE
6 BCD

sup itemsets

6 B
5 E,BE
4 A,C,D,AB,AE,BC,BD,ABE
3 AD,CE,DE,ABD,ADE,BCE,BDE,ABDE

Transaction Database Frequent Itemsets

The 19 frequent itemsets shown in the table comprise the set F . The sets of all frequent
k-itemsets are

F
(1) = {A,B,C,D,E}

F
(2) = {AB,AD,AE,BC,BD,BE,CE,DE}

F
(3) = {ABD,ABE,ADE,BCE,BDE}

F
(4) = {ABDE}
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Association Rules

An association rule is an expression

X
s,c−→ Y

where X and Y are itemsets and they are disjoint, that is, X,Y⊆ I, and X∩Y= ∅.
Let the itemset X∪Y be denoted as XY.

The support of the rule is the number of transactions in which both X and Y
co-occur as subsets:

s= sup(X−→ Y)= |t(XY)| = sup(XY)

The relative support of the rule is defined as the fraction of transactions where
X and Y co-occur, and it provides an estimate of the joint probability of X and Y:

rsup(X−→ Y)= sup(XY)

|D| = P(X∧Y)

The confidence of a rule is the conditional probability that a transaction
contains Y given that it contains X:

c= conf(X−→ Y)= P(Y|X)= P(X∧Y)

P(X)
= sup(XY)

sup(X)
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Itemset Mining Algorithms: Brute Force

The brute-force algorithm enumerates all the possible itemsets X⊆ I, and for each such
subset determines its support in the input dataset D. The method comprises two main
steps: (1) candidate generation and (2) support computation.

Candidate Generation: This step generates all the subsets of I, which are called
candidates, as each itemset is potentially a candidate frequent pattern. The candidate
itemset search space is clearly exponential because there are 2|I| potentially frequent
itemsets.

Support Computation: This step computes the support of each candidate pattern X and
determines if it is frequent. For each transaction 〈t, i(t)〉 in the database, we determine if
X is a subset of i(t). If so, we increment the support of X.

Computational Complexity: Support computation takes time O(|I| · |D|) in the worst
case, and because there are O(2|I|) possible candidates, the computational complexity of
the brute-force method is O(|I| · |D| ·2|I|).
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Brute Force Algorithm

BRUTEFORCE (D, I, minsup):
F←∅ // set of frequent itemsets1

foreach X⊆ I do2

sup(X)← COMPUTESUPPORT (X,D)3

if sup(X)≥minsup then4

F←F ∪
{
(X,sup(X))

}
5

return F6

COMPUTESUPPORT (X,D):
sup(X)← 01

foreach 〈t, i(t)〉 ∈D do2

if X⊆ i(t) then3

sup(X)← sup(X)+14

return sup(X)5
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Itemset lattice and prefix-based search tree

Itemset search space is a lattice
where any two itemsets X and Y are
connected by a link iff X is an
immediate subset of Y, that is, X⊆ Y
and |X| = |Y|−1.

Frequent itemsets can enumerated
using either a BFS or DFS search
on the prefix tree, where two
itemsets X,Y are connected by a
link iff X is an immediate subset
and prefix of Y. This allows one to
enumerate itemsets starting with
an empty set, and adding one more
item at a time.

∅

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
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Level-wise Approach: Apriori Algorithm

If X⊆ Y, then sup(X)≥ sup(Y), which leads to the following two observations:
(1) if X is frequent, then any subset Y⊆ X is also frequent, and (2) if X is not
frequent, then any superset Y⊇ X cannot be frequent.

The Apriori algorithm utilizes these two properties to significantly improve the
brute-force approach. It employs a level-wise or breadth-first exploration of
the itemset search space, and prunes all supersets of any infrequent candidate,
as no superset of an infrequent itemset can be frequent. It also avoids
generating any candidate that has an infrequent subset.

In addition to improving the candidate generation step via itemset pruning, the
Apriori method also significantly improves the I/O complexity. Instead of
counting the support for a single itemset, it explores the prefix tree in a
breadth-first manner, and computes the support of all the valid candidates of
size k that comprise level k in the prefix tree.
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Apriori Algorithm: Prefix Search Tree and Pruning

∅

A(4) B(6) C(4) D(4) E(5)

AB(4) AC(2) AD(3) AE(4) BC(4) BD(4) BE(5) CD(2) CE(3) DE(3)

ABC ABD(3) ABE(4) ACD ACE ADE(3) BCD BCE(3) BDE(3) CDE

ABCD ABCE ABDE(3) ACDE BCDE

ABCDE

Level 1

Level 2

Level 3

Level 4

Level 5
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The Apriori Algorithm

APRIORI (D, I, minsup):
F←∅1

C(1)←{∅} // Initial prefix tree with single items2

foreach i ∈ I do Add i as child of ∅ in C(1) with sup(i)← 03

k← 1 // k denotes the level4

while C(k) 6= ∅ do5

COMPUTESUPPORT (C(k),D)6

foreach leaf X ∈ C(k) do7

if sup(X)≥minsup then F←F ∪
{
(X,sup(X))

}
8

else remove X from C(k)
9

C(k+1)← EXTENDPREFIXTREE (C(k))10

k← k+111

return F (k)
12

Meira Jr. (UFMG) Four Paradigms in Data Mining Chapter 8: Itemset Mining 28 / 283



Apriori Algorithm

COMPUTESUPPORT (C(k),D):
foreach 〈t, i(t)〉 ∈D do1

foreach k-subset X⊆ i(t) do2

if X ∈ C(k) then sup(X)← sup(X)+13

EXTENDPREFIXTREE (C(k)):
foreach leaf Xa ∈ C(k) do1

foreach leaf Xb ∈ SIBLING(Xa),such that b > a do2

Xab← Xa∪Xb3

// prune candidate if there are any infrequent

subsets

if Xj ∈ C(k), for all Xj ⊂ Xab, such that |Xj| = |Xab|−1 then4

Add Xab as child of Xa with sup(Xab)← 05

if no extensions from Xa then6

remove Xa, and all ancestors of Xa with no extensions, from C(k)
7

return C(k)
8
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Apriori Algorithm: Details

Let C(k) denote the prefix tree comprising all the candidate k-itemsets.

Apriori begins by inserting the single items into an initially empty prefix tree to
populate C

(1).

The support for the current candidates is obtained via COMPUTESUPPORT procedure
that generates k-subsets of each transaction in the database D, and for each such subset
it increments the support of the corresponding candidate in C(k) if it exists. Next, we
remove any infrequent candidate.

The leaves of the prefix tree that survive comprise the set of frequent k-itemsets F (k),
which are used to generate the candidate (k+1)-itemsets for the next level. The
EXTENDPREFIXTREE procedure employs prefix-based extension for candidate
generation. Given two frequent k-itemsets Xa and Xb with a common k−1 length prefix,
that is, given two sibling leaf nodes with a common parent, we generate the
(k+1)-length candidate Xab = Xa ∪Xb. This candidate is retained only if it has no
infrequent subset. Finally, if a k-itemset Xa has no extension, it is pruned from the prefix
tree, and we recursively prune any of its ancestors with no k-itemset extension, so that in
C(k) all leaves are at level k.

If new candidates were added, the whole process is repeated for the next level. This
process continues until no new candidates are added.
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Itemset Mining: Apriori Algorithm
Infrequent itemsets in gray

D C(1)

t i(t)
1 ABDE
2 BCE
3 ABDE
4 ABCE
5 ABCDE
6 BCD

∅(6)

A(4) B(6) C(4) D(4) E(5)

C(2)

∅(6)

A(4)

AB(4) AC(2) AD(3) AE(4)

B(6)

BC(4) BD(4) BE(5)

C(4)

CD(2) CE(3)

D(4)

DE(3)
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Itemset Mining: Apriori Algorithm

C(3)

∅(6)

A(4)

AB(4)

ABD(3) ABE(4)

AD(3)

ADE(3)

B(6)

BC(4)

BCE(3)

BD(4)

BDE(3)

C(4)

∅(6)

A(4)

AB(4)

ABD(3)

ABDE(3)
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Tidset Intersection Approach: Eclat Algorithm

The support counting step can be improved significantly if we can index the
database in such a way that it allows fast frequency computations.

The Eclat algorithm leverages the tidsets directly for support computation. The
basic idea is that the support of a candidate itemset can be computed by
intersecting the tidsets of suitably chosen subsets. In general, given t(X) and
t(Y) for any two frequent itemsets X and Y, we have

t(XY)= t(X)∩ t(Y)

The support of candidate XY is simply the cardinality of t(XY), that is,
sup(XY)= |t(XY)|.
Eclat intersects the tidsets only if the frequent itemsets share a common prefix,
and it traverses the prefix search tree in a DFS-like manner, processing a group
of itemsets that have the same prefix, also called a prefix equivalence class.
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Eclat Algorithm: Tidlist Intersections
Infrequent itemsets in gray

∅

A
1345

AB
1345

ABD
135

ABDE
135

ABE
1345

AC
45

AD
135

ADE
135

AE
1345

B
123456

BC
2456

BCD
56

BCE
245

BD
1356

BDE
135

BE
12345

C
2456

CD
56

CE
245

D
1356

DE
135

E
12345
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Eclat Algorithm

// Initial Call: F←∅,P←
{
〈i, t(i)〉 | i ∈ I, |t(i)| ≥minsup

}

ECLAT (P, minsup, F):
foreach 〈Xa, t(Xa)〉 ∈ P do1

F←F ∪
{
(Xa,sup(Xa))

}
2

Pa←∅3

foreach 〈Xb, t(Xb)〉 ∈ P, with Xb > Xa do4

Xab = Xa ∪Xb5

t(Xab)= t(Xa)∩ t(Xb)6

if sup(Xab)≥minsup then7

Pa← Pa ∪
{
〈Xab, t(Xab)〉

}
8

if Pa 6= ∅ then ECLAT (Pa, minsup, F)9
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Diffsets: Difference of Tidsets

The Eclat algorithm can be significantly improved if we can shrink the size of
the intermediate tidsets. This can be achieved by keeping track of the
differences in the tidsets as opposed to the full tidsets.

Let Xa = {x1, . . . ,xk−1,xa} and Xb = {x1, . . . ,xk−1,xb}, so that
Xab = Xa∪Xb = {x1, . . . ,xk−1,xa,xb}.
The diffset of Xab is the set of tids that contain the prefix Xa, but not the item Xb

d(Xab)= t(Xa) \ t(Xab)= t(Xa) \ t(Xb)

We can obtain an expression for d(Xab) in terms of d(Xa) and d(Xb) as follows:

d(Xab)= d(Xb) \d(Xa)

which means that we can replace all intersection operations in Eclat with diffset
operations.
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Algorithm dEclat

// Initial Call: F←∅,
P←

{
〈i,d(i),sup(i)〉 | i ∈ I,d(i)= T \ t(i),sup(i)≥minsup

}

DECLAT (P, minsup, F):
foreach 〈Xa,d(Xa),sup(Xa)〉 ∈ P do1

F←F ∪
{
(Xa,sup(Xa))

}
2

Pa←∅3

foreach 〈Xb,d(Xb),sup(Xb)〉 ∈ P, with Xb > Xa do4

Xab = Xa ∪Xb5

d(Xab)= d(Xb) \d(Xa)6

sup(Xab)= sup(Xa)−|d(Xab)|7

if sup(Xab)≥minsup then8

Pa← Pa ∪
{
〈Xab,d(Xab),sup(Xab)〉

}
9

if Pa 6= ∅ then DECLAT (Pa, minsup, F)10

Meira Jr. (UFMG) Four Paradigms in Data Mining Chapter 8: Itemset Mining 37 / 283



dEclat Algorithm: Diffsets
support shown within brackets; infrequent itemsets in gray

∅

A
(4)

26

AB
(4)

∅

ABD
(3)

4

ABDE
(3)

∅

ABE
(4)

∅

AC
(2)

13

AD
(3)

4

ADE
(3)

∅

AE
(4)

∅

B
(6)

∅

BC
(4)

13

BCD
(2)

24

BCE
(3)

6

BD
(4)

24

BDE
(3)

6

BE
(5)

6

C
(4)

13

CD
(2)

24

CE
(3)

6

D
(4)

24

DE
(3)

6

E
(5)

6
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Frequent Pattern Tree Approach: FPGrowth

Algorithm

The FPGrowth method indexes the database for fast support computation via
the use of an augmented prefix tree called the frequent pattern tree (FP-tree).

Each node in the tree is labeled with a single item, and each child node
represents a different item. Each node also stores the support information for
the itemset comprising the items on the path from the root to that node.

The FP-tree is constructed as follows. Initially the tree contains as root the null
item ∅. Next, for each tuple 〈t,X〉 ∈D, where X= i(t), we insert the itemset X
into the FP-tree, incrementing the count of all nodes along the path that
represents X.

If X shares a prefix with some previously inserted transaction, then X will follow
the same path until the common prefix. For the remaining items in X, new
nodes are created under the common prefix, with counts initialized to 1. The
FP-tree is complete when all transactions have been inserted.
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Frequent Pattern Tree

The FP-tree is a prefix compressed representation of D. For most compression
items are sorted in descending order of support.

Transactions
BEAD
BEC
BEAD

BEAC
BEACD
BCD

∅(1)

B(1)

E(1)

A(1)

D(1)

∅(2)

B(2)

E(2)

A(1)

D(1)

C(1)

∅(3)

B(3)

E(3)

A(2)

D(2)

C(1)

∅(4)

B(4)

E(4)

A(3)

C(1) D(2)

C(1)

∅(5)

B(5)

E(5)

A(4)

C(2)

D(1)

D(2)

C(1)

∅(6)

B(6)

C(1)

D(1)

E(5)

A(4)

C(2)

D(1)

D(2)

C(1)

Meira Jr. (UFMG) Four Paradigms in Data Mining Chapter 8: Itemset Mining 40 / 283



FPGrowth Algorithm: Details

Given an FP-tree R, projected FP-trees are built for each frequent item i in R in
increasing order of support in a recursive manner.

To project R on item i, we find all the occurrences of i in the tree, and for each
occurrence, we determine the corresponding path from the root to i. The count
of item i on a given path is recorded in cnt(i) and the path is inserted into the
new projected tree RX, where X is the itemset obtained by extending the prefix
P with the item i. While inserting the path, the count of each node in RX along
the given path is incremented by the path count cnt(i).

The base case for the recursion happens when the input FP-tree R is a single
path. FP-trees that are paths are handled by enumerating all itemsets that are
subsets of the path, with the support of each such itemset being given by the
least frequent item in it.
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FPGrowth Algorithm

// Initial Call: R← FP-tree(D), P←∅, F←∅
FPGROWTH (R, P, F , minsup):
Remove infrequent items from R1

if ISPATH(R) then // insert subsets of R into F2

foreach Y⊆ R do3

X← P∪Y4

sup(X)←minx∈Y{cnt(x)}5

F←F ∪
{
(X,sup(X))

}
6

else // process projected FP-trees for each frequent item i7

foreach i ∈ R in increasing order of sup(i) do8

X← P∪{i}9

sup(X)← sup(i) // sum of cnt(i) for all nodes labeled i10

F←F ∪
{
(X,sup(X))

}
11

RX←∅ // projected FP-tree for X12

foreach path ∈ PATHFROMROOT(i) do13

cnt(i)← count of i in path14

Insert path, excluding i, into FP-tree RX with count cnt(i)15

if RX 6= ∅ then FPGROWTH (RX, X, F , minsup)16
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Projected Frequent Pattern Tree for D

FP-Tree Add BC,cnt= 1 Add BEAC,cnt= 1 Add BEA,cnt= 2
∅(6)

B(6)

C(1)

D(1)

E(5)

A(4)

C(2)

D(1)

D(2)

C(1)

∅(1)

B(1)

C(1)

∅(2)

B(2)

C(1) E(1)

A(1)

C(1)

∅(4)

B(4)

C(1) E(3)

A(3)

C(1)
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FPGrowth: Frequent Pattern Tree Projection
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Generating Association Rules

Given a frequent itemset Z ∈F , we look at all proper subsets X⊂ Z to compute
rules of the form

X
s,c−→ Y, where Y= Z \X

where Z \X= Z−X.

The rule must be frequent because

s= sup(XY)= sup(Z)≥minsup

We compute the confidence as follows:

c= sup(X∪Y)

sup(X)
= sup(Z)

sup(X)

If c≥minconf, then the rule is a strong rule. On the other hand, if
conf(X−→ Y) < c, then conf(W−→ Z \W) < c for all subsets W⊂ X, as
sup(W)≥ sup(X). We can thus avoid checking subsets of X.
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Association Rule Mining Algorithm

ASSOCIATIONRULES (F , minconf):
foreach Z ∈F , such that |Z| ≥ 2 do1

A←
{
X | X⊂ Z,X 6= ∅

}
2

while A 6= ∅ do3

X←maximal element in A4

A←A \X// remove X from A5

c← sup(Z)/sup(X)6

if c≥minconf then7

print X−→ Y, sup(Z), c8

else9

A←A \
{
W |W⊂ X

}
10

// remove all subsets of X from A
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Data Mining
Combinatorial

Frequent Itemset Mining

k-Means

DBScan

Decision trees
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Representative-based Clustering

Given a dataset with n points in a d-dimensional space, D= {xi}ni=1, and given
the number of desired clusters k, the goal of representative-based clustering is
to partition the dataset into k groups or clusters, which is called a clustering and
is denoted as C = {C1,C2, . . . ,Ck}.
For each cluster Ci there exists a representative point that summarizes the
cluster, a common choice being the mean (also called the centroid) µi of all
points in the cluster, that is,

µi =
1

ni

∑

xj∈Ci

xj

where ni = |Ci| is the number of points in cluster Ci.

A brute-force or exhaustive algorithm for finding a good clustering is simply to
generate all possible partitions of n points into k clusters, evaluate some
optimization score for each of them, and retain the clustering that yields the
best score. However, this is clearly infeasilbe, since there are O(kn/k!)
clusterings of n points into k groups.
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K-means Algorithm: Objective

The sum of squared errors scoring function is defined as

SSE(C)=
k∑

i=1

∑

xj∈Ci

∥∥xj−µi

∥∥2

The goal is to find the clustering that minimizes the SSE score:

C
∗ = argmin

C
{SSE(C)}

K-means employs a greedy iterative approach to find a clustering that
minimizes the SSE objective. As such it can converge to a local optima instead
of a globally optimal clustering.
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K-means Algorithm: Objective

K-means initializes the cluster means by randomly generating k points in the
data space. Each iteration of K-means consists of two steps: (1) cluster
assignment, and (2) centroid update.

Given the k cluster means, in the cluster assignment step, each point xj ∈D is
assigned to the closest mean, which induces a clustering, with each cluster Ci

comprising points that are closer to µi than any other cluster mean. That is,
each point xj is assigned to cluster Cj∗ , where

j∗ = arg
k

min
i=1

{∥∥xj−µi

∥∥2
}

Given a set of clusters Ci, i= 1, . . . ,k, in the centroid update step, new mean
values are computed for each cluster from the points in Ci.

The cluster assignment and centroid update steps are carried out iteratively
until we reach a fixed point or local minima.
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K-Means Algorithm

K-MEANS (D,k,ǫ):
t= 01

Randomly initialize k centroids: µt
1,µ

t
2, . . . ,µ

t
k ∈Rd

2

repeat3

t← t+14

Cj←∅ for all j= 1, · · · ,k5

// Cluster Assignment Step

foreach xj ∈D do6

j∗← argmini

{∥∥xj−µt
i

∥∥2
}
// Assign xj to closest centroid7

Cj∗← Cj∗ ∪{xj}8

// Centroid Update Step

foreach i= 1 to k do9

µt
i← 1

|Ci|
∑

xj∈Ci
xj10

until
∑k

i=1

∥∥µt
i−µt−1

i

∥∥2 ≤ ǫ11
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K-means in One Dimension
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K-means in One Dimension (contd.)
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K-means in 2D: Iris Principal Components
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K-means in 2D: Iris Principal Components
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K-means in 2D: Iris Principal Components
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Density-based Clustering

Density-based methods are able to mine nonconvex clusters, where
distance-based methods may have difficulty.
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The DBSCAN Approach: Neighborhood and Core

Points

Define a ball of radius ǫ around a point x ∈Rd, called the ǫ-neighborhood of x,
as follows:

Nǫ(x)= Bd(x,ǫ)= {y | δ(x,y)≤ ǫ}

Here δ(x,y) represents the distance between points x and y. which is usually
assumed to be the Euclidean

We say that x is a core point if there are at least minpts points in its
ǫ-neighborhood, i.e., if |Nǫ(x)| ≥minpts.

A border point does not meet the minpts threshold, i.e., |Nǫ(x)|< minpts, but it
belongs to the ǫ-neighborhood of some core point z, that is, x ∈Nǫ(z).

If a point is neither a core nor a border point, then it is called a noise point or
an outlier.
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The DBSCAN Approach: Reachability and

Density-based Cluster

A point x is directly density reachable from another point y if x ∈Nǫ(y) and y is
a core point.

A point x is density reachable from y if there exists a chain of points,
x0,x1, . . . ,xl, such that x= x0 and y= xl, and xi is directly density reachable
from xi−1 for all i= 1, . . . , l. In other words, there is set of core points leading
from y to x.

Two points x and y are density connected if there exists a core point z, such that
both x and y are density reachable from z.

A density-based cluster is defined as a maximal set of density connected points.
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Core, Border and Noise Points
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DBSCAN Density-based Clustering Algorithm

DBSCAN computes the ǫ-neighborhood Nǫ(xi) for each point xi in the dataset
D, and checks if it is a core point. It also sets the cluster id id(xi)= ∅ for all
points, indicating that they are not assigned to any cluster.

Starting from each unassigned core point, the method recursively finds all its
density connected points, which are assigned to the same cluster.

Some border point may be reachable from core points in more than one cluster;
they may either be arbitrarily assigned to one of the clusters or to all of them (if
overlapping clusters are allowed).

Those points that do not belong to any cluster are treated as outliers or noise.

Each DBSCAN cluster is a maximal connected component over the core point
graph.

DBSCAN is sensitive to the choice of ǫ, in particular if clusters have different
densities. The overall complexity of DBSCAN is O(n2).
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DBSCAN Algorithm

DBSCAN (D, ǫ, minpts):
Core←∅1

foreach xi ∈D do // Find the core points2

Compute Nǫ(xi)3

id(xi)←∅ // cluster id for xi4

if Nǫ(xi)≥minpts then Core← Core∪{xi}5

k← 0 // cluster id6

foreach xi ∈ Core, such that id(xi)=∅ do7

k← k+18

id(xi)← k // assign xi to cluster id k9

DENSITYCONNECTED (xi,k)10

C←{Ci}ki=1, where Ci←{x ∈D | id(x)= i}11

Noise←{x ∈D | id(x)=∅}12

Border←D \ {Core∪Noise}13

return C,Core,Border,Noise14

DENSITYCONNECTED (x, k):
foreach y ∈Nǫ(x) do15

id(y)← k // assign y to cluster id k16

if y ∈ Core then DENSITYCONNECTED (y,k)17
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Density-based Clusters
ǫ = 15 and minpts= 10
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DBSCAN Clustering: Iris Dataset

2

2.5

3.0

3.5

4.0

4 5 6 7

X1

X2

bC

bC
bC

bC

bC
bCbC

bCbC
bC

bC

bC bCbC bC

bC

bC bCbC

bC

bC

bC
bC

bC bC
bC

bC
bC

bC
bC

bC

bC

bC bC
bC

bC

bC

bC
bC

bC
bC

bC bC

bC

bC

bC

bC

bCuT uT
uT

uT

uT

uT

uTuT
uT
uT

uT

uT

uT

uT

uT

uT

uT

uT

uT uT

uT
uT

uT

uT

uT

uT

uT

uT

uT

uT

uT

rS

rS

rS

rS

rS
rS

rS

rS

rS

rS
rS

rS
rS
rS
rS

rS

rS

rSrS
rS

rS

rS

rS

rS

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

(a) ǫ = 0.2, minpts= 5
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(b) ǫ = 0.36, minpts= 3
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Data Mining
Combinatorial

Frequent Itemset Mining

k-Means

DBScan

Decision trees
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Decision Tree Classifier

Let the training dataset D= {xi,yi}ni=1 consist of n points in a d-dimensional space, with
yi being the class label for point xi.

A decision tree classifier is a recursive, partition-based tree model that predicts the class
ŷi for each point xi.

Let R denote the data space that encompasses the set of input points D. A decision tree
uses an axis-parallel hyperplane to split the data space R into two resulting half-spaces
or regions, say R1 and R2, which also induces a partition of the input points into D1 and
D2, respectively.

Each of these regions is recursively split via axis-parallel hyperplanes until most of the
points belong to the same class.

To classify a new test point we have to recursively evaluate which half-space it belongs to
until we reach a leaf node in the decision tree, at which point we predict its class as the
label of the leaf.
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Decision Tree: Recursive Splits
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Decision Tree

X1 ≤ 5.45
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Decision Trees: Axis-Parallel Hyperplanes

A hyperplane h(x) is defined as the set of all points x that satisfy the following
equation

h(x) :wTx+b= 0

where w ∈Rd is a weight vector that is normal to the hyperplane, and b is the
offset of the hyperplane from the origin.

A decision tree considers only axis-parallel hyperplanes, that is, the weight
vector must be parallel to one of the original dimensions or axes Xj:

h(x) : xj+b= 0

where the choice of the offset b yields different hyperplanes along dimension Xj.
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Decision Trees: Split Points

A hyperplane specifies a decision or split point because it splits the data space
R into two half-spaces. All points x such that h(x)≤ 0 are on the hyperplane or
to one side of the hyperplane, whereas all points such that h(x) > 0 are on the
other side.

The split point is written as h(x)≤ 0, i.e.

Xj ≤ v

where v=−b is some value in the domain of attribute Xj.

The decision or split point Xj ≤ v thus splits the input data space R into two
regions RY and RN, which denote the set of all possible points that satisfy the
decision and those that do not.

Categorical Attributes: For a categorical attribute Xj, the split points or
decisions are of the Xj ∈ V, where V⊂ dom(Xj), and dom(Xj) denotes the
domain for Xj.
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Decision Trees: Data Partition and Purity

Each split of R into RY and RN also induces a binary partition of the
corresponding input data points D. A split point of the form Xj ≤ v induces the
data partition

DY = {x | x ∈D,xj ≤ v}
DN = {x | x ∈D,xj > v}

The purity of a region Rj is the fraction of points with the majority label in Dj,
that is,

purity(Dj)=max
i

{
nji

nj

}

where nj = |Dj| is the total number of data points in the region Rj, and nji is the
number of points in Dj with class label ci.
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Decision Trees to Rules
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A tree is a set of decision rules; each comprising the decisions on the path to a leaf:

R3 : If X1 ≤ 5.45 and X2 ≤ 2.8 and X1 ≤ 4.7, then class is c1, or

R4 : If X1 ≤ 5.45 and X2 ≤ 2.8 and X1 > 4.7, then class is c2, or

R1 : If X1 ≤ 5.45 and X2 > 2.8, then class is c1, or

R2 : If X1 > 5.45 and X2 ≤ 3.45, then class is c2, or

R5 : If X1 > 5.45 and X2 > 3.45 and X1 ≤ 6.5, then class is c1, or

R6 : If X1 > 5.45 and X2 > 3.45 and X1 > 6.5, then class is c2
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Decision Tree Algorithm

The method takes as input a training dataset D, and two parameters η and π ,
where η is the leaf size and π the leaf purity threshold.

Different split points are evaluated for each attribute in D. Numeric decisions
are of the form Xj ≤ v for some value v in the value range for attribute Xj, and
categorical decisions are of the form Xj ∈ V for some subset of values in the
domain of Xj.

The best split point is chosen to partition the data into two subsets, DY and DN,
where DY corresponds to all points x ∈D that satisfy the split decision, and DN

corresponds to all points that do not satisfy the split decision. The decision tree
method is then called recursively on DY and DN.

We stop the process if the leaf size drops below η or if the purity is at least π .
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Decision Tree Algorithm

DECISIONTREE (D,η,π):
n←|D| // partition size1

ni←|{xj|xj ∈D,yj = ci}| // size of class ci2

purity(D)←maxi

{ ni
n

}
3

if n≤ η or purity(D)≥ π then // stopping condition4

c∗← argmaxci

{ ni
n

}
// majority class5

create leaf node, and label it with class c∗6

return7

(split point∗,score∗)← (∅,0) // initialize best split point8

foreach (attribute Xj) do9

if (Xj is numeric) then10

(v,score)← EVALUATE-NUMERIC-ATTRIBUTE(D,Xj)11

if score > score∗ then (split point∗,score∗)← (Xj ≤ v,score)12

else if (Xj is categorical) then13

(V,score)← EVALUATE-CATEGORICAL-ATTRIBUTE(D,Xj)14

if score > score∗ then (split point∗,score∗)← (Xj ∈V,score)15

DY←{x ∈D | x satisfies split point∗}16

DN←{x ∈D | x does not satisfy split point∗}17

create internal node split point∗, with two child nodes, DY and DN18

DECISIONTREE(DY); DECISIONTREE(DN)19
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Split Point Evaluation Measures: Entropy

Intuitively, we want to select a split point that gives the best separation or
discrimination between the different class labels.

Entropy measures the amount of disorder or uncertainty in a system. A
partition has lower entropy (or low disorder) if it is relatively pure, that is, if
most of the points have the same label. On the other hand, a partition has
higher entropy (or more disorder) if the class labels are mixed, and there is no
majority class as such.

The entropy of a set of labeled points D is defined as follows:

H(D)=−
k∑

i=1

P(ci|D) log2 P(ci|D)

where P(ci|D) is the probability of class ci in D, and k is the number of classes.

If a region is pure, that is, has points from the same class, then the entropy is
zero. On the other hand, if the classes are all mixed up, and each appears with
equal probability P(ci|D)= 1

k
, then the entropy has the highest value,

H(D)= log2 k.
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Split Point Evaluation Measures: Entropy

Define the split entropy as the weighted entropy of each of the resulting
partitions

H(DY,DN)= nY

n
H(DY)+

nN

n
H(DN)

where n= |D| is the number of points in D, and nY = |DY| and nN = |DN| are the
number of points in DY and DN.

Define the information gain for a split point as

Gain(D,DY,DN)=H(D)−H(DY,DN)

The higher the information gain, the more the reduction in entropy, and the
better the split point.

We score each split point and choose the one that gives the highest information
gain.
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Split Point Evaluation Measures: Gini Index and

CART Measure

Gini Index: The Gini index is defined as follows:

G(D)= 1−
k∑

i=1

P(ci|D)2

If the partition is pure, then Gini index is 0.

The weighted Gini index of a split point is as follows:

G(DY,DN)= nY

n
G(DY)+

nN

n
G(DN)

The lower the Gini index value, the better the split point.

CART: The CART measure is

CART(DY,DN)= 2
nY

n

nN

n

k∑

i=1

∣∣∣P(ci|DY)−P(ci|DN)

∣∣∣

This measure thus prefers a split point that maximizes the difference between
the class probability mass function for the two partitions; the higher the CART
measure, the better the split point.
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Evaluating Split Points: Numeric Attributes

All of the split point evaluation measures depend on the class probability mass
function (PMF) for D, namely, P(ci|D), and the class PMFs for the resulting
partitions DY and DN, namely P(ci|DY) and P(ci|DN).

We have to evaluate split points of the form X≤ v. We consider only the
midpoints between two successive distinct values for X in the sample D. Let
{v1, . . . ,vm} denote the set of all such midpoints, such that v1 < v2 < · · ·< vm.

For each split point X≤ v, we have to estimate the class PMFs:

P̂(ci|DY)= P̂(ci|X≤ v)

P̂(ci|DN)= P̂(ci|X > v)

Using Bayes theorem, we have

P̂(ci|X≤ v)= P̂(X≤ v|ci)P̂(ci)

P̂(X≤ v)
= P̂(X≤ v|ci)P̂(ci)∑k

j=1 P̂(X≤ v|cj)P̂(cj)

Thus we have to estimate the prior probability and likelihood for each class in
each partition.
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Evaluating Split Points: Numeric Attributes

The prior probability for each class in D can be estimated as

P̂(ci)=
1

n

n∑

j=1

I(yj = ci)=
ni

n

where yj is the class for point xj, n= |D| is the total number of points, and ni is the
number of points in D with class ci.

Define Nvi as the number of points xj ≤ v with class ci, where xj is the value of data point
xj for the attribute X, given as

Nvi =
n∑

j=1

I(xj ≤ v and yj = ci)
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Evaluating Split Points: Numeric Attributes

We can estimate P̂(X≤ v|ci) and P̂(X > v|ci) as follows:

P̂(X≤ v|ci)=
Nvi

ni

P̂(X > v|ci)= 1− P̂(X≤ v|ci)=
ni−Nvi

ni

Finally, we have

P̂(ci|DY)= P̂(ci|X≤ v)= Nvi∑k
j=1 Nvj

P̂(ci|DN)= P̂(ci|X > v)= ni−Nvi∑k
j=1(nj−Nvj)

The total cost of evaluating a numeric attribute is O(n logn+nk), where k is the
number of classes, and n is the number of points.
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Algorithm EVALUATE-NUMERIC-ATTRIBUTE

EVALUATE-NUMERIC-ATTRIBUTE (D,X):
sort D on attribute X, so that xj ≤ xj+1,∀j= 1, . . . ,n−11

M←∅ // set of midpoints2

for i= 1, . . . ,k do ni← 03

for j= 1, . . . ,n−1 do4

if yj = ci then ni← ni+1 // running count for class ci5

if xj+1 6= xj then6

v← xj+1 + xj

2 ; M←M∪{v} // midpoints7

for i= 1, . . . ,k do8

Nvi← ni // Number of points such that xj ≤ v and yj = ci9

if yn = ci then ni← ni+110

v∗←∅; score∗← 0 // initialize best split point11

forall v ∈M do12

for i= 1, . . . ,k do13

P̂(ci|DY)← Nvi∑k
j=1 Nvj14

P̂(ci|DN)← ni−Nvi∑k
j=1 nj−Nvj15

score(X≤ v)←Gain(D,DY,DN)16

if score(X≤ v) > score∗ then17

v∗← v;score∗← score(X≤ v)18

return (v∗,score∗)19
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Iris Data: Class-specific Frequencies Nvi
Classes c1 and c2 for attribute sepal length
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Iris Data: Information Gain for Different Splits
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Categorical Attributes

For categorical X the split points are of the form X ∈V, where V⊂ dom(X) and V 6= ∅. All
distinct partitions of the set of values of X are considered.

If m= |dom(X)|, then there are O(2m−1) distinct partitions, which can be too many. One
simplification is to restrict V to be of size one, so that there are only m split points of the
form Xj ∈ {v}, where v ∈ dom(Xj).

Define nvi as the number of points xj ∈D, with value xj = v for attribute X and having
class yj = ci:

nvi =
n∑

j=1

I(xj = v and yj = ci)

The class conditional empirical PMF for X is then given as

P̂(X= v|ci)=
P̂
(
X= v and ci

)

P̂(ci)
= nvi

ni

We then have

P̂(ci|DY)=
∑

v∈V nvi∑k
j=1

∑
v∈V nvj

P̂(ci|DN)=
∑

v 6∈V nvi
∑k

j=1

∑
v 6∈V nvj
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Algorithm EVALUATE-CATEGORICAL-ATTRIBUTE

EVALUATE-CATEGORICAL-ATTRIBUTE (D,X, l):
for i= 1, . . . ,k do1

ni← 02

forall v ∈ dom(X) do nvi← 03

for j= 1, . . . ,n do4

if xj = v and yj = ci then nvi← nvi+1 // frequency statistics5

// evaluate split points of the form X ∈ V
V∗←∅; score∗← 0 // initialize best split point6

forall V⊂ dom(X), such that 1≤ |V| ≤ l do7

for i= 1, . . . ,k do8

P̂(ci|DY)←
∑

v∈V nvi∑k
j=1

∑
v∈V nvj9

P̂(ci|DN)←
∑

v 6∈V nvi∑k
j=1

∑
v 6∈V nvj10

score(X ∈ V)←Gain(D,DY,DN)11

if score(X ∈ V) > score∗ then12

V∗←V;score∗← score(X ∈ V)13

return (V∗,score∗)14
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Discretized sepal length: Class Frequencies

Bins v: values
Class frequencies (nvi)

c1:iris-setosa c2:other

[4.3,5.2] Very Short (a1) 39 6

(5.2,6.1] Short (a2) 11 39

(6.1,7.0] Long (a3) 0 43

(7.0,7.9] Very Long (a4) 0 12
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Categorical Split Points for sepal length

V Split entropy Info. gain

{a1} 0.509 0.410

{a2} 0.897 0.217

{a3} 0.711 0.207

{a4} 0.869 0.049

{a1,a2} 0.632 0.286

{a1,a3} 0.860 0.058

{a1,a4} 0.667 0.251

{a2,a3} 0.667 0.251

{a2,a4} 0.860 0.058

{a3,a4} 0.632 0.286

Best split: X ∈ {a1}.
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Data Mining

Paradigms

Combinatorial

Probabilistic

Algebraic

Graph-based
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Data Mining
Probabilistic

Domain

Models are based on one or more probability density function(s) (PDF). Given
a model and a dataset, search its parameter space, which may be continuous
and/or discrete.

Task

Determine the best parameter models for a dataset, according to an
optimization metric.

Strategies

Direct

Iterative
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Data: Probabilistic View

A random variable X is a function X :O→R, where O is the set of all possible
outcomes of the experiment, also called the sample space.

A discrete random variable takes on only a finite or countably infinite number
of values, whereas a continuous random variable if it can take on any value in R.

By default, a numeric attribute Xj is considered as the identity random variable
given as

X(v)= v

for all v ∈O. Here O =R.

Discrete Variable: Long Sepal Length

Define random variable A, denoting long sepal length (7cm or more) as follows:

A(v)=
{

0 if v < 7

1 if v≥ 7

The sample space of A is O = [4.3,7.9], and its range is {0,1}. Thus, A is
discrete.
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Probability Mass Function

If X is discrete, the probability mass function of X is defined as

f(x)= P(X= x) for all x ∈R

f must obey the basic rules of probability. That is, f must be non-negative:

f(x)≥ 0

and the sum of all probabilities should add to 1:

∑

x

f(x)= 1

Intuitively, for a discrete variable X, the probability is concentrated or massed
at only discrete values in the range of X, and is zero for all other values.
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Sepal Length: Bernoulli Distribution

Iris Dataset Extract: sepal length (in centimeters)
5.9 6.9 6.6 4.6 6.0 4.7 6.5 5.8 6.7 6.7 5.1 5.1 5.7 6.1 4.9
5.0 5.0 5.7 5.0 7.2 5.9 6.5 5.7 5.5 4.9 5.0 5.5 4.6 7.2 6.8
5.4 5.0 5.7 5.8 5.1 5.6 5.8 5.1 6.3 6.3 5.6 6.1 6.8 7.3 5.6
4.8 7.1 5.7 5.3 5.7 5.7 5.6 4.4 6.3 5.4 6.3 6.9 7.7 6.1 5.6
6.1 6.4 5.0 5.1 5.6 5.4 5.8 4.9 4.6 5.2 7.9 7.7 6.1 5.5 4.6
4.7 4.4 6.2 4.8 6.0 6.2 5.0 6.4 6.3 6.7 5.0 5.9 6.7 5.4 6.3
4.8 4.4 6.4 6.2 6.0 7.4 4.9 7.0 5.5 6.3 6.8 6.1 6.5 6.7 6.7
4.8 4.9 6.9 4.5 4.3 5.2 5.0 6.4 5.2 5.8 5.5 7.6 6.3 6.4 6.3
5.8 5.0 6.7 6.0 5.1 4.8 5.7 5.1 6.6 6.4 5.2 6.4 7.7 5.8 4.9
5.4 5.1 6.0 6.5 5.5 7.2 6.9 6.2 6.5 6.0 5.4 5.5 6.7 7.7 5.1

Define random variable A as follows: A(v)=
{

0 if v < 7

1 if v≥ 7

We find that only 13 Irises have sepal length of at least 7 cm. Thus, the probability mass
function of A can be estimated as:

f(1)= P(A= 1)= 13

150
= 0.087= p

and

f(0)= P(A= 0)= 137

150
= 0.913= 1−p

A has a Bernoulli distribution with parameter p ∈ [0,1], which denotes the probability of
a success, that is, the probability of picking an Iris with a long sepal length at random
from the set of all points.
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Sepal Length: Binomial Distribution

Define discrete random variable B, denoting the number of Irises with long
sepal length in m independent Bernoulli trials with probability of success p. In
this case, B takes on the discrete values [0,m], and its probability mass function
is given by the Binomial distribution

f(k)= P(B= k)=
(

m

k

)
pk(1−p)m−k

Binomial distribution for long sepal length (p= 0.087) for m= 10 trials

0.1
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0.4
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k

P(B=k)
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Probability Density Function

If X is continuous, the probability density function of X is defined as

P
(
X ∈ [a,b]

)
=
∫ b

a

f(x) dx

f must obey the basic rules of probability. That is, f must be non-negative:

f(x)≥ 0

and the sum of all probabilities should add to 1:

∫ ∞

−∞
f(x) dx= 1

Note that P(X= v)= 0 for all v ∈R since there are infinite possible values in the
sample space. What it means is that the probability mass is spread so thinly
over the range of values that it can be measured only over intervals [a,b]⊂R,
rather than at specific points.
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Sepal Length: Normal Distribution

We model sepal length via the Gaussian or normal density function, given as

f(x)= 1√
2πσ 2

exp

{−(x−µ)2

2σ 2

}

where µ= 1
n

∑n
i=1 xi is the mean value, and σ 2 = 1

n

∑n
i=1(xi−µ)2 is the variance.

Normal distribution for sepal length: µ= 5.84, σ 2 = 0.681
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Cumulative Distribution Function

For random variable X, its cumulative

distribution function (CDF)

F :R→ [0,1], gives the probability of
observing a value at most some given
value x:

F(x)= P(X≤ x) for all −∞< x <∞

When X is discrete, F is given as

F(x)= P(X≤ x)=
∑

u≤x

f(u)

When X is continuous, F is given as

F(x)= P(X≤ x)=
∫ x

−∞
f(u) du

CDF for binomial distribution
(p= 0.087,m= 10)
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Bivariate Random Variable: Joint Probability Mass

Function

Define discrete random variables

long sepal length:X1(v)=
{

1 ifv≥ 7

0 otherwise

long sepal width:X2(v)=
{

1 ifv≥ 3.5

0 otherwise

The bivariate random variable

X=
(

X1

X2

)

has the joint probability mass function

f(x)= P(X= x)

i.e., f(x1,x2)= P(X1 = x1,X2 = x2)

Iris: joint PMF for long sepal length and
sepal width

f(0,0)= P(X1 = 0,X2 = 0)= 116/150= 0.773

f(0,1)= P(X1 = 0,X2 = 1)= 21/150= 0.140

f(1,0)= P(X1 = 1,X2 = 0)= 10/150= 0.067

f(1,1)= P(X1 = 1,X2 = 1)= 3/150= 0.020

X1
X2

f(x)

b

b

b

b

0.773

0.14

0.067

0.02

0

11
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Bivariate Random Variable: Probability Density

Function

Bivariate Normal: modeling joint
distribution for long sepal length (X1) and
sepal width (X2)

f(x|µ,6)= 1

2π
√|6|

exp

{
− (x−µ)T 6−1 (x−µ)

2

}

where µ and 6 specify the 2D mean and
covariance matrix:

µ= (µ1,µ2)
T 6 =

(
σ 2

1 σ12

σ21 σ 2
2

)

with mean µi = 1
n

∑n
k=1 xki and covariance

σij = 1
n

∑
k=1(xki−µi)(xkj−µj). Also,

σ 2
i = σii.

Bivariate Normal

µ= (5.843,3.054)T

6 =
(

0.681 −0.039
−0.039 0.187

)
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Data Mining
Probabilistic

Expectation-Maximization

DenClue

Naive Bayes
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Expectation-Maximization Clustering: Gaussian

Mixture Model

Let Xa denote the random variable corresponding to the ath attribute. Let
X= (X1,X2, . . . ,Xd) denote the vector random variable across the d-attributes, with xj

being a data sample from X.

We assume that each cluster Ci is characterized by a multivariate normal distribution

fi(x)= f(x|µi,6i)=
1

(2π)
d
2 |6 i|

1
2

exp

{
− (x−µi)

T6−1
i (x−µi)

2

}

where the cluster mean µi ∈Rd and covariance matrix 6i ∈Rd×d are both unknown
parameters.

The probability density function of X is given as a Gaussian mixture model over all the k
clusters

f(x)=
k∑

i=1

fi(x)P(Ci)=
k∑

i=1

f(x|µi,6 i)P(Ci)

where the prior probabilities P(Ci) are called the mixture parameters, which must satisfy
the condition

k∑

i=1

P(Ci)= 1
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Expectation-Maximization Clustering: Maximum

Likelihood Estimation

We write the set of all the model parameters compactly as

θ =
{
µ1,61,P(Ci) . . . ,µk,6k,P(Ck)

}

Given the dataset D, we define the likelihood of θ as the conditional probability of the
data D given the model parameters θ

P(D|θ)=
n∏

j=1

f(xj)

The goal of maximum likelihood estimation (MLE) is to choose the parameters θ that
maximize the likelihood. We do this by maximizing the log of the likelihood function

θ∗ = argmax
θ
{lnP(D|θ)}

where the log-likelihood function is given as

lnP(D|θ)=
n∑

j=1

ln f(xj)=
n∑

j=1

ln

( k∑

i=1

f(xj|µi,6i)P(Ci)

)
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Expectation-Maximization Clustering

Directly maximizing the log-likelihood over θ is hard. Instead, we can use the
expectation-maximization (EM) approach for finding the maximum likelihood
estimates for the parameters θ .

EM is a two-step iterative approach that starts from an initial guess for the
parameters θ . Given the current estimates for θ , in the expectation step EM
computes the cluster posterior probabilities P(Ci|xj) via the Bayes theorem:

P(Ci|xj)=
P(Ci and xj)

P(xj)
=

P(xj|Ci)P(Ci)∑k
a=1 P(xj|Ca)P(Ca)

=
fi(xj) ·P(Ci)∑k

a=1 fa(xj) ·P(Ca)

In the maximization step, using the weights P(Ci|xj) EM re-estimates θ , that is, it
re-estimates the parameters µi, 6i, and P(Ci) for each cluster Ci. The
re-estimated mean is given as the weighted average of all the points, the
re-estimated covariance matrix is given as the weighted covariance over all
pairs of dimensions, and the re-estimated prior probability for each cluster is
given as the fraction of weights that contribute to that cluster.
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EM in One Dimension: Expectation Step

Let D comprise of a single attribute X, with each point xj ∈R a random sample
from X. For the mixture model, we use univariate normals for each cluster:

fi(x)= f(x|µi,σ
2
i )= 1√

2πσi

exp

{
− (x−µi)

2

2σ 2
i

}

with the cluster parameters µi, σ 2
i , and P(Ci).

Initialization: For each cluster Ci, with i= 1,2, . . . ,k, we can randomly initialize
the cluster parameters µi, σ 2

i , and P(Ci).

Expectation Step: Given the mean µi, variance σ 2
i , and prior probability P(Ci)

for each cluster, the cluster posterior probability is computed as

wij = P(Ci|xj)=
f(xj|µi,σ

2
i ) ·P(Ci)∑k

a=1 f(xj|µa,σ 2
a ) ·P(Ca)
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EM in One Dimension: Maximization Step

Given wij values, the re-estimated cluster mean is

µi =
∑n

j=1 wij · xj∑n
j=1 wij

The re-estimated value of the cluster variance is computed as the weighted
variance across all the points:

σ 2
i =

∑n
j=1 wij(xj−µi)

2

∑n
j=1 wij

The prior probability of cluster Ci is re-estimated as

P(Ci)=
∑n

j=1 wij

n
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EM in One Dimension
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EM in One Dimension: Final Clusters

0.3

0.6

0.9

1.2

1.5

1.8

0 1 2 3 4 5 6 7 8 9 10 11−1

bC bC bC bC bC bC bC bC bC bC bC

µ1 = 2.48

µ2 = 7.56

(c) Iteration: t= 5 (converged)
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EM in d Dimensions

Each cluster we have to reestiamte the d×d covariance matrix:

6i =




(σ i
1)

2 σ i
12 . . . σ i

1d

σ i
21 (σ i

2)
2 . . . σ i

2d

...
...

. . .

σ i
d1 σ i

d2 . . . (σ i
d)

2




It requires O(d2) parameters, which may be too many for reliable estimation. A
simplification is to assume that all dimensions are independent, which leads to a
diagonal covariance matrix:

6i =




(σ i
1)

2 0 . . . 0
0 (σ i

2)
2 . . . 0

...
...

. . .

0 0 . . . (σ i
d)

2



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EM in d Dimensions

Expectation Step: Given µi, 6i, and P(Ci), the posterior probability is given as

wij = P(Ci|xj)=
fi(xj) ·P(Ci)∑k

a=1 fa(xj) ·P(Ca)

Maximization Step: Given the weights wij, in the maximization step, we
re-estimate 6i, µi and P(Ci).
The mean µi for cluster Ci can be estimated as

µi =
∑n

j=1 wij · xj∑n
j=1 wij

The covariance matrix 6i is re-estimated via the outer-product form

6i =
∑n

j=1 wij(xj−µi)(xj−µi)
T

∑n
j=1 wij

The prior probability P(Ci) for each cluster is

P(Ci)=
∑n

j=1 wij

n
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Expectation-Maximization Clustering Algorithm

EXPECTATION-MAXIMIZATION (D,k,ǫ):
t← 01

Randomly initialize µt
1, . . . ,µ

t
k2

6t
i← I, ∀i= 1, . . . ,k3

repeat4

t← t+15

for i= 1, . . . ,k and j= 1, . . . ,n do6

wij←
f(xj|µi,6i)·P(Ci)

∑k
a=1 f(xj|µa,6a)·P(Ca)

// posterior probability Pt(Ci|xj)
7

for i= 1, . . . ,k do8

µt
i←

∑n
j=1 wij·xj∑n

j=1 wij
// re-estimate mean

9

6t
i←

∑n
j=1 wij(xj−µi)(xj−µi)

T

∑n
j=1 wij

// re-estimate covariance matrix
10

Pt(Ci)←
∑n

j=1 wij

n
// re-estimate priors11

until
∑k

i=1

∥∥µt
i−µt−1

i

∥∥2 ≤ ǫ12
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EM Clustering in 2D
Mixture of k= 3 Gaussians
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(a) Iteration: t= 0
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EM Clustering in 2D
Mixture of k= 3 Gaussians
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EM Clustering in 2D
Mixture of k= 3 Gaussians
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(c) iteration: t= 36
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Iris Principal Components Data: Full Covariance

Matrix
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Iris Principal Components Data: Diagonal Covariance

Matrix
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Data Mining
Probabilistic

Expectation-Maximization

DenClue

Naive Bayes
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Kernel Density Estimation

There is a close connection between density-based clustering and density
estimation. The goal of density estimation is to determine the unknown
probability density function by finding the dense regions of points, which can in
turn be used for clustering.

Kernel density estimation is a nonparametric technique that does not assume
any fixed probability model of the clusters. Instead, it tries to directly infer the
underlying probability density at each point in the dataset.
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Univariate Density Estimation

Assume that X is a continuous random variable, and let x1,x2, . . . ,xn be a
random sample. We directly estimate the cumulative distribution function from
the data by counting how many points are less than or equal to x:

F̂(x)= 1

n

n∑

i=1

I(xi ≤ x)

where I is an indicator function.

We estimate the density function by taking the derivative of F̂(x)

f̂(x)=
F̂
(
x+ h

2

)
− F̂

(
x− h

2

)

h
= k/n

h
= k

nh

where k is the number of points that lie in the window of width h centered at x.
The density estimate is the ratio of the fraction of the points in the window
(k/n) to the volume of the window (h).
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subsubsectionKernel Estimator Kernel density estimation relies on a kernel

function K that is non-negative, symmetric, and integrates to 1, that is, K(x)≥ 0,
K(−x)= K(x) for all values x, and

∫
K(x)dx= 1.

Discrete Kernel Define the discrete kernel function K, that computes the
number of points in a window of width h

K(z)=
{

1 If |z| ≤ 1
2

0 Otherwise

The density estimate f̂(x) can be rewritten in terms of the kernel function as
follows:

f̂(x)= 1

nh

n∑

i=1

K

(
x− xi

h

)
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Kernel Density Estimation: Discrete Kernel (Iris 1D)
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(d) h= 2.0

The discrete kernel yields a non-smooth (or jagged) density function.
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kernel Density Estimation: Gaussian Kernel

The width h is a parameter that denotes the spread or smoothness of the
density estimate. The discrete kernel function has an abrupt influence.

Define a more smooth transition of influence via a Gaussian kernel:

K(z)= 1√
2π

exp

{
−z2

2

}

Thus, we have

K

(
x− xi

h

)
= 1√

2π
exp

{
− (x− xi)

2

2h2

}

Here x, which is at the center of the window, plays the role of the mean, and h
acts as the standard deviation.
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Kernel Density Estimation: Gaussian Kernel (Iris 1D)
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(d) h= 0.5

When h is small the density function has many local maxima. A large h results in a
unimodal distribution.
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Multivariate Density Estimation

To estimate the probability density at a d-dimensional point
x= (x1,x2, . . . ,xd)

T, we define the d-dimensional “window” as a hypercube in d
dimensions, that is, a hypercube centered at x with edge length h. The volume
of such a d-dimensional hypercube is given as

vol(Hd(h))= hd

The density is estimated as the fraction of the point weight lying within the
d-dimensional window centered at x, divided by the volume of the hypercube:

f̂(x)= 1

nhd

n∑

i=1

K

(
x− xi

h

)

where the multivariate kernel function K satisfies the condition
∫

K(z)dz= 1.
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Multivariate Density Estimation: Discrete and

Gaussian Kernel

Discrete Kernel: For any d-dimensional vector z= (z1,z2, . . . ,zd)
T, the discrete

kernel function in d-dimensions is given as

K(z)=
{

1 If |zj| ≤ 1
2
, for all dimensions j= 1, . . . ,d

0 Otherwise

Gaussian Kernel: The d-dimensional Gaussian kernel is given as

K(z)= 1

(2π)d/2
exp

{
−zTz

2

}
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Density Estimation: Iris 2D Data (Gaussian Kernel)
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Density Estimation: Density-based Dataset
Gaussian kernel, h= 20
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Nearest Neighbor Density Estimation

In kernel density estimation we implicitly fixed the volume by fixing the width
h, and we used the kernel function to find out the number or weight of points
that lie inside the fixed volume region.

An alternative approach to density estimation is to fix k, the number of points
required to estimate the density, and allow the volume of the enclosing region
to vary to accommodate those k points. This approach is called the k nearest
neighbors (KNN) approach to density estimation.

Given k, the number of neighbors, we estimate the density at x as follows:

f̂(x)= k

nvol(Sd(hx))

where hx is the distance from x to its kth nearest neighbor, and vol(Sd(hx)) is the
volume of the d-dimensional hypersphere Sd(hx) centered at x, with radius hx.
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DENCLUE Density-based Clustering: Attractor and

Gradient

A point x∗ is called a density attractor if it is a local maxima of the probability
density function f.

The density gradient at a point x is the multivariate derivative of the probability
density estimate

∇ f̂(x)= ∂

∂x
f̂(x)= 1

nhd

n∑

i=1

∂

∂x
K

(
x− xi

h

)

For the Gaussian kernel the gradient at a point x is given as

∇ f̂(x)= 1

nhd+2

n∑

i=1

K

(
x− xi

h

)
· (xi− x)

This equation can be thought of as having two parts for each point: a vector
(xi− x) and a scalar influence value K(

x−xi
h

).
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The Gradient Vector
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DENCLUE: Density Attractor

We say that x∗ is a density attractor for x, or alternatively that x is density

attracted to x∗, if a hill climbing process started at x converges to x∗.

That is, there exists a sequence of points x= x0→ x1→ . . .→ xm, starting from
x and ending at xm, such that ‖xm−x∗‖ ≤ ǫ, that is, xm converges to the attractor
x∗.

Setting the gradient to the zero vector leads to the following mean-shift update
rule:

xt+1 =
∑n

i=1 K
( xt−xi

h

)
xi∑n

i=1 K
( xt−xi

h

)

where t denotes the current iteration and xt+1 is the updated value for the
current vector xt.
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DENCLUE: Density-based Cluster

A cluster C⊆D, is called a center-defined cluster if all the points x ∈ C are

density attracted to a unique density attractor x∗, such that f̂(x∗)≥ ξ , where ξ is
a user-defined minimum density threshold.

An arbitrary-shaped cluster C⊆D is called a density-based cluster if there exists
a set of density attractors x∗1,x∗2, . . . ,x∗m, such that

1 Each point x ∈ C is attracted to some attractor x∗i .

2 Each density attractor has density above ξ .

3 Any two density attractors x∗i and x∗j are density reachable, that is, there

exists a path from x∗i to x∗j , such that for all points y on the path, f̂(y)≥ ξ .
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The DENCLUE Algorithm

DENCLUE (D,h,ξ,ǫ):
A←∅1

foreach x ∈D do // find density attractors2

x∗← FINDATTRACTOR(x,D,h,ǫ)44

if f̂(x∗)≥ ξ then5

A←A∪{x∗}77

R(x∗)← R(x∗)∪{x}99

C←{maximal C⊆A | ∀x∗i ,x∗j ∈ C,x∗i and x∗j are density reachable}1111

foreach C ∈ C do // density-based clusters12

foreach x∗ ∈ C do C← C∪R(x∗)13

return C14
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The DENCLUE Algorithm: Find Attractor

FINDATTRACTOR (x,D,h,ǫ):
t← 022

xt← x3

repeat4

xt+1←
∑n

i=1 K
( xt−xi

h

)
·xt

∑n
i=1 K

(
xt−xi

h

)
66

t← t+17

until ‖xt− xt−1‖ ≤ ǫ8

return xt1010
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DENCLUE: Iris 2D Data

Meira Jr. (UFMG) Four Paradigms in Data Mining Chapter 15: Density-based Clustering 134 / 283



DENCLUE: Density-based Dataset
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Data Mining
Probabilistic

Expectation-Maximization

DenClue

Naive Bayes
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Bayes Classifier

Let the training dataset D consist of n points xi in a d-dimensional space, and
let yi denote the class for each point, with yi ∈ {c1,c2, . . . ,ck}.

The Bayes classifier estimates the posterior probability P(ci|x) for each class ci,
and chooses the class that has the largest probability. The predicted class for x
is given as

ŷ= argmax
ci

{P(ci|x)}

According to the Bayes theorem, we have

P(ci|x)= P(x|ci) ·P(ci)

P(x)

Because P(x) is fixed for a given point, Bayes rule can be rewritten as

ŷ= argmax
ci

{P(ci|x)} = argmax
ci

{
P(x|ci)P(ci)

P(x)

}
= argmax

ci

{
P(x|ci)P(ci)

}
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Estimating the Prior Probability: P(ci)

Let Di denote the subset of points in D that are labeled with class ci:

Di = {xj ∈D | xj has class yj = ci}

Let the size of the dataset D be given as |D| = n, and let the size of each
class-specific subset Di be given as |Di| = ni.

The prior probability for class ci can be estimated as follows:

P̂(ci)=
ni

n
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Estimating the Likelihood: Numeric Attributes,

Parametric Approach

To estimate the likelihood P(x|ci), we have to estimate the joint probability of x
across all the d dimensions, i.e., we have to estimate P

(
x= (x1,x2, . . . ,xd)|ci

)
.

In the parametric approach we assume that each class ci is normally distributed,
and we use the estimated mean µ̂i and covariance matrix 6̂i to compute the
probability density at x

f̂i(x)= f̂(x|µ̂i,6̂i)=
1

(
√

2π)d
√
|6̂i|

exp

{
− (x− µ̂i)

T6̂
−1

i (x− µ̂i)

2

}

The posterior probability is then given as

P(ci|x)= f̂i(x)P(ci)∑k
j=1 f̂j(x)P(cj)

The predicted class for x is:

ŷ= argmax
ci

{
f̂i(x)P(ci)

}
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Bayes Classifier Algorithm

BAYESCLASSIFIER (D= {(xj,yj)}nj=1):

for i= 1, . . . ,k do1

Di←
{
xj | yj = ci, j= 1, . . . ,n

}
// class-specific subsets2

ni←|Di| // cardinality3

P̂(ci)← ni/n // prior probability4

µ̂i← 1
ni

∑
xj∈Di

xj // mean5

Zi←Di−1ni
µ̂

T
i // centered data6

6̂i← 1
ni

ZT
i Zi // covariance matrix7

return P̂(ci),µ̂i,6̂i for all i= 1, . . . ,k8

TESTING (x and P̂(ci), µ̂i, 6̂i, for all i ∈ [1,k]):
ŷ← argmax

ci

{
f(x|µ̂i,6̂i) ·P(ci)

}
9

return ŷ10
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Bayes Classifier: Iris Data
X1:sepal length versus X2:sepal width
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Bayes Classifier: Categorical Attributes

Let Xj be a categorical attribute over the domain dom(Xj)= {aj1,aj2, . . . ,ajmj
}.

Each categorical attribute Xj is modeled as an mj-dimensional multivariate
Bernoulli random variable Xj that takes on mj distinct vector values
ej1,ej2, . . . ,ejmj

, where ejr is the rth standard basis vector in R
mj and corresponds

to the rth value or symbol ajr ∈ dom(Xj).

The entire d-dimensional dataset is modeled as the vector random variable
X= (X1,X2, . . . ,Xd)

T. Let d′ =
∑d

j=1 mj; a categorical point x= (x1,x2, . . . ,xd)
T is

therefore represented as the d′-dimensional binary vector

v=




v1

...

vd


=




e1r1
...

edrd




where vj = ejrj provided xj = ajrj is the rjth value in the domain of Xj.
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Bayes Classifier: Categorical Attributes

The probability of the categorical point x is obtained from the joint probability
mass function (PMF) for the vector random variable X:

P(x|ci)= f(v|ci)= f
(
X1 = e1r1, . . . ,Xd = edrd

| ci

)

The joint PMF can be estimated directly from the data Di for each class ci as
follows:

f̂(v|ci)=
ni(v)

ni

where ni(v) is the number of times the value v occurs in class ci.
However, to avoid zero probabilities we add a pseudo-count of 1 for each value

f̂(v|ci)=
ni(v)+1

ni+
∏d

j=1 mj
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Discretized Iris Data: sepal length and sepal width

Bins Domain

[4.3,5.2] Very Short (a11)

(5.2,6.1] Short (a12)

(6.1,7.0] Long (a13)

(7.0,7.9] Very Long (a14)

(a) Discretized sepal length

Bins Domain

[2.0,2.8] Short (a21)

(2.8,3.6] Medium (a22)

(3.6,4.4] Long (a23)

(b) Discretized sepal width
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Class-specific Empirical Joint Probability Mass

Function

Class: c1
X2

f̂X1Short (e21) Medium (e22) Long (e23)

X1

Very Short (e11) 1/50 33/50 5/50 39/50

Short (e12) 0 3/50 8/50 13/50

Long (e13) 0 0 0 0

Very Long (e14) 0 0 0 0

f̂X2 1/50 36/50 13/50

Class: c2
X2

f̂X1Short (e21) Medium (e22) Long (e23)

X1

Very Short (e11) 6/100 0 0 6/100

Short (e12) 24/100 15/100 0 39/100

Long (e13) 13/100 30/100 0 43/100

Very Long (e14) 3/100 7/100 2/100 12/100

f̂X2 46/100 52/100 2/100
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Iris Data: Test Case

Consider a test point x= (5.3,3.0)T corresponding to the categorical point

(Short, Medium), which is represented as v=
(
eT

12 eT
22

)T
.

The prior probabilities of the classes are P̂(c1)= 0.33 and P̂(c2)= 0.67.
The likelihood and posterior probability for each class is given as

P̂(x|c1)= f̂(v|c1)= 3/50= 0.06

P̂(x|c2)= f̂(v|c2)= 15/100= 0.15

P̂(c1|x)∝ 0.06×0.33= 0.0198

P̂(c2|x)∝ 0.15×0.67= 0.1005

In this case the predicted class is ŷ= c2.
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Iris Data: Test Case with Pseudo-counts

The test point x= (6.75,4.25)T corresponds to the categorical point

(Long, Long), and it is represented as v=
(
eT

13 eT
23

)T
.

Unfortunately the probability mass at v is zero for both classes. We adjust the
PMF via pseudo-counts noting that the number of possible values are
m1×m2 = 4×3= 12.

The likelihood and prior probability can then be computed as

P̂(x|c1)= f̂(v|c1)=
0+1

50+12
= 1.61×10−2

P̂(x|c2)= f̂(v|c2)=
0+1

100+12
= 8.93×10−3

P̂(c1|x)∝ (1.61×10−2)×0.33= 5.32×10−3

P̂(c2|x)∝ (8.93×10−3)×0.67= 5.98×10−3

Thus, the predicted class is ŷ= c2.
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Bayes Classifier: Challenges

The main problem with the Bayes classifier is the lack of enough data to
reliably estimate the joint probability density or mass function, especially for
high-dimensional data.

For numeric attributes we have to estimate O(d2) covariances, and as the
dimensionality increases, this requires us to estimate too many parameters.

For categorical attributes we have to estimate the joint probability for all the
possible values of v, given as

∏
j |dom

(
Xj

)
|. Even if each categorical attribute

has only two values, we would need to estimate the probability for 2d values.
However, because there can be at most n distinct values for v, most of the
counts will be zero.

Naive Bayes classifier addresses these concerns.
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Naive Bayes Classifier: Numeric Attributes

The naive Bayes approach makes the simple assumption that all the attributes
are independent, which implies that the likelihood can be decomposed into a
product of dimension-wise probabilities:

P(x|ci)= P(x1,x2, . . . ,xd|ci)=
d∏

j=1

P(xj|ci)

The likelihood for class ci, for dimension Xj, is given as

P(xj|ci)∝ f(xj|µ̂ij, σ̂
2
ij )=

1√
2πσ̂ij

exp

{
− (xj− µ̂ij)

2

2σ̂ 2
ij

}

where µ̂ij and σ̂ 2
ij denote the estimated mean and variance for attribute Xj, for

class ci.
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Naive Bayes Classifier: Numeric Attributes

The naive assumption corresponds to setting all the covariances to zero in 6̂i,
that is,

6i =




σ 2
i1 0 . . . 0
0 σ 2

i2 . . . 0
...

...
. . .

0 0 . . . σ 2
id




The naive Bayes classifier thus uses the sample mean µ̂i = (µ̂i1, . . . , µ̂id)
T and a

diagonal sample covariance matrix 6̂i = diag(σ 2
i1, . . . ,σ

2
id) for each class ci. In

total 2d parameters have to be estimated, corresponding to the sample mean
and sample variance for each dimension Xj.
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Naive Bayes Algorithm

NAIVEBAYES (D= {(xj,yj)}nj=1):

for i= 1, . . . ,k do1

Di←
{
xj | yj = ci, j= 1, . . . ,n

}
// class-specific subsets2

ni← |Di| // cardinality3

P̂(ci)← ni/n // prior probability4

µ̂i← 1
ni

∑
xj∈Di

xj // mean5

Zi =Di−1 · µ̂T
i // centered data for class ci6

for j= 1, ..,d do // class-specific variance for Xj7

σ̂ 2
ij ← 1

ni
ZT

ijZij // variance8

σ̂ i =
(
σ̂ 2

i1, . . . , σ̂
2
id

)T
// class-specific attribute variances9

return P̂(ci), µ̂i, σ̂ i for all i= 1, . . . ,k10

TESTING (x and P̂(ci), µ̂i, σ̂ i, for all i ∈ [1,k]):

ŷ← argmax
ci

{
P̂(ci)

d∏

j=1

f(xj|µ̂ij, σ̂
2
ij )

}

11

return ŷ12
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Naive Bayes versus Full Bayes Classifier: Iris 2D Data
X1:sepal length versus X2:sepal width
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Naive Bayes: Categorical Attributes

The independence assumption leads to a simplification of the joint probability
mass function

P(x|ci)=
d∏

j=1

P(xj|ci)=
d∏

j=1

f
(
Xj = ejrj | ci

)

where f(Xj = ejrj |ci) is the probability mass function for Xj, which can be

estimated from Di as follows:

f̂(vj|ci)=
ni(vj)

ni

where ni(vj) is the observed frequency of the value vj = ejrj corresponding to
the rjth categorical value ajrj for the attribute Xj for class ci.

If the count is zero, we can use the pseudo-count method to obtain a prior
probability. The adjusted estimates with pseudo-counts are given as

f̂(vj|ci)=
ni(vj)+1

ni+mj

where mj = |dom(Xj)|.
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Data Mining

Paradigms

Combinatorial

Probabilistic

Algebraic

Graph-based
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Data Mining
Algebraic

Domain

Problem is modeled using linear algebra, enabling several existing algebraic
models and algorithms.

Task

Determine the best models and their parameters, according to an optimization
metric.

Strategies

Direct

Iterative
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Data: Algebraic and Geometric View

For numeric data matrix D, each row or point is a d-dimensional column vector:

xi =




xi1

xi2

...

xid


=

(
xi1 xi2 · · · xid

)T ∈Rd

whereas each column or attribute is a n-dimensional column vector:

Xj =
(
x1j x2j · · · xnj

)T ∈Rn

0
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3

Figure: Projections of x1 = (5.9,3.0,4.2,1.5)T in 2D and 3D

Meira Jr. (UFMG) Four Paradigms in Data Mining Algebraic 156 / 283



Scatterplot: 2D Iris Dataset

sepal length versus sepal width.

Visualizing Iris dataset as points/vectors in 2D
Solid circle shows the mean point
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Numeric Data Matrix

If all attributes are numeric, then the data matrix D is an n×d matrix, or equivalently a
set of n row vectors xT

i ∈Rd or a set of d column vectors Xj ∈Rn

D=




x11 x12 · · · x1d

x21 x22 · · · x2d

...
...

. . .
...

xn1 xn2 · · · xnd


=




— xT
1 —

— xT
2 —

.

..

— xT
n —



=



| | |

X1 X2 · · · Xd

| | |




The mean of the data matrix D is the average of all the points: mean(D)= µ= 1

n

n∑

i=1

xi

The centered data matrix is obtained by subtracting the mean from all the points:

Z=D−1 ·µT =




xT
1

xT
2

...

xT
n



−




µT

µT

...

µT



=




xT
1−µT

xT
2−µT

...

xT
n−µT



=




zT
1

zT
2

...

zT
n




(2)

where zi = xi−µ is a centered point, and 1 ∈Rn is the vector of ones.
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Norm, Distance and Angle

Given two points a,b ∈Rm, their dot

product is defined as the scalar

aTb= a1b1+ a2b2+·· ·+ ambm

=
m∑

i=1

aibi

The Euclidean norm or length of a
vector a is defined as

‖a‖ =
√

aTa=

√√√√
m∑

i=1

a2
i

The unit vector in the direction of a is
u= a

‖a‖ with ‖a‖ = 1.

Distance between a and b is given as

∥∥a−b
∥∥=

√√√√
m∑

i=1

(ai−bi)2

Angle between a and b is given as

cosθ = aTb

‖a‖
∥∥b
∥∥ =

(
a

‖a‖

)T
(

b∥∥b
∥∥

)

0

1

2

3

4

0 1 2 3 4 5

X1

X2

bc (5,3)

bc(1,4)

a

b

a−b

θ
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Orthogonal Projection

Two vectors a and b are orthogonal iff aTb= 0, i.e., the angle between them is
90◦. Orthogonal projection of b on a comprises the vector p= b‖ parallel to a,
and r= b⊥ perpendicular or orthogonal to a, given as

b= b‖+b⊥ = p+ r

where

p= b‖ =
(

aTb

aTa

)
a

0

1

2

3

4

0 1 2 3 4 5

X1

X2

a

b

r=
b⊥

p=
b‖
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Projection of Centered Iris Data Onto a Line ℓ.
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Data Mining
Algebraic

Principal Component Analysis

Support Vector Machines
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Dimensionality Reduction

The goal of dimensionality reduction is to find a lower dimensional
representation of the data matrix D to avoid the curse of dimensionality.

Given n×d data matrix, each point xi = (xi1,xi2, . . . ,xid)
T is a vector in the

ambient d-dimensional vector space spanned by the d standard basis vectors
e1,e2, . . . ,ed.

Given any other set of d orthonormal vectors u1,u2, . . . ,ud we can re-express
each point x as

x= a1u1+ a2u2+ ·· ·+ adud

where a= (a1,a2, . . . ,ad)
T represents the coordinates of x in the new basis.

More compactly:

x=Ua

where U is the d×d orthogonal matrix, whose ith column comprises the ith
basis vector ui. Thus U−1 =UT, and we have

a=UTx
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Optimal Basis: Projection in Lower Dimensional Space

There are potentially infinite choices for the orthonormal basis vectors. Our
goal is to choose an optimal basis that preserves essential information about D.

We are interested in finding the optimal r-dimensional representation of D,
with r≪ d. Projection of x onto the first r basis vectors is given as

x′ = a1u1+ a2u2+ ·· ·+ arur =
r∑

i=1

aiui =Urar

where Ur and ar comprises the r basis vectors and coordinates, respv. Also,
restricting a=UTx to r terms, we have

ar =UT
r x

The r-dimensional projection of x is thus given as:

x′ =UrU
T
r x= Prx

where Pr =UrUT
r =

∑r
i=1 uiu

T
i is the orthogonal projection matrix for the

subspace spanned by the first r basis vectors.
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Optimal Basis: Error Vector

Given the projected vector x′ = Prx, the corresponding error vector, is the
projection onto the remaining d− r basis vectors

ǫ =
d∑

i=r+1

aiui = x− x′

The error vector ǫ is orthogonal to x′.

The goal of dimensionality reduction is to seek an r-dimensional basis that gives
the best possible approximation x′i over all the points xi ∈D. Alternatively, we
seek to minimize the error ǫ i = xi− x′i over all the points.
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Iris Data: Optimal One-dimensional Basis
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Iris Data: Optimal 2D Basis
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Principal Component Analysis

Principal Component Analysis (PCA) is a technique that seeks a r-dimensional
basis that best captures the variance in the data.

The direction with the largest projected variance is called the first principal
component.

The orthogonal direction that captures the second largest projected variance is
called the second principal component, and so on.

The direction that maximizes the variance is also the one that minimizes the
mean squared error.
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Principal Component: Direction of Most Variance

We seek to find the unit vector u that maximizes the projected variance of the
points. Let D be centered, and let 6 be its covariance matrix.

The projection of xi on u is given as

x′i =
(

uTxi

uTu

)
u= (uTxi)u= aiu

Across all the points, the projected variance along u is

σ 2
u =

1

n

n∑

i=1

(ai−µu)
2 = 1

n

n∑

i=1

uT
(
xix

T
i

)
u= uT

(
1

n

n∑

i=1

xix
T
i

)
u= uT6u

We have to find the optimal basis vector u that maximizes the projected
variance σ 2

u = uT6u, subject to the constraint that uTu= 1. The maximization
objective is given as

max
u

J(u)= uT6u−α(uTu−1)
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Principal Component: Direction of Most Variance

Given the objective maxu J(u)= uT6u−α(uTu−1), we solve it by setting the
derivative of J(u) with respect to u to the zero vector, to obtain

∂

∂u

(
uT6u−α(uTu−1)

)
= 0

that is, 26u−2αu= 0which implies 6u= αu

Thus α is an eigenvalue of the covariance matrix 6, with the associated
eigenvector u.

Taking the dot product with u on both sides, we have

σ 2
u = uT6uuTαu= αuTu= α

To maximize the projected variance σ 2
u , we thus choose the largest eigenvalue

λ1 of 6, and the dominant eigenvector u1 specifies the direction of most
variance, also called the first principal component.
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Iris Data: First Principal Component
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Minimum Squared Error Approach

The direction that maximizes the projected variance is also the one that
minimizes the average squared error.

The mean squared error (MSE) optimization condition is

MSE(u)= 1

n

n∑

i=1

‖ǫ i‖2 =
1

n

n∑

i=1

‖xi− x′i‖2 =
n∑

i=1

‖xi‖2
n
−uT6u

Since the first term is fixed for a dataset D, we see that the direction u1 that
maximizes the variance is also the one that minimizes the MSE.

Further, we have

n∑

i=1

‖xi‖2
n
−uT6u= var(D)= tr(6)=

d∑

i=1

σ 2
i

Thus, for the direction u1 that minimizes MSE, we have

MSE(u1)= var(D)−uT
16u1 = var(D)−λ1

Meira Jr. (UFMG) Four Paradigms in Data Mining Chapter 7: Dimensionality Reduction 172 / 283



Best 2-dimensional Approximation

The best 2D subspace that captures the most variance in D comprises the
eigenvectors u1 and u2 corresponding to the largest and second largest
eigenvalues λ1 and λ2, respv.

Let U2 =
(
u1 u2

)
be the matrix whose columns correspond to the two

principal components. Given the point xi ∈D its projected coordinates are
computed as follows:

ai =UT
2xi

Let A denote the projected 2D dataset. The total projected variance for A is
given as

var(A)= uT
16u1+uT

26u2 = uT
1λ1u1+uT

2λ2u2 = λ1+λ2

The first two principal components also minimize the mean square error
objective, since

MSE= 1

n

n∑

i=1

∥∥xi− x′i
∥∥2 = var(D)− 1

n

n∑

i=1

(
xT

i P2xi

)
= var(D)− var(A)
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Optimal and Non-optimal 2D Approximations

The optimal subspace maximizes the variance, and minimizes the squared
error, whereas the nonoptimal subspace captures less variance, and has a high
mean squared error value, as seen from the lengths of the error vectors (line
segments).
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Best r-dimensional Approximation

To find the best r-dimensional approximation to D, we compute the eigenvalues of 6.
Because 6 is positive semidefinite, its eigenvalues are non-negative

λ1 ≥ λ2 ≥ ·· ·λr ≥ λr+1 · · · ≥ λd ≥ 0

We select the r largest eigenvalues, and their corresponding eigenvectors to form the
best r-dimensional approximation.

Total Projected Variance: Let Ur =
(
u1 · · · ur

)
be the r-dimensional basis vector

matrix, withe the projection matrix given as Pr =UrUT
r =

∑r
i=1 uiu

T
i .

Let A denote the dataset formed by the coordinates of the projected points in the
r-dimensional subspace. The projected variance is given as

var(A)= 1

n

n∑

i=1

xT
i Prxi =

r∑

i=1

uT
i 6ui =

r∑

i=1

λi

Mean Squared Error: The mean squared error in r dimensions is

MSE= 1

n

n∑

i=1

∥∥xi− x′i
∥∥2 = var(D)−

r∑

i=1

λi =
d∑

i=1

λi−
r∑

i=1

λi

Meira Jr. (UFMG) Four Paradigms in Data Mining Chapter 7: Dimensionality Reduction 175 / 283



Choosing the Dimensionality

One criteria for choosing r is to compute the fraction of the total variance
captured by the first r principal components, computed as

f(r)= λ1+λ2+ ·· ·+λr

λ1+λ2+ ·· ·+λd
=
∑r

i=1 λi∑d
i=1 λi

=
∑r

i=1 λi

var(D)

Given a certain desired variance threshold, say α, starting from the first
principal component, we keep on adding additional components, and stop at
the smallest value r, for which f(r)≥ α. In other words, we select the fewest
number of dimensions such that the subspace spanned by those r dimensions
captures at least α fraction (say 0.9) of the total variance.
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Principal Component Analysis: Algorithm

PCA (D,α):
µ= 1

n

∑n
i=1 xi // compute mean1

Z=D−1 ·µT // center the data2

6 = 1
n

(
ZTZ

)
// compute covariance matrix3

(λ1,λ2, . . . ,λd)= eigenvalues(6) // compute eigenvalues4

U=
(
u1 u2 · · · ud

)
= eigenvectors(6) // compute eigenvectors5

f(r)=
∑r

i=1 λi∑d
i=1 λi

, for all r= 1,2, . . . ,d // fraction of total variance
6

Choose smallest r so that f(r)≥ α // choose dimensionality7

Ur =
(
u1 u2 · · · ur

)
// reduced basis8

A= {ai | ai =UT
r xi, for i= 1, . . . ,n} // reduced dimensionality data9
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Iris Principal Components

Covariance matrix:

6 =




0.681 −0.039 1.265
−0.039 0.187 −0.320

1.265 −0.32 3.092




The eigenvalues and eigenvectors of 6

λ1 = 3.662 λ2 = 0.239 λ3 = 0.059

u1 =



−0.390

0.089
−0.916


 u2 =



−0.639
−0.742

0.200


 u3 =



−0.663

0.664
0.346




The total variance is therefore λ1+λ2+λ3 = 3.662+0.239+0.059= 3.96.
The fraction of total variance for different values of r is given as

r 1 2 3

f(r) 0.925 0.985 1.0

This r= 2 PCs are need to capture α = 0.95 fraction of variance.
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Iris Data: Optimal 3D PC Basis
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Iris Principal Components: Projected Data (2D)
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Geometry of PCA

Geometrically, when r= d, PCA corresponds to a orthogonal change of basis, so that the
total variance is captured by the sum of the variances along each of the principal
directions u1,u2, . . . ,ud, and further, all covariances are zero.

Let U be the d×d orthogonal matrix U=
(
u1 u2 · · · ud

)
, with U−1 =UT. Let

3= diag(λ1, · · · ,λd) be the diagonal matrix of eigenvalues. Each principal component ui

corresponds to an eigenvector of the covariance matrix 6

6ui = λiui for all 1≤ i≤ d

which can be written compactly in matrix notation:

6U=U3 which implies 6 =U3UT

Thus, 3 represents the covariance matrix in the new PC basis.

In the new PC basis, the equation

xT6−1x= 1

defines a d-dimensional ellipsoid (or hyper-ellipse). The eigenvectors ui of 6, that is, the
principal components, are the directions for the principal axes of the ellipsoid. The
square roots of the eigenvalues, that is,

√
λi, give the lengths of the semi-axes.
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Iris: Elliptic Contours in Standard Basis
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Iris: Axis-Parallel Ellipsoid in PC Basis
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Data Mining
Algebraic

Principal Component Analysis

Support Vector Machines
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Hyperplanes

Let D= {(xi,yi)}ni=1 be a classification dataset, with n points in a d-dimensional
space. We assume that there are only two class labels, that is, yi ∈ {+1,−1},
denoting the positive and negative classes.

A hyperplane in d dimensions is given as the set of all points x ∈Rd that satisfy
the equation h(x)= 0, where h(x) is the hyperplane function:

h(x)=wTx+b=w1x1+w2x2+ ·· ·+wdxd+b

Here, w is a d dimensional weight vector and b is a scalar, called the bias.

For points that lie on the hyperplane, we have

h(x)=wTx+b= 0

The weight vector w specifies the direction that is orthogonal or normal to the
hyperplane, which fixes the orientation of the hyperplane, whereas the bias b
fixes the offset of the hyperplane in the d-dimensional space, i.e., where the
hyperplane intersects each of the axes:

wixi =−b or xi =
−b

wi
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Separating Hyperplane

A hyperplane splits the d-dimensional data space into two half-spaces.

A dataset is said to be linearly separable if each half-space has points only from
a single class.

If the input dataset is linearly separable, then we can find a separating

hyperplane h(x)= 0, such that for all points labeled yi =−1, we have h(xi) < 0,
and for all points labeled yi =+1, we have h(xi) > 0.

The hyperplane function h(x) thus serves as a linear classifier or a linear
discriminant, which predicts the class y for any given point x, according to the
decision rule:

y=
{
+1 if h(x) > 0

−1 if h(x) < 0
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Geometry of a Hyperplane: Distance

Consider a point x ∈Rd that does not lie on the hyperplane. Let xp be the orthogonal
projection of x on the hyperplane, and let r= x− xp. Then we can write x as

x= xp+ r= xp+ r
w

‖w‖

where r is the directed distance of the point x from xp.
To obtain an expression for r, consider the value h(x), we have:

h(x)= h

(
xp+ r

w

‖w‖

)
=wT

(
xp+ r

w

‖w‖

)
+b= r‖w‖

The directed distance r of point x to the hyperplane is thus:

r= h(x)

‖w‖

To obtain distance, which must be non-negative, we multiply r by the class label yi of the
point xi because when h(xi) < 0, the class is −1, and when h(xi) > 0 the class is +1:

δi =
yih(xi)

‖w‖
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Geometry of a Hyperplane in 2D
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Margin and Support Vectors

The distance of a point x from the hyperplane h(x)= 0 is thus given as

δ = y r= y h(x)

‖w‖

The margin is the minimum distance of a point from the separating hyperplane:

δ∗ =min
xi

{
yi(wTxi+b)

‖w‖

}

All the points (or vectors) that achieve the minimum distance are called
support vectors for the hyperplane. They satisfy the condition:

δ∗ = y∗(wTx∗+b)

‖w‖

where y∗ is the class label for x∗.
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Canonical Hyperplane

Multiplying the hyperplane equation on both sides by some scalar s yields an
equivalent hyperplane:

s h(x)= s wTx+ s b= (sw)Tx+ (sb)= 0

To obtain the unique or canonical hyperplane, we choose the scalar
s= 1

y∗(wTx∗+b)
so that the absolute distance of a support vector from the

hyperplane is 1, i.e., the margin is

δ∗ = y∗(wTx∗+b)

‖w‖ = 1

‖w‖

For the canonical hyperplane, for each support vector x∗i (with label y∗i ), we
have y∗i h(x∗i )= 1, and for any point that is not a support vector we have
yih(xi) > 1. Over all points, we have

yi (w
Txi+b)≥ 1, for all points xi ∈D
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Separating Hyperplane: Margin and Support Vectors
Shaded points are support vectors

Canonical hyperplane: h(x)= 5/6x+2/6y−20/6= 0.334x+0.833y−3.332
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SVM: Linear and Separable Case

Assume that the points are linearly separable, that is, there exists a separating
hyperplane that perfectly classifies each point.

The goal of SVMs is to choose the canonical hyperplane, h∗, that yields the
maximum margin among all possible separating hyperplanes

h∗ = argmax
w,b

{
1

‖w‖

}

We can obtain an equivalent minimization formulation:

Objective Function: min
w,b

{‖w‖2
2

}

Linear Constraints: yi (w
Txi+b)≥ 1, ∀xi ∈D
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SVM: Linear and Separable Case

We turn the constrained SVM optimization into an unconstrained one by introducing a
Lagrange multiplier αi for each constraint. The new objective function, called the
Lagrangian, then becomes

min L= 1

2
‖w‖2−

n∑

i=1

αi

(
yi(w

Txi+b)−1
)

L should be minimized with respect to w and b, and it should be maximized with respect
to αi.
Taking the derivative of L with respect to w and b, and setting those to zero, we obtain

∂

∂w
L=w−

n∑

i=1

αiyixi = 0 or w=
n∑

i=1

αiyixi

∂

∂b
L=

n∑

i=1

αiyi = 0

We can see that w can be expressed as a linear combination of the data points xi, with
the signed Lagrange multipliers, αiyi, serving as the coefficients.

Further, the sum of the signed Lagrange multipliers, αiyi, must be zero.
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SVM: Linear and Separable Case

Incorporating w=
n∑

i=1

αiyixi and

n∑

i=1

αiyi = 0 into the Lagrangian we obtain the

new dual Lagrangian objective function, which is specified purely in terms of
the Lagrange multipliers:

Objective Function: max
α

Ldual =
n∑

i=1

αi−
1

2

n∑

i=1

n∑

j=1

αiαjyiyjx
T
i xj

Linear Constraints: αi ≥ 0, ∀i ∈D, and

n∑

i=1

αiyi = 0

where α = (α1,α2, . . . ,αn)
T is the vector comprising the Lagrange multipliers.

Ldual is a convex quadratic programming problem (note the αiαj terms), which
admits a unique optimal solution.
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SVM: Linear and Separable Case

Once we have obtained the αi values for i= 1, . . . ,n, we can solve for the weight
vector w and the bias b. Each of the Lagrange multipliers αi satisfies the KKT
conditions at the optimal solution:

αi

(
yi(w

Txi+b)−1
)
= 0

which gives rise to two cases:

(1) αi = 0, or

(2) yi(wTxi+b)−1= 0, which implies yi(wTxi+b)= 1

This is a very important result because if αi > 0, then yi(wTxi+b)= 1, and thus
the point xi must be a support vector.

On the other hand, if yi(wTxi+b) > 1, then αi = 0, that is, if a point is not a
support vector, then αi = 0.
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Linear and Separable Case: Weight Vector and Bias

Once we know αi for all points, we can compute the weight vector w by taking
the summation only for the support vectors:

w=
∑

i,αi>0

αiyixi

Only the support vectors determine w, since αi = 0 for other points.
To compute the bias b, we first compute one solution bi, per support vector, as
follows:

yi(w
Txi+b)= 1, which implies bi =

1

yi
−wTxi = yi−wTxi

The bias b is taken as the average value:

b= avgαi>0{bi}
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SVM Classifier

Given the optimal hyperplane function h(x)=wTx+b, for any new point z, we
predict its class as

ŷ= sign(h(z))= sign(wTz+b)

where the sign(·) function returns +1 if its argument is positive, and −1 if its
argument is negative.
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Example Dataset: Separable Case

xi xi1 xi2 yi

x1 3.5 4.25 +1

x2 4 3 +1

x3 4 4 +1

x4 4.5 1.75 +1

x5 4.9 4.5 +1

x6 5 4 +1

x7 5.5 2.5 +1

x8 5.5 3.5 +1

x9 0.5 1.5 −1

x10 1 2.5 −1

x11 1.25 0.5 −1

x12 1.5 1.5 −1

x13 2 2 −1

x14 2.5 0.75 −1
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Optimal Separating Hyperplane
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Solving the Ldual quadratic program yields

xi xi1 xi2 yi αi

x1 3.5 4.25 +1 0.0437
x2 4 3 +1 0.2162
x4 4.5 1.75 +1 0.1427
x13 2 2 −1 0.3589
x14 2.5 0.75 −1 0.0437

The weight vector and bias are:

w=
∑

i,αi>0

αiyixi =
(

0.833
0.334

)

b= avg{bi} =−3.332

The optimal hyperplane is given as follows:

h(x)=
(

0.833
0.334

)T

x−3.332= 0
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Soft Margin SVM: Linear and Nonseparable Case

The assumption that the dataset be perfectly linearly separable is unrealistic.
SVMs can handle non-separable points by introducing slack variables ξi as
follows:

yi(w
Txi+b)≥ 1− ξi

where ξi ≥ 0 is the slack variable for point xi, which indicates how much the
point violates the separability condition, that is, the point may no longer be at
least 1/‖w‖ away from the hyperplane.

The slack values indicate three types of points. If ξi = 0, then the corresponding
point xi is at least 1

‖w‖ away from the hyperplane.

If 0 < ξi < 1, then the point is within the margin and still correctly classified,
that is, it is on the correct side of the hyperplane.

However, if ξi ≥ 1 then the point is misclassified and appears on the wrong side
of the hyperplane.
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Soft Margin Hyperplane
Shaded points are the support vectors
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SVM: Soft Margin or Linearly Non-separable Case

In the nonseparable case, also called the soft margin the SVM objective
function is

Objective Function: min
w,b,ξi

{
‖w‖2

2
+C

n∑

i=1

(ξi)
k

}

Linear Constraints: yi (w
Txi+b)≥ 1− ξi, ∀xi ∈D

ξi ≥ 0 ∀xi ∈D

where C and k are constants that incorporate the cost of misclassification.

The term
∑n

i=1(ξi)
k gives the loss, that is, an estimate of the deviation from the

separable case.

The scalar C is a regularization constant that controls the trade-off between
maximizing the margin or minimizing the loss. For example, if C→ 0, then the
loss component essentially disappears, and the objective defaults to maximizing
the margin. On the other hand, if C→∞, then the margin ceases to have much
effect, and the objective function tries to minimize the loss.
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SVM: Soft Margin Loss Function

The constant k governs the form of the loss. When k= 1, called hinge loss, the
goal is to minimize the sum of the slack variables, whereas when k= 2, called
quadratic loss, the goal is to minimize the sum of the squared slack variables.

Hinge Loss: Assuming k= 1, the SVM dual Lagrangian is given as

max
α

Ldual =
n∑

i=1

αi−
1

2

n∑

i=1

n∑

j=1

αiαjyiyjx
T
i xj

The only difference from the separable case is that 0≤ αi ≤ C.

Quadratic Loss: Assuming k= 2, the dual objective is:

max
α

Ldual =
n∑

i=1

αi−
1

2

n∑

i=1

n∑

j=1

αiαjyiyj

(
xT

i xj+
1

2C
δij

)

where δ is the Kronecker delta function, defined as δij = 1 if and only if i= j.
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Example Dataset: Linearly Non-separable Case

xi xi1 xi2 yi

x1 3.5 4.25 +1
x2 4 3 +1
x3 4 4 +1
x4 4.5 1.75 +1
x5 4.9 4.5 +1
x6 5 4 +1
x7 5.5 2.5 +1
x8 5.5 3.5 +1
x9 0.5 1.5 −1
x10 1 2.5 −1
x11 1.25 0.5 −1
x12 1.5 1.5 −1
x13 2 2 −1
x14 2.5 0.75 −1

x15 4 2 +1
x16 2 3 +1
x17 3 2 −1
x18 5 3 −1

Meira Jr. (UFMG) Four Paradigms in Data Mining Chapter 21: Support Vector Machines 204 / 283



Example Dataset: Linearly Non-separable Case

Let k= 1 and C= 1, then solving the Ldual yields the following support vectors
and Lagrangian values αi:

xi xi1 xi2 yi αi

x1 3.5 4.25 +1 0.0271

x2 4 3 +1 0.2162

x4 4.5 1.75 +1 0.9928

x13 2 2 −1 0.9928

x14 2.5 0.75 −1 0.2434

x15 4 2 +1 1

x16 2 3 +1 1

x17 3 2 −1 1

x18 5 3 −1 1

The optimal hyperplane is given as follows:

h(x)=
(

0.834
0.333

)T

x−3.334= 0
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Example Dataset: Linearly Non-separable Case

The slack ξi = 0 for all points that are not support vectors, and also for those
support vectors that are on the margin. Slack is positive only for the remaining
support vectors and it can be computed as: ξi = 1− yi(wTxi+b).
Thus, for all support vectors not on the margin, we have

xi wTxi wTxi+b ξi = 1− yi(wTxi+b)

x15 4.001 0.667 0.333

x16 2.667 −0.667 1.667

x17 3.167 −0.167 0.833

x18 5.168 1.834 2.834

The total slack is given as
∑

i

ξi = ξ15+ ξ16+ ξ17+ ξ18 = 0.333+1.667+0.833+2.834= 5.667

The slack variable ξi > 1 for those points that are misclassified (i.e., are on the
wrong side of the hyperplane), namely x16 = (3,3)T and x18 = (5,3)T. The other
two points are correctly classified, but lie within the margin, and thus satisfy
0 < ξi < 1.
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Kernel SVM: Nonlinear Case

The linear SVM approach can be used for datasets with a nonlinear decision
boundary via the kernel trick.

Conceptually, the idea is to map the original d-dimensional points xi in the
input space to points φ(xi) in a high-dimensional feature space via some
nonlinear transformation φ.

Given the extra flexibility, it is more likely that the points φ(xi) might be
linearly separable in the feature space.

A linear decision surface in feature space actually corresponds to a nonlinear
decision surface in the input space.

Further, the kernel trick allows us to carry out all operations via the kernel
function computed in input space, rather than having to map the points into
feature space.
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Nonlinear SVM

There is no linear classifier that can discriminate between the points. However,
there exists a perfect quadratic classifier that can separate the two classes.
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Data Mining

Paradigms

Combinatorial

Probabilistic

Algebraic

Graph-based
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Data Mining
Graph-based

Domain

Input data is modeled as a graph, enabling not just richer representations but
also several existing models and algorithms.

Task

Determine the best representation and technique, according to an optimization
metric.

Challenge

How can we handle the larger complexity and numerosity induced by graphs?
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Graphs

A graph G= (V,E) comprises a finite nonempty set V of vertices or nodes, and a
set E⊆ V×V of edges consisting of unordered pairs of vertices.

The number of nodes in the graph G, given as |V| = n, is called the order of the
graph, and the number of edges in the graph, given as |E| =m, is called the size

of G.

A directed graph or digraph has an edge set E consisting of ordered pairs of
vertices.

A weighted graph consists of a graph together with a weight wij for each edge
(vi,vj) ∈ E.

A graph H= (VH,EH) is called a subgraph of G= (V,E) if VH ⊆ V and EH ⊆ E.
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Undirected and Directed Graphs
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Degree Distribution

The degree of a node vi ∈ V is the number of edges incident with it, and is
denoted as d(vi) or just di.

The degree sequence of a graph is the list of the degrees of the nodes sorted in
non-increasing order.

Let Nk denote the number of vertices with degree k. The degree frequency

distribution of a graph is given as

(N0,N1, . . . ,Nt)

where t is the maximum degree for a node in G.

Let X be a random variable denoting the degree of a node. The degree

distribution of a graph gives the probability mass function f for X, given as

(
f(0), f(1), . . . , f(t)

)

where f(k)= P(X= k)= Nk
n

is the probability of a node with degree k.
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Degree Distribution

v1 v2

v3 v4 v5 v6

v7 v8

The degree sequence of the graph is

(4,4,4,3,2,2,2,1)

Its degree frequency distribution is

(N0,N1,N2,N3,N4)= (0,1,3,1,3)

The degree distribution is given as
(
f(0), f(1), f(2), f(3), f(4)

)
= (0,0.125,0.375,0.125,0.375)
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Data Mining
Graph-based

Frequent Subgraph Mining

Spectral Clustering
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Unlabeled and Labeled Graphs

The goal of graph mining is to extract interesting subgraphs from a single large
graph (e.g., a social network), or from a database of many graphs.

A graph is a pair G= (V,E) where V is a set of vertices, and E⊆V×V is a set of
edges.

A labeled graph has labels associated with its vertices as well as edges. We use
L(u) to denote the label of the vertex u, and L(u,v) to denote the label of the
edge (u,v), with the set of vertex labels denoted as 6V and the set of edge labels
as 6E. Given an edge (u,v) ∈G, the tuple 〈u,v,L(u),L(v),L(u,v)〉 that augments
the edge with the node and edge labels is called an extended edge.

A graph G′ = (V′,E′) is said to be a subgraph of G if V′ ⊆ V and E′ ⊆ E. A
connected subgraph is defined as a subgraph G′ such that V′ ⊆ V, E′ ⊆ E, and for
any two nodes u,v ∈ V′, there exists a path from u to v in G′.

Meira Jr. (UFMG) Four Paradigms in Data Mining Chapter 11: Graph Pattern Mining 216 / 283



Unlabeled and Labeled Graphs

v1 v2

v3 v4 v5
v6

v7 v8
(a)

a c

b a d c

b c

v1 v2

v3 v4 v5
v6

v7 v8
(b)
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Subgraph and Connected Subgraph

a c

b a d c

b c

v1 v2

v3 v4 v5
v6

v7 v8
(c)

a c

b a d c

b c

v1 v2

v3 v4 v5
v6

v7 v8
(d)
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Graph and Subgraph Isomorphism

A graph G′ = (V′,E′) is said to be isomorphic to another graph G= (V,E) if
there exists a bijective function φ : V′→ V, i.e., both injective (into) and
surjective (onto), such that

(u,v) ∈ E′ ⇐⇒ (φ(u),φ(v)) ∈ E

∀u ∈ V′, L(u)= L(φ(u))

∀(u,v) ∈ E′, L(u,v)= L(φ(u),φ(v))

In other words, the isomorphism φ preserves the edge adjacencies as well as the
vertex and edge labels. Put differently, the extended tuple
〈u,v,L(u),L(v),L(u,v)〉 ∈G′ if and only if
〈φ(u),φ(v),L(φ(u)),L(φ(v)),L(φ(u),φ(v))〉 ∈G.

If the function φ is only injective but not surjective, we say that the mapping φ

is a subgraph isomorphism from G′ to G. In this case, we say that G′ is
isomorphic to a subgraph of G, that is, G′ is subgraph isomorphic to G, denoted
G′ ⊆G; we also say that G contains G′.
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Graph and Subgraph Isomorphism

u1 a

G1

u2 a

u3 b u4 b

v1 a

G2

v3 a

v2 b v4 b

w1 a

G3

w2 a

w3 b

x1 b

G4

x2 a

x3 b
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Graph Isomorphism

G1 and G2 are isomorphic graphs. There are several possible isomorphisms
between G1 and G2. An example of an isomorphism φ : V2→ V1 is

φ(v1)= u1 φ(v2)= u3 φ(v3)= u2 φ(v4)= u4

The inverse mapping φ−1 specifies the isomorphism from G1 to G2. For
example, φ−1(u1)= v1, φ−1(u2)= v3, and so on.

The set of all possible isomorphisms from G2 to G1 are as follows:

v1 v2 v3 v4

φ1 u1 u3 u2 u4

φ2 u1 u4 u2 u3

φ3 u2 u3 u1 u4

φ4 u2 u4 u1 u3
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Subgraph Isomorphism

The graph G3 is subgraph isomorphic to both G1 and G2. The set of all possible
subgraph isomorphisms from G3 to G1 are as follows:

w1 w2 w3

φ1 u1 u2 u3

φ2 u1 u2 u4

φ3 u2 u1 u3

φ4 u2 u1 u4
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Mining Frequent Subgraph

Given a database of graphs, D= {G1,G2, . . . ,Gn}, and given some graph G, the
support of G in D is defined as follows:

sup(G)=
∣∣∣
{
Gi ∈D |G⊆Gi

}∣∣∣

The support is simply the number of graphs in the database that contain G.
Given a minsup threshold, the goal of graph mining is to mine all frequent
connected subgraphs with sup(G)≥minsup.

If we consider subgraphs with m vertices, then there are
(

m
2

)
=O(m2) possible

edges. The number of possible subgraphs with m nodes is then O(2m2
) because

we may decide either to include or exclude each of the edges. Many of these

subgraphs will not be connected, but O(2m2
) is a convenient upper bound.

When we add labels to the vertices and edges, the number of labeled graphs
will be even more.
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Graph Pattern Mining

There are two main challenges in frequent subgraph mining.

The first is to systematically generate nonredundant candidate subgraphs. We
use edge-growth as the basic mechanism for extending the candidates.

The second challenge is to count the support of a graph in the database. This
involves subgraph isomorphism checking, as we have to find the set of graphs
that contain a given candidate.
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Candidate Generation

An effective strategy to enumerate subgraph patterns is rightmost path

extension.

Given a graph G, we perform a depth-first search (DFS) over its vertices, and
create a DFS spanning tree, that is, one that covers or spans all the vertices.

Edges that are included in the DFS tree are called forward edges, and all other
edges are called backward edges. Backward edges create cycles in the graph.

Once we have a DFS tree, define the rightmost path as the path from the root
to the rightmost leaf, that is, to the leaf with the highest index in the DFS order.
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Depth-first Spanning Tree
Starting at v1, each DFS step chooses the vertex with smallest index

v6 d c

v5

a v7

v1 a a v2 b v8

v4 c b v3

(e)

v6 d c

v5

a v7

v1 a a v2 b v8

v4 c b v3

(f)
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Rightmost Path Extensions

For generating new candidates from a given graph G, we extend it by adding a new edge
to vertices only on the rightmost path. We can either extend G by adding backward
edges from the rightmost vertex to some other vertex on the rightmost path (disallowing
self-loops or multi-edges), or we can extend G by adding forward edges from any of the
vertices on the rightmost path. A backward extension does not add a new vertex,
whereas a forward extension adds a new vertex.

For systematic candidate generation we impose a total order on the extensions, as
follows: First, we try all backward extensions from the rightmost vertex, and then we try
forward extensions from vertices on the rightmost path.

Among the backward edge extensions, if ur is the rightmost vertex, the extension (ur,vi)

is tried before (ur,vj) if i < j. In other words, backward extensions closer to the root are
considered before those farther away from the root along the rightmost path.

Among the forward edge extensions, if vx is the new vertex to be added, the extension
(vi,vx) is tried before (vj,vx) if i > j. In other words, the vertices farther from the root
(those at greater depth) are extended before those closer to the root. Also note that the
new vertex will be numbered x= r+1, as it will become the new rightmost vertex after
the extension.
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Rightmost Path Extensions

v1 a

v2 a v5 c #6

v3 b v4 c v6 d v7 a #5

v8 b #4

#3

#1

#2
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DFS Code

For systematic enumeration we rank the set of isomorphic graphs and pick one
member as the canonical representative.

Let G be a graph and let TG be a DFS spanning tree for G. The DFS tree TG

defines an ordering of both the nodes and edges in G. The DFS node ordering
is obtained by numbering the nodes consecutively in the order they are visited
in the DFS walk.

Assume that for a pattern graph G the nodes are numbered according to their
position in the DFS ordering, so that i < j implies that vi comes before vj in the
DFS walk.

The DFS edge ordering is obtained by following the edges between consecutive
nodes in DFS order, with the condition that all the backward edges incident
with vertex vi are listed before any of the forward edges incident with it.

The DFS code for a graph G, for a given DFS tree TG, denoted DFScode(G), is
defined as the sequence of extended edge tuples of the form〈
vi,vj,L(vi),L(vj),L(vi,vj)

〉
listed in the DFS edge order.
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Canonical DFS Code

A subgraph is canonical if it has the smallest DFS code among all possible isomorphic
graphs.

Let t1 and t2 be any two DFS code tuples:

t1 =
〈
vi,vj,L(vi),L(vj),L(vi,vj)

〉

t2 =
〈
vx,vy,L(vx),L(vy),L(vx,vy)

〉

We say that t1 is smaller than t2, written t1 < t2, iff

i) (vi,vj) <e (vx,vy),or

ii) (vi,vj)= (vx,vy) and
〈
L(vi),L(vj),L(vi,vj)

〉
<l

〈
L(vx),L(vy),L(vx,vy)

〉

where <e is an ordering on the edges and <l is an ordering on the vertex and edge labels.

The label order <l is the standard lexicographic order on the vertex and edge labels.

The edge order <e is derived from the rules for rightmost path extension, namely that all
of a node’s backward extensions must be considered before any forward edge from that
node, and deep DFS trees are preferred over bushy DFS trees.
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Canonical DFS Code: Edge Ordering

Let eij = (vi,vj) and exy = (vx,vy) be any two edges. We say that eij <e exy iff

If eij and exy are both forward edges, then (a) j < y, or (b) j= y and i > x.

If eij and exy are both backward edges, then (a) i < x, or (b) i= x and j < y.

If eij is a forward and exy is a backward edge, then j≤ x.

If eij is a backward and exy is a forward edge, then i < y.

The canonical DFS code for a graph G is defined as follows:

C =min
G′

{
DFScode(G′) |G′ is isomorphic to G

}
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Canonical DFS Code
G1 has the canonical or minimal DFS code

v1 a

G1

v2 a

v3 a b v4

q

r r

r

v1 a

G2

v2 a

v3 b a v4

q

r r

r

v1 a

G3

v2 a b v4

v3 a

q

r

r

r

t11 = 〈v1,v2,a,a,q〉
t12 = 〈v2,v3,a,a, r〉
t13 = 〈v3,v1,a,a, r〉
t14 = 〈v2,v4,a,b, r〉

t21 = 〈v1,v2,a,a,q〉
t22 = 〈v2,v3,a,b, r〉
t23 = 〈v2,v4,a,a, r〉
t24 = 〈v4,v1,a,a, r〉

t31 = 〈v1,v2,a,a,q〉
t32 = 〈v2,v3,a,a, r〉
t33 = 〈v3,v1,a,a, r〉
t34 = 〈v1,v4,a,b, r〉

DFScode(G1) DFScode(G2) DFScode(G3)
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gSpan Graph Mining Algorithm

gSpan enumerates patterns in a depth-first manner, starting with the empty
code. Given a canonical and frequent code C, gSpan first determines the set of
possible edge extensions along the rightmost path.

The function RIGHTMOSTPATH-EXTENSIONS returns the set of edge
extensions along with their support values, E . Each extended edge t in E leads
to a new candidate DFS code C′ = C∪{t}, with support sup(C)= sup(t).

For each new candidate code, gSpan checks whether it is frequent and
canonical, and if so gSpan recursively extends C′ The algorithm stops when
there are no more frequent and canonical extensions possible.
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Algorithm GSPAN

// Initial Call: C←∅
GSPAN (C, D, minsup):
E←RIGHTMOSTPATH-EXTENSIONS(C,D) // extensions and1

supports

foreach (t,sup(t)) ∈ E do2

C′← C∪ t // extend the code with extended edge tuple t3

sup(C′)← sup(t) // record the support of new extension4

// recursively call gSpan if code is frequent and

canonical

if sup(C′)≥minsup and ISCANONICAL (C′) then5

GSPAN (C′, D, minsup)6
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Example Graph Database: gSpan

G1

a10

b20 a30

b40

G2

b50

a60 b70

a80
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Frequent Graph Mining: gSpan

C0

∅

C1

〈0,1,a,a〉
a0

a1

C2

〈0,1,a,b〉
a0

b1

C3

〈0,1,b,a〉
b0

a1

C4

〈0,1,b,b〉
b0

b1

C5

〈0,1,a,a〉
〈1,2,a,b〉

a0

a1

b2

C6

〈0,1,a,a〉
〈0,2,a,b〉

a0

a1 b2

C15

〈0,1,a,b〉
〈1,2,b,a〉

a0

b1

a2

C16

〈0,1,a,b〉
〈1,2,b,b〉

a0

b1

b2

C17

〈0,1,a,b〉
〈0,2,a,a〉

a0

b1 a2

C18

〈0,1,a,b〉
〈0,2,a,b〉

a0

b1 b2
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Frequent Graph Mining: gSpan

C5

〈0,1,a,a〉
〈1,2,a,b〉

a0

a1

b2

C7

〈0,1,a,a〉
〈1,2,a,b〉
〈2,0,b,a〉

a0

a1

b2

C8

〈0,1,a,a〉
〈1,2,a,b〉
〈2,3,b,b〉

a0

a1

b2

b3

C9

〈0,1,a,a〉
〈1,2,a,b〉
〈1,3,a,b〉

a0

a1

b2 b3

C10

〈0,1,a,a〉
〈1,2,a,b〉
〈0,3,a,b〉

a0

a1 b3

b2
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Frequent Graph Mining: gSpan

C7

〈0,1,a,a〉
〈1,2,a,b〉
〈2,0,b,a〉

a0

a1

b2

C8

〈0,1,a,a〉
〈1,2,a,b〉
〈2,3,b,b〉

a0

a1

b2

b3

C9

〈0,1,a,a〉
〈1,2,a,b〉
〈1,3,a,b〉

a0

a1

b2 b3

C10

〈0,1,a,a〉
〈1,2,a,b〉
〈0,3,a,b〉

a0

a1 b3

b2

C11

〈0,1,a,a〉
〈1,2,a,b〉
〈2,0,b,a〉
〈2,3,b,b〉

a0

a1

b2

b3

C12

〈0,1,a,a〉
〈1,2,a,b〉
〈2,0,b,a〉
〈1,3,a,b〉

a0

a1

b2 b3

C13

〈0,1,a,a〉
〈1,2,a,b〉
〈2,0,b,a〉
〈0,3,a,b〉
a0

a1 b3

b2

C14

〈0,1,a,a〉
〈1,2,a,b〉
〈1,3,a,b〉
〈3,0,b,a〉

a0

a1

b2 b3
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Frequent Graph Mining: gSpan

C15

〈0,1,a,b〉
〈1,2,b,a〉

a0

b1

a2

C16

〈0,1,a,b〉
〈1,2,b,b〉

a0

b1

b2

C17

〈0,1,a,b〉
〈0,2,a,a〉

a0

b1 a2

C18

〈0,1,a,b〉
〈0,2,a,b〉

a0

b1 b2

C19

〈0,1,a,b〉
〈1,2,b,a〉
〈2,0,a,b〉

a0

b1

a2

C20

〈0,1,a,b〉
〈1,2,b,a〉
〈2,3,a,b〉

a0

b1

a2

b3

C21

〈0,1,a,b〉
〈1,2,b,a〉
〈1,3,b,b〉

a0

b1

a2 b3

C22

〈0,1,a,b〉
〈1,2,b,a〉
〈0,3,a,b〉

a0

b1 b3

a2

C24

〈0,1,a,b〉
〈0,2,a,b〉
〈2,3,b,a〉

a0

b1 b2

a3

C25

〈0,1,a,b〉
〈0,2,a,b〉
〈0,3,a,a〉

a0

b1 b2 a3
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Frequent Graph Mining: gSpan

C19

〈0,1,a,b〉
〈1,2,b,a〉
〈2,0,a,b〉

a0

b1

a2

C20

〈0,1,a,b〉
〈1,2,b,a〉
〈2,3,a,b〉

a0

b1

a2

b3

C21

〈0,1,a,b〉
〈1,2,b,a〉
〈1,3,b,b〉

a0

b1

a2 b3

C22

〈0,1,a,b〉
〈1,2,b,a〉
〈0,3,a,b〉

a0

b1 b3

a2

C24

〈0,1,a,b〉
〈0,2,a,b〉
〈2,3,b,a〉

a0

b1 b2

a3

C25

〈0,1,a,b〉
〈0,2,a,b〉
〈0,3,a,a〉

a0

b1 b2 a3

C23

〈0,1,a,b〉
〈1,2,b,a〉
〈2,3,a,b〉
〈3,1,b,b〉

a0

b1

a2

b3
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Extension and Support Computation

The support computation task is to find the number of graphs in the database D
that contain a candidate subgraph, which is very expensive because it involves
subgraph isomorphism checks. gSpan combines the tasks of enumerating
candidate extensions and support computation.

Assume that D= {G1,G2, . . . ,Gn} comprises n graphs. Let C= {t1, t2, . . . , tk}
denote a frequent canonical DFS code comprising k edges, and let G(C) denote
the graph corresponding to code C. The task is to compute the set of possible
rightmost path extensions from C, along with their support values.

Given code C, gSpan first records the nodes on the rightmost path (R), and the
rightmost child (ur). Next, gSpan considers each graph Gi ∈D. If C= ∅, then
each distinct label tuple of the form 〈L(x),L(y),L(x,y)〉 for adjacent nodes x and
y in Gi contributes a forward extension 〈0,1,L(x),L(y),L(x,y)〉 On the other
hand, if C is not empty, then gSpan enumerates all possible subgraph
isomorphisms 8i between the code C and graph Gi. Given subgraph
isomorphism φ ∈8i, gSpan finds all possible forward and backward edge
extensions, and stores them in the extension set E .

Meira Jr. (UFMG) Four Paradigms in Data Mining Chapter 11: Graph Pattern Mining 241 / 283



Forward and Backward Extensions

Backward extensions are allowed only from the rightmost child ur in C to some other
node on the rightmost path R.

The method considers each neighbor x of φ(ur) in Gi and checks whether it is a mapping
for some vertex v= φ−1(x) along the rightmost path R in C. If the edge (ur,v) does not
already exist in C, it is a new extension, and the extended tuple
b= 〈ur,v,L(ur),L(v),L(ur,v)〉 is added to the set of extensions E , along with the graph id i
that contributed to that extension.

Forward extensions are allowed only from nodes on the rightmost path R to new nodes.
For each node u in R, the algorithm finds a neighbor x in Gi that is not in a mapping
from some node in C. For each such node x, the forward extension
f= 〈u,ur+1,L(φ(u)),L(x),L(φ(u),x)〉 is added to E , along with the graph id i. Because a
forward extension adds a new vertex to the graph G(C), the id of the new node in C must
be ur+1, that is, one more than the highest numbered node in C, which by definition is
the rightmost child ur.
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Algorithm RIGHTMOSTPATH-EXTENSIONS

RIGHTMOSTPATH-EXTENSIONS (C, D):
R← nodes on the rightmost path in C1
ur← rightmost child in C // dfs number2
E←∅ // set of extensions from C3
foreach Gi ∈D, i= 1, . . . ,n do4

if C= ∅ then5
foreach distinct 〈L(x),L(y),L(x,y)〉 ∈Gi do6

f=
〈
0,1,L(x),L(y),L(x,y)

〉
7

Add tuple f to E along with graph id i8

else9
8i = SUBGRAPHISOMORPHISMS (C,Gi)10
foreach isomorphism φ ∈8i do11

foreach x ∈NGi
(φ(ur)) such that ∃v← φ−1(x) do12

if v ∈ R and (ur,v) 6∈G(C) then13
b=

〈
ur,v,L(ur),L(v),L(ur,v)

〉
14

Add tuple b to E along with graph id i15

foreach u ∈ R do16
foreach x ∈NGi

(φ(u)) and 6 ∃φ−1(x) do17
f=

〈
u,ur +1,L(φ(u)),L(x),L(φ(u),x)

〉
18

Add tuple f to E along with graph id i19

foreach distinct extension s ∈ E do20
sup(s)= number of distinct graph ids that support tuple s21

return set of pairs 〈s,sup(s)〉 for extensions s ∈ E , in tuple sorted order22
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Righmost Path Extensions

C

t1 : 〈0,1,a,a〉
t2 : 〈1,2,a,b〉

G(C)

a0

a1

b2

(a) Code C and graph G(C)

8 φ 0 1 2

81

φ1 10 30 20
φ2 10 30 40
φ3 30 10 20

82

φ4 60 80 70
φ5 80 60 50
φ6 80 60 70

(b) Subgraph isomorphisms

Id φ Extensions

G1

φ1 {〈2,0,b,a〉,〈1,3,a,b〉}
φ2 {〈1,3,a,b〉,〈0,3,a,b〉}
φ3 {〈2,0,b,a〉,〈0,3,a,b〉}

G2

φ4 {〈2,0,b,a〉,〈2,3,b,b〉, 〈0,3,a,b〉}
φ5 {〈2,3,b,b〉,〈1,3,a,b〉}
φ6 {〈2,0,b,a〉,〈2,3,b,b〉, 〈1,3,a,b〉}

(c) Edge extensions

Extension Support

〈2,0,b,a〉 2
〈2,3,b,b〉 1
〈1,3,a,b〉 2
〈0,3,a,b〉 2

(d) Extensions (sorted) and supports
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Algorithm SUBGRAPHISOMORPHISMS

SUBGRAPHISOMORPHISMS (C= {t1, t2, . . . , tk}, G):
8←{φ(0)→ x | x ∈G and L(x)= L(0)}1

foreach ti ∈ C, i= 1, . . . ,k do2

〈u,v,L(u),L(v),L(u,v)〉← ti // expand extended edge ti3

8′←∅ // partial isomorphisms including ti4

foreach partial isomorphism φ ∈8 do5

if v > u then6

// forward edge

foreach x ∈NG(φ(u)) do7

if 6 ∃φ−1(x) and L(x)= L(v) and L(φ(u),x)= L(u,v) then8

φ′← φ∪ {φ(v)→ x}9

Add φ′ to 8′10

else11

// backward edge

if φ(v) ∈NGj
(φ(u)) then Add φ to 8′ // valid isomorphism12

8←8′ // update partial isomorphisms13

return 814
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Subgraph Isomorphisms

To enumerate all the possible isomorphisms from C to each graph Gi ∈D the
function SUBGRAPHISOMORPHISMS, accepts a code C and a graph G, and
returns the set of all isomorphisms between C and G.

The set of isomorphisms 8 is initialized by mapping vertex 0 in C to each vertex
x in G that shares the same label as 0, that is, if L(x)= L(0).

The method considers each tuple ti in C and extends the current set of partial
isomorphisms. Let ti = 〈u,v,L(u),L(v),L(u,v)〉. We have to check if each
isomorphism φ ∈8 can be extended in G using the information from ti

If ti is a forward edge, then we seek a neighbor x of φ(u) in G such that x has
not already been mapped to some vertex in C, that is, φ−1(x) should not exist,
and the node and edge labels should match, that is, L(x)= L(v), and
L(φ(u),x)= L(u,v). If so, φ can be extended with the mapping φ(v)→ x. The
new extended isomorphism, denoted φ′, is added to the initially empty set of
isomorphisms 8′.

If ti is a backward edge, we have to check if φ(v) is a neighbor of φ(u) in G. If
so, we add the current isomorphism φ to 8′.
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Subgraph Isomorphisms

C

t1 : 〈0,1,a,a〉
t2 : 〈1,2,a,b〉

G(C)

a0

a1

b2

Initial 8

id φ 0

G1
φ1 10
φ2 30

G2
φ3 60
φ4 80

Add t1

id φ 0,1

G1
φ1 10,30
φ2 30,10

G2
φ3 60,80
φ4 80,60

Add t2

id φ 0,1,2

G1

φ′1 10,30,20
φ′′1 10,30,40
φ2 30,10,20

G2

φ3 60,80,70
φ′4 80,60,50
φ′′4 80,60,70
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Canonicality Checking

Given a DFS code C= {t1, t2, . . . , tk} comprising k extended edge tuples and the
corresponding graph G(C), the task is to check whether the code C is canonical.

This can be accomplished by trying to reconstruct the canonical code C∗ for
G(C) in an iterative manner starting from the empty code and selecting the
least rightmost path extension at each step, where the least edge extension is
based on the extended tuple comparison operator.

If at any step the current (partial) canonical DFS code C∗ is smaller than C,
then we know that C cannot be canonical and can thus be pruned. On the other
hand, if no smaller code is found after k extensions then C must be canonical.
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Algorithm ISCANONICAL: Canonicality Checking

ISCANONICAL (C):
DC←{G(C)} // graph corresponding to code C1

C∗←∅ // initialize canonical DFScode2

for i= 1 · · ·k do3

E =RIGHTMOSTPATH-EXTENSIONS(C∗,DC) // extensions of4

C∗

(si,sup(si))←min{E} // least rightmost edge extension of5

C∗

if si < ti then6

return false // C∗ is smaller, thus C is not canonical7

C∗← C∗ ∪ si8

return true // no smaller code exists; C is canonical9

Meira Jr. (UFMG) Four Paradigms in Data Mining Chapter 11: Graph Pattern Mining 249 / 283



Canonicality Checking

G Step 1 Step 2 Step 3

a0

a1

b2 b3

a

G∗

a

a

G∗

a

b

a

G∗

a

b

C
t1 = 〈0,1,a,a〉
t2 = 〈1,2,a,b〉
t3 = 〈1,3,a,b〉
t4 = 〈3,0,b,a〉

C∗

s1 = 〈0,1,a,a〉
C∗

s1 = 〈0,1,a,a〉
s2 = 〈1,2,a,b〉

C∗

s1 = 〈0,1,a,a〉
s2 = 〈1,2,a,b〉
s3 = 〈2,0,b,a〉

Meira Jr. (UFMG) Four Paradigms in Data Mining Chapter 11: Graph Pattern Mining 250 / 283



Data Mining
Graph-based

Frequent Subgraph Mining

Spectral Clustering
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Graphs and Matrices: Adjacency Matrix

Given a dataset D= {xi}ni=1 consisting of n points in R
d, let A denote the n×n

symmetric similarity matrix between the points, given as

A=




a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

an1 an2 · · · ann




where A(i, j)= aij denotes the similarity or affinity between points xi and xj.

We require the similarity to be symmetric and non-negative, that is, aij = aji and
aij ≥ 0, respectively.

The matrix A is the weighted adjacency matrix for the data graph. If all affinities
are 0 or 1, then A represents the regular adjacency relationship between the
vertices.
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Iris Similarity Graph: Mutual Nearest Neighbors
|V| = n= 150, |E| =m= 1730
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Graphs and Matrices: Degree Matrix

For a vertex xi, let di denote the degree of the vertex, defined as

di =
n∑

j=1

aij

We define the degree matrix 1 of graph G as the n×n diagonal matrix:

1=




d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...

0 0 · · · dn


=




∑n
j=1 a1j 0 · · · 0

0
∑n

j=1 a2j · · · 0
...

...
. . .

...

0 0 · · ·
∑n

j=1 anj




1 can be compactly written as 1(i, i)= di for all 1≤ i≤ n.
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Graphs and Matrices: Normalized Adjacency Matrix

The normalized adjacency matrix is obtained by dividing each row of the
adjacency matrix by the degree of the corresponding node. Given the weighted
adjacency matrix A for a graph G, its normalized adjacency matrix is defined as

M=1−1A=




a11
d1

a12
d1
· · · a1n

d1
a21
d2

a22
d2
· · · a2n

d2

...
...

. . .
...

an1
dn

an2
dn
· · · ann

dn




Because A is assumed to have non-negative elements, this implies that each

element of M, namely mij is also non-negative, as mij =
aij

di
≥ 0.

Each row in M sums to 1, which implies that 1 is an eigenvalue of M. In fact,
λ1 = 1 is the largest eigenvalue of M, and the other eigenvalues satisfy the
property that |λi| ≤ 1. Because M is not symmetric, its eigenvectors are not
necessarily orthogonal.
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Example Graph: Adjacency and Degree Matrices

1 6

2 4 5

3 7

Its adjacency and degree matrices are given as

A=




0 1 0 1 0 1 0
1 0 1 1 0 0 0
0 1 0 1 0 0 1
1 1 1 0 1 0 0
0 0 0 1 0 1 1
1 0 0 0 1 0 1
0 0 1 0 1 1 0




1=




3 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 4 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 3



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Example Graph: Normalized Adjacency Matrix

1 6

2 4 5

3 7

The normalized adjacency matrix is as follows:

M=1−1A=




0 0.33 0 0.33 0 0.33 0
0.33 0 0.33 0.33 0 0 0

0 0.33 0 0.33 0 0 0.33
0.25 0.25 0.25 0 0.25 0 0

0 0 0 0.33 0 0.33 0.33
0.33 0 0 0 0.33 0 0.33

0 0 0.33 0 0.33 0.33 0




The eigenvalues of M are: λ1 = 1, λ2 = 0.483, λ3 = 0.206, λ4 =−0.045, λ5 =−0.405,
λ6 =−0.539, λ7 =−0.7
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Graph Laplacian Matrix

The Laplacian matrix of a graph is defined as

L=1−A

=




∑n
j=1 a1j 0 · · · 0

0
∑n

j=1 a2j · · · 0
...

...
. . .

...

0 0 · · ·
∑n

j=1 anj


−




a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

an1 an2 · · · ann




=




∑
j6=1 a1j −a12 · · · −a1n

−a21

∑
j6=2 a2j · · · −a2n

...
... · · ·

...

−an1 −an2 · · ·
∑

j6=n anj




L is a symmetric, positive semidefinite matrix. This means that L has n real,
non-negative eigenvalues, which can be arranged in decreasing order as follows:
λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0. Because L is symmetric, its eigenvectors are orthonormal.
The rank of L is at most n−1, and the smallest eigenvalue is λn = 0.
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Example Graph: Laplacian Matrix

1 6

2 4 5

3 7

The graph Laplacian is given as

L=1−A=




3 −1 0 −1 0 −1 0
−1 3 −1 −1 0 0 0

0 −1 3 −1 0 0 −1
−1 −1 −1 4 −1 0 0

0 0 0 −1 3 −1 −1
−1 0 0 0 −1 3 −1

0 0 −1 0 −1 −1 3




The eigenvalues of L are as follows: λ1 = 5.618, λ2 = 4.618, λ3 = 4.414, λ4 = 3.382,
λ5 = 2.382, λ6 = 1.586, λ7 = 0
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Normalized Laplacian Matrices

The normalized symmetric Laplacian matrix of a graph is defined as

Ls =1−1/2L1−1/2 =




∑
j 6=1 a1j√
d1d1

− a12√
d1d2

· · · − a1n√
d1dn

− a21√
d2d1

∑
j 6=2 a2j√
d2d2

· · · − a2n√
d2dn

...
...

. . .
...

− an1√
dnd1

− an2√
dnd2

· · ·
∑

j 6=n anj√
dndn




Ls is a symmetric, positive semidefinite matrix, with rank at most n−1. The smallest
eigenvalue λn = 0.
The normalized asymmetric Laplacian matrix is defined as

La =1−1L=




∑
j 6=1 a1j

d1
− a12

d1
· · · − a1n

d1

− a21
d2

∑
j 6=2 a2j

d2
· · · − a2n

d2

..

.
..
.

. . .
..
.

− an1
dn

− an2
dn

· · ·
∑

j 6=n anj

dn




La is also a positive semi-definite matrix with n real eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn = 0.
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Example Graph: Normalized Symmetric Laplacian

Matrix

1 6

2 4 5

3 7

The normalized symmetric Laplacian is given as

Ls =




1 −0.33 0 −0.29 0 −0.33 0
−0.33 1 −0.33 −0.29 0 0 0

0 −0.33 1 −0.29 0 0 −0.33
−0.29 −0.29 −0.29 1 −0.29 0 0

0 0 0 −0.29 1 −0.33 −0.33
−0.33 0 0 0 −0.33 1 −0.33

0 0 −0.33 0 −0.33 −0.33 1




The eigenvalues of Ls are as follows: λ1 = 1.7, λ2 = 1.539, λ3 = 1.405, λ4 = 1.045,
λ5 = 0.794, λ6 = 0.517, λ7 = 0
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Example Graph: Normalized Asymmetric Laplacian

Matrix

1 6

2 4 5

3 7

The normalized asymmetric Laplacian matrix is given as

La =1−1L=




1 −0.33 0 −0.33 0 −0.33 0
−0.33 1 −0.33 −0.33 0 0 0

0 −0.33 1 −0.33 0 0 −0.33
−0.25 −0.25 −0.25 1 −0.25 0 0

0 0 0 −0.33 1 −0.33 −0.33
−0.33 0 0 0 −0.33 1 −0.33

0 0 −0.33 0 −0.33 −0.33 1




The eigenvalues of La are identical to those for Ls, namely λ1 = 1.7, λ2 = 1.539,
λ3 = 1.405, λ4 = 1.045, λ5 = 0.794, λ6 = 0.517, λ7 = 0
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Clustering as Graph Cuts

A k-way cut in a graph is a partitioning or clustering of the vertex set, given as
C = {C1, . . . ,Ck}. We require C to optimize some objective function that
captures the intuition that nodes within a cluster should have high similarity,
and nodes from different clusters should have low similarity.

Given a weighted graph G defined by its similarity matrix A, let S,T⊆ V be any
two subsets of the vertices. We denote by W(S,T) the sum of the weights on all
edges with one vertex in S and the other in T, given as

W(S,T)=
∑

vi∈S

∑

vj∈T

aij

Given S⊆ V, we denote by S the complementary set of vertices, that is,
S=V− S. A (vertex) cut in a graph is defined as a partitioning of V into S⊂ V
and S. The weight of the cut or cut weight is defined as the sum of all the weights
on edges between vertices in S and S, given as W(S,S).
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Cuts and Matrix Operations

Given a clustering C = {C1, . . . ,Ck} comprising k clusters. Let ci ∈ {0,1}n be the cluster

indicator vector that records the cluster membership for cluster Ci, defined as

cij =
{

1 if vj ∈ Ci

0 if vj 6∈ Ci

The cluster size can be written as

|Ci| = cT
i ci = ‖ci‖2

The volume of a cluster Ci is defined as the sum of all the weights on edges with one end
in cluster Ci:

vol(Ci)=W(Ci,V)=
∑

vr∈Ci

dr =
∑

vr∈Ci

cirdrcir =
n∑

r=1

n∑

s=1

cir1rscis = cT
i 1ci

The sum of weights of all internal edges is:

W(Ci,Ci)=
∑

vr∈Ci

∑

vs∈Ci

ars =
n∑

r=1

n∑

s=1

cirarscis = cT
i Aci

We can get the sum of weights for all the external edges as follows:

W(Ci,Ci)=
∑

vr∈Ci

∑

vs∈V−Ci

ars =W(Ci,V)−W(Ci,Ci)= ci(1−A)ci = cT
i Lci

Meira Jr. (UFMG) Four Paradigms in Data Mining
Chapter 16: Spectral and Graph Clustering 264 /

283



Clustering Objective Functions: Ratio Cut

The clustering objective function can be formulated as an optimization problem
over the k-way cut C = {C1, . . . ,Ck}.
The ratio cut objective is defined over a k-way cut as follows:

min
C

Jrc(C)=
k∑

i=1

W(Ci,Ci)

|Ci|
=

k∑

i=1

cT
i Lci

cT
i ci

=
k∑

i=1

cT
i Lci

‖ci‖2

Ratio cut tries to minimize the sum of the similarities from a cluster Ci to other
points not in the cluster Ci, taking into account the size of each cluster.
Unfortunately, for binary cluster indicator vectors ci, the ratio cut objective is
NP-hard. An obvious relaxation is to allow ci to take on any real value. In this
case, we can rewrite the objective as

min
C

Jrc(C)=
k∑

i=1

cT
i Lci

‖ci‖2
=

k∑

i=1

(
ci

‖ci‖

)T

L

(
ci

‖ci‖

)
=

k∑

i=1

uT
i Lui

The optimal solution comprises the eigenvectors corresponding to the k
smallest eigenvalues of L, i.e., the eigenvectors un,un−1, . . . ,un−k+1 represent the
relaxed cluster indicator vectors.

Meira Jr. (UFMG) Four Paradigms in Data Mining
Chapter 16: Spectral and Graph Clustering 265 /

283



Clustering Objective Functions: Normalized Cut

Normalized cut is similar to ratio cut, except that it divides the cut weight of
each cluster by the volume of a cluster instead of its size. The objective function
is given as

min
C

Jnc(C)=
k∑

i=1

W(Ci,Ci)

vol(Ci)
=

k∑

i=1

cT
i Lci

cT
i 1ci

We can obtain an optimal solution by allowing ci to be an arbitrary real vector.

The optimal solution comprise the eigenvectors corresponding to the k smallest
eigenvalues of either the normalized symmetric or asymmetric Laplacian
matrices, Ls and La.
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Spectral Clustering Algorithm

The spectral clustering algorithm takes a dataset D as input and computes the
similarity matrix A. For normalized cut we chose either Ls or La, whereas for
ratio cut we choose L. Next, we compute the k smallest eigenvalues and
corresponding eigenvectors of the chosen matrix.

The main problem is that the eigenvectors ui are not binary, and thus it is not
immediately clear how we can assign points to clusters.

One solution to this problem is to treat the n× k matrix of eigenvectors as a
new data matrix:

U=



| | |

un un−1 · · · un−k+1

| | |


→ normalize rows →




— yT
1 —

— yT
2 —
...

— yT
n —


= Y

We then cluster the new points in Y into k clusters via the K-means algorithm
or any other fast clustering method to obtain binary cluster indicator vectors ci.

Meira Jr. (UFMG) Four Paradigms in Data Mining
Chapter 16: Spectral and Graph Clustering 267 /

283



Spectral Clustering Algorithm

SPECTRAL CLUSTERING (D,k):
Compute the similarity matrix A ∈Rn×n

1

if ratio cut then B← L2

else if normalized cut then B← Ls or La
3

Solve Bui = λiui for i= n, . . . ,n− k+1, where λn ≤ λn−1 ≤ ·· · ≤ λn−k+14

U←
(
un un−1 · · · un−k+1

)
5

Y← normalize rows of U6

C←{C1, . . . ,Ck} via K-means on Y7
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Spectral Clustering on Example Graph
k= 2, normalized cut (normalized asymmetric Laplacian)
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Normalized Cut on Iris Graph
k= 3, normalized asymmetric Laplacian
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C1 (triangle) 50 0 4
C2 (square) 0 36 0
C3 (circle) 0 14 46
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Maximization Objectives: Average Cut

The average weight objective is defined as

max
C

Jaw(C)=
k∑

i=1

W(Ci,Ci)

|Ci|
=

k∑

i=1

cT
i Aci

cT
i ci

=
k∑

i=1

uT
i Aui

where ui is an arbitrary real vector, which is a relaxation of the binary cluster
indicator vectors ci.

We can maximize the objective by selecting the k largest eigenvalues of A, and
the corresponding eigenvectors.

max
C

Jaw(C)= uT
1Au1+ ·· ·+uT

kAuk

= λ1+ ·· ·+λk

where λ1 ≥ λ2 ≥ ·· · ≥ λn. In general, while A is symmetric, it may not be
positive semidefinite. This means that A can have negative eigenvalues, and to
maximize the objective we must consider only the positive eigenvalues and the
corresponding eigenvectors.
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Maximization Objectives: Modularity

Given A, the weighted adjacency matrix, the modularity of a clustering is the
difference between the observed and expected fraction of weights on edges
within the clusters. The clustering objective is given as

max
C

JQ(C)=
k∑

i=1

(
cT

i Aci

tr(1)
− (dT

i ci)
2

tr(1)2

)
=

k∑

i=1

cT
i Qci

where Q is the modularity matrix:

Q= 1

tr(1)

(
A− d ·dT

tr(1)

)

The optimal solution comprises the eigenvectors corresponding to the k largest
eigenvalues of Q. Since Q is symmetric, but not positive semidefinite, we use
only the positive eigenvalues.
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Markov Chain Clustering

A Markov chain is a discrete-time stochastic process over a set of states, in our
case the set of vertices V.

The Markov chain makes a transition from one node to another at discrete
timesteps t= 1,2, . . . , with the probability of making a transition from node i to
node j given as mij.

Let the random variable Xt denote the state at time t. The Markov property
means that the probability distribution of Xt over the states at time t depends
only on the probability distribution of Xt−1, that is,

P(Xt = i|X0,X1, . . . ,Xt−1)= P(Xt = i|Xt−1)

Further, we assume that the Markov chain is homogeneous, that is, the
transition probability

P(Xt = j|Xt−1 = i)=mij

is independent of the time step t.
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Markov Chain Clustering: Markov Matrix

The normalized adjacency matrix M=1−1A can be interpreted as the n×n

transition matrix where the entry mij =
aij

di
is the probability of transitioning or

jumping from node i to node j in the graph G.

The matrix M is thus the transition matrix for a Markov chain or a Markov
random walk on graph G. That is, given node i the transition matrix M specifies
the probabilities of reaching any other node j in one time step.

In general, the transition probability matrix for t time steps is given as

Mt−1 ·M=Mt
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Markov Chain Clustering: Random Walk

A random walk on G thus corresponds to taking successive powers of the
transition matrix M.

Let π0 specify the initial state probability vector at time t= 0. The state
probability vector after t steps is

πT
t = πT

t−1M= πT
t−2M2 = ·· · = πT

0Mt

Equivalently, taking transpose on both sides, we get

π t = (Mt)Tπ0 = (MT)tπ0

The state probability vector thus converges to the dominant eigenvector of MT.
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Markov Clustering Algorithm

Consider a variation of the random walk, where the probability of transitioning
from node i to j is inflated by taking each element mij to the power r≥ 1. Given
a transition matrix M, define the inflation operator ϒ as follows:

ϒ(M, r)=
{

(mij)
r

∑n
a=1(mia)r

}n

i,j=1

The net effect of the inflation operator is to increase the higher probability
transitions and decrease the lower probability transitions.

The Markov clustering algorithm (MCL) is an iterative method that interleaves
matrix expansion and inflation steps. Matrix expansion corresponds to taking
successive powers of the transition matrix, leading to random walks of longer
lengths. On the other hand, matrix inflation makes the higher probability
transitions even more likely and reduces the lower probability transitions.

MCL takes as input the inflation parameter r≥ 1. Higher values lead to more,
smaller clusters, whereas smaller values lead to fewer, but larger clusters.
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Markov Clustering Algorithm: MCL

The final clusters are found by enumerating the weakly connected components
in the directed graph induced by the converged transition matrix Mt, where the
edges are defined as:

E=
{
(i, j) |Mt(i, j) > 0

}

A directed edge (i, j) exists only if node i can transition to node j within t steps
of the expansion and inflation process.

A node j is called an attractor if Mt(j, j) > 0, and we say that node i is attracted
to attractor j if Mt(i, j) > 0. The MCL process yields a set of attractor nodes,
Va ⊆ V, such that other nodes are attracted to at least one attractor in Va.

To extract the clusters from Gt, MCL first finds the strongly connected
components S1,S2, . . . ,Sq over the set of attractors Va. Next, for each strongly
connected set of attractors Sj, MCL finds the weakly connected components
consisting of all nodes i ∈ Vt−Va attracted to an attractor in Sj. If a node i is
attracted to multiple strongly connected components, it is added to each such
cluster, resulting in possibly overlapping clusters.
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Algorithm MARKOV CLUSTERING

MARKOV CLUSTERING (A, r,ǫ):
t← 01

Add self-edges to A if they do not exist2

Mt←1−1A3

repeat4

t← t+15

Mt←Mt−1 ·Mt−16

Mt←ϒ(Mt, r)7

until ‖Mt−Mt−1‖F ≤ ǫ8

Gt← directed graph induced by Mt9

C←{weakly connected components in Gt}10
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MCL Attractors and Clusters
r= 2.5
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MCL on Iris Graph
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Contingency Table: MCL Clusters versus Iris Types
r= 1.3

iris-setosa iris-virginica iris-versicolor

C1 (triangle) 50 0 1

C2 (square) 0 36 0

C3 (circle) 0 14 49
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Conclusions

Data is not a problem anymore, analyzing and understanding them still is.

Data mining techniques may be organized into paradigms according to
their principles, that is, a single paradigm may support several techniques.

Paradigms are complementary and may be combined for a single
technique.

Understanding the paradigms and their characteristics is key to mine data
effectively.

Understanding the paradigms may also help significantly regarding
grasping, exploiting and developing new techniques.
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Thank you!

Questions?
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