
A GRASP with Adaptive Memory for a Period Vehicle Routing Problem

Luciana B. Gonçalves, Luiz S. Ochi and Simone L. Martins
Departamento de Ciência da Computação

Universidade Federal Fluminense
Niterói, Rio de Janeiro, Brazil

lgoncalves,satoru,simone@ic.uff.br

Abstract

We present some proposals to approximately solve a pe-
riod vehicle routing problem used to model the extraction
of oil from a set of onshore oil wells in Brazil. This prob-
lem differs from the well-known period vehicle routing prob-
lem in several aspects. One major difference between them,
responsible for increasing the complexity of the problem,
is that, in the proposed problem, the number of visits re-
quired by a customer during the period is not previously
determined. We developed some pure GRASP heuristics
and some other heuristics that include the use of memory
in GRASP. Experimental results illustrate the effectiveness
of GRASP with adaptive memory over pure GRASP heuris-
tics.

1 Introduction

Vehicle routing problems (VRP) [1] consist of minimiz-
ing the cost of supplying a set of customers by a fleet of
vehicles operating from a central facility. Several versions
of the VRP have been studied in the literature modeling
practical applications that present specific objectives and
constraints. One of these versions does not oblige that all
customers are visited, i.e, only a subset of them may be
supplied. Another class of VRP, called the Period Vehicle
Routing Problem (PVRP) [2], deals with the problem of de-
signing the visits to the customers for each day of a given
period. In this paper, we develop a model for a real appli-
cation found in the Northeastern part of Brazil concerning
the exploitation of oil in onshore oil wells by joining the
constraints found in these two problems.

In the state of Rio Grande do Norte, the onshore oil field
has approximately 5.000 wells and produces about 10% of
the Brazilian oil production. Most of these wells rely on ar-
tificial lift methods to bring the oil to the surface [3]. The
service of oil lifting is performed by mobile units that carry
a bump used to lift the oil from the wells. Due to their

high operation costs, there are relatively few bump mobile
units (BMUs) compared to the number of wells. Every day
of a predetermined period, the BMUs should leave a Treat-
ment Oil Station (TOS) and visit some of the wells to extract
oil, returning to the TOS. After bumping the oil from a well,
a BMU may revisit the well only after a day interval to al-
low the oil well to recover and to make the next bumping
profitable. The number of days for recovering is different
for each well. As there are fewer BMUs than wells, some-
times a well may not have its oil lifted for a period longer
that its recovery time, introducing a loss of oil production.
The aim of this problem is to generate daily tours for each
BMU, starting and finishing in TOS, so that the amount of
oil extracted in a predetermined period is maximized.

We can find in the literature some works to solve this
problem [3], but all of them try to find good feasible routes
for each day, not considering all days of the period. We
think that it is possible to find better solutions by planning
the routing for the predetermined period, treating it as a Pe-
riod BMU Routing Problem (PBMURP). We developed a
mathematical formulation for a predetermined planning pe-
riod based on a mixed integer linear programming model.
Due to its high complexity, constructive and local search
heuristics were proposed in order to develop Greedy Ran-
domized Search Procedure (GRASP) [4] heuristics able to
find optimal or near optimal solutions in feasible computa-
tional time. Experimental analyses were performed to show
the influence of constructive and local search heuristics over
GRASP heuristics performance. GRASP is a method that
executes several independent iterations. We use well-known
methods to introduce some memory in this method [5].
Computational results obtained for randomly generated in-
stances are reported, showing that the proposed algorithms
outperform pure GRASP in terms of quality solution.

In Section 2, we present a mathematical formulation de-
veloped for this problem. In Section 3, the proposed heuris-
tic algorithms are described and in Section 4, computational
results for these methods are shown. Some conclusions are
discussed in Section 5.

2 The Period Bump Mobile Units Routing
Problem(PBMURP)

In this section we present a mathematical formulation for
PBMURP. Consider the undirected complete graphG =
(V,E), whereV is the set containing then oil wells and
the Treatment Oil Station (TOS), andE is the set of edges
(u, v) whereu andv ∈ V , which have associated weights
tu,v that represent the time spent to travel between wellsu
andv. The objective is to find a daily route for each BMU
for the period ofd days, considering that the travel time can
not exceed the input parameterTmax, and that a well can
only be revisited after its recovery day interval is achieved.
This formulation is based on [2].

The following notation is used:

Constants

V = set of wells including TOS,|V | = n + 1
D = set of days of the planning period,|D| = d
B = set of BMUs,|B| = b
tij = travel time betweeni e j, ∀i, j ∈ V
pi = amount of oil that may be extracted from welli
si = time that a BMU spent lifting the oil from welli
ri = minimum number of days between two consecutive
visits to welli
Tmax = maximum allowable time spent by a BMU on a
daily route

Variables

xil =

{

1, if well i is visited in dayl
0, otherwise

zijkl =







1, if well j is the next well visited after
the welli by BMU k in dayl

0, otherwise

wijkl= amount of oil that flows in edge(i,j) carried
by BMU k in dayl

Using this notation, the PBMURP may be formulated
as follows:

max
d

∑

l=1

n
∑

i=1

pi ∗ xil (1)

Subject to:

n
∑

i=0

n
∑

j=0,j 6=i

(tij + si) ∗ zijkl ≤ Tmax;∀l ∈ D,∀k ∈ B (2)

b
∑

k=1

n
∑

i=0;i6=q

ziqkl = xql;∀q ∈ V ,∀l ∈ D (3)

b
∑

k=1

n
∑

i=0;i6=q

zqikl = xql;∀q ∈ V ,∀l ∈ D (4)

n
∑

i=0;i6=q

ziqkl −

n
∑

i=0;i6=q

zqikl = 0;∀q ∈ V ,∀l ∈ D,∀k ∈ B

(5)
b

∑

k=1

zijkl ≤
xil + xjl

2
;∀i ∈ V , j ∈ V , (i 6= j),∀l ∈ D

(6)
x0l = 1;∀l ∈ D (7)

n
∑

j=1

z0jkl = 1;∀l ∈ D,∀k ∈ B (8)

n
∑

i=1

zi0kl = 1;∀l ∈ D,∀k ∈ B (9)

n
∑

j=0;j 6=q

wqjkl =

n
∑

i=0;i6=q

(wiqkl+vq×ziqkl);

∀k ∈ B,∀l ∈ D,∀q ∈ V (10)

w0jkl = z0jkl;∀j ∈ V ,∀k ∈ B,∀l ∈ D (11)

wijkl ≥ zijkl;∀i ∈ V,∀j ∈ V, (i 6= j),∀k ∈ B,∀l ∈ D
(12)

zijkl ≥
wijkl

∑n

j=1 vj

;∀i ∈ V,∀j ∈ V, (i 6= j),∀k ∈ B,∀l ∈ D

(13)
l′+ri
∑

l=l′+1

xil ≤ (1− xil′);∀l
′ ∈ D,∀i ∈ V (14)

xil ∈ {0, 1},∀i ∈ V,∀l ∈ D (15)

zijkl ∈ {0, 1},∀i ∈ V,∀j ∈ V,∀k ∈ B,∀l ∈ D (16)

wijkl ≥ 0,∀i ∈ V,∀j ∈ V,∀k ∈ B,∀l ∈ D (17)

The objective function (1) maximizes the amount of oil
collected by all BMUs during the periodD.

Constraints (2) guarantee that the time spent by a BMU
on a daily route is less than the limitTmax. Constraints (3),
(4), and (5) state that each welli is serviced by no more
than one particular BMU in a specific day. Constraints (6)
guarantee that if a wellj should be visited after welli in
a dayl, then just one specific BMU must visit both wells.
Constraints (7) determine that the TOS is visited in all days
of the period. Constraints (8) and (9) ensure that no empty
routes are generated, i.e, each BMU should collect the oil
from at least one well in each day of the period. Constraints
(10) state that the amount of oil carried by a BMU that

leave a wellq ∈ V has to be the sum of the amount of
oil that the BMU has when it arrives at the wellq added
to the amount of oil lifted from the wellq by the BMU.
As the Treatment Oil Station (TOS) belongs toV but does
not produce any oil, Equations (11) associate to all edges
used by the BMUs to leave the TOS an oil flow with unit
value. This flow is not computed by the cost function (1),
because TOS (node 0) is not included in the computation of
this function. Constraints (12) ensure that if a BMU trav-
els by a specific edge on a specific day (zijkl = 1), then
there should have a positive and integer flow associated this
use (wijkl ≥ 1). Constraints (13) guarantee that if there
is a flow associated to an edge (wijkl

∑

n

j=1
vj

> 0), then there

should have a BMU that travels by this edge on the same
corresponding day (zijkl = 1). Constraints (14) do not al-
low a well to be visited before its recovery day interval.

3 GRASP heuristics

GRASP is an iterative process, where each iteration con-
sists of two phases: construction and local search. In the
construction phase a feasible solution is built, and its neigh-
borhood is explored by a local search. The result is the best
solution found over all iterations.

The construction phase of GRASP is an iterative process
where, at each iteration, the elements that do not belong
to the partial solution are evaluated by a greedy function,
which estimates the gain of including it in the partial so-
lution. They are ordered by their estimated value in a list
called restricted candidate list (RCL) and one of them is
randomly chosen and included in the solution. The size of
the RCL is limited by a parameterα. This process stops
when a feasible solution is obtained.

The solutions generated by the construction phase are
not guaranteed to be locally optimal. Usually a local search
is performed to attempt to improve each constructed solu-
tion. It works by successively replacing the current solution
by a better one from its neighborhood, until no more better
solutions are found.

Path-relinking is a technique proposed by Glover [6] to
explore possible trajectories connecting high quality solu-
tions, obtained by heuristics like tabu search and scatter
search. The pure GRASP metaheuristics is a memoryless
method, because all iterations are independent and no in-
formation about the solutions is passed from one to itera-
tion to another. The objective of introducing path-relinking
to a pure GRASP algorithm is to retain previous good so-
lutions and use them as guides in the search of new good
solutions [5].

In the next subsections, we describe the construction and
local search heuristics developed for generating GRASP al-
gorithms, and the path-relinking strategy developed to im-
prove GRASP performance.

3.1 Construction Phase

The strategy implemented for the construction phase is to
build, for each day of the periodD, a route for each of the
BMUs, so that the time limit for each route is not exceeded
and the largest possible quantity of oil is collected. The Al-
gorithm 1 shows the basic steps for constructing a solution.
Let s be the set of|D|×|B| routes, whereD is the set of the
days andB is the set of BMUs. In line 2, a candidate list CL
is created containing all wells that can have their oil lifted in
the specific dayi. An oil well can have its oil extracted only
if its recovery day interval has already been achieved. Then,
a route is generated for each BMU from line 3 to 15 starting
from the Treatment Oil Station. The first elementw to be
inserted in the route is selected in line 4. If the travel time
for the route TOS-w-TOS does not exceed the time limit,
then a Restricted Candidate List (RCL) is created in line 6,
w is inserted in the solution in line 8, and from line 7 to 11,
the procedure tries to insert new elements to this route. In
line 9, the RCL is updated after a new element is inserted
in the partial solution, and in line 10 a well is selected from
RCL.

Algorithm 1 Construction Heuristic
1: for i=0 to |D| do
2: CL = Available(V,i)
3: for j=0 to |B| do
4: w← SelectFirst Well(CL)
5: if TimeLimit NotExceeded(s,i,j,w)then
6: CreateRCL(CL-{w})
7: while TimeLimit NotExceeded(s,i,j,w)do
8: InsertWell Route(s,i,j,w)
9: UpdateRCL

10: w← ChooseElementRCL
11: end while
12: end if
13: 2-optimal(s,i,j)
14: InsertNew Elements(s,i,j,V)
15: end for
16: end for

To select the first element of a BMU route, all candi-
datesc ∈ CL are classified in descending order according
to a functionf , which favors elements that may produce
greater oil amount(oilprod(c)) and are closer to TOS (dis-
tance(c,TOS)), as presented in (18).

f(c) = oilprod(c)/(distance(c, TOS)) (18)

Then, considering thatfmin andfmax are the minimum and
maximum values found in evaluatingf for all candidates
from CL, the elements, which present a value forf greater
than limRCL, are selected, whereα is selected from the

interval[0, 1] and:

limRCL = α ∗ fmin + (1− α) ∗ fmax (19)

Then, an element is randomly selected from this subset.
After the first element is inserted in a route, a RCL is

created according to some criterion, a new element is ran-
domly selected from this RCL, and inserted in the route.
This process is repeated until the time limit is achieved for
the route or there are no more wells to be inserted. We de-
veloped two different ways of creating the RCL, which are
described below.

The sweep heuristic (SH) is based on thesweep algo-
rithm developed by Gillet and Miller [7]. With the TOS as a
pivot, a ray, originating from the TOS, and passing through
the starting well of the route partially constructed, is rotated
in a counter-clockwise direction. As the wells are swept by
this ray, they are inserted in the RCL until the maximum
number of elements for the RCL is achieved. Then, the
elements are sorted according to the functionf presented
in (18), and one element is randomly selected from RCL.
If adding it to the current route does not violate the time
limit Tmax, it is inserted in the partially constructed route.
A new ray is defined connecting the TOS and the last in-
serted well, and this process is repeated until adding a new
element would violate the time limitTmax.

The second heuristic called Randomized Nearest Inser-
tion Heuristic (RNIH) is based on the Nearest Insertion
heuristic developed to find a minimal-weight hamiltonian
cycle of a graphG(V,E) [8].

Initially, the first well is selected in the same way de-
scribed before, and a route is constructed joining the TOS
to this well. Then, for each element already inserted in the
partially constructed route, we select itsk nearest neigh-
bors. All these candidatesc are sorted in decrescent order
according to (20):

fn(c) = oilprod(c)/(distance(c, nearest neighbor)
(20)

The RCL is built by selecting the candidates, that present a
value forfn greater thanlimRCL, whereα is selected from
the interval[0, 1] and:

limRCL = α ∗ fnmin + (1− α) ∗ fnmax (21)

Then, an element is randomly selected from RCL, and we
calculate the increments in the route travel time caused by
inserting it before or after its nearest neighbor. The position
which brings the little increment is chosen. This process
is repeated until adding a new element to the current route
would violate the time limitTmax.

After a feasible route is determined for dayi and for
BMU j, two improving functions are applied one after an-
other: 2-optimal and InsertNew Elements, as shown in
lines 13 and 14 of Algorithm 1. The first one tries to find a

better visiting order for the wells associated to this route, so
that performing the route would take less time. The second
tries to insert available wells to this route, which are not yet
associated to it.

3.2 Local Search Phase

After a solution is constructed, a local search phase
should be executed to attempt to improve the initial solu-
tion. We developed two independent procedures for per-
forming the local search. The first one tries to enhance the
solution by searching for better routes for each day of the
period, and the second one looks for greater oil extraction
by visiting the wells more days in the period. We apply
these two procedures one after another to implement the lo-
cal search phase.

3.2.1 Daily Local Search-DLS

The objective of this procedure is to find better routes for
the wells allocated by the construction phase for a specific
day of the period, and also to try to insert available not yet
visited wells in these routes. The Algorithm 2 receives as
an input parameter the solutions which contains, for each
BMU, the routes that they should perform in each day of
the period. In line 4, the neighborhoodN(w) is defined by
searching for thek wells located nearer to the wellw visited
in a specific dayi by a BMUj. For each neighbor, which is
not visited by the same BMUj that visits wellw, we verify
if taking it from its original route and inserting it in the route
containing wellw implies in less travel time for these two
routes. If it is true, this change is processed in line 6. After
verifying the neighborhood of all wells, we try to insert in
this route wells that are not visited in dayi by any BMU,
assuring that the solution remains feasible, as shown in line
10.

Algorithm 2 Daily Local Search (s)

1: for i=0 to |D| do
2: for j=0 to |B| do
3: for all well w ∈ s[i, j] do
4: for v ∈ N(w) do
5: if Well Not In Route(v, w) and Profit(v, w)

then
6: InsertWell Route(s, v, w, i, j)
7: end if
8: end for
9: end for

10: InsertAvailableWells(s)
11: end for
12: end for

3.2.2 Period Local Search-PLS

This procedure tries to enlarge the amount of oil extracted
from the wells. For this purpose, we calculate for each well
w, the lossL(w), which corresponds to the amount of oil
that could be collected in the period and is not being ex-
tracted in the solutions. The lossL(w) is calculated by
subtracting the amount of oil extracted in the current solu-
tion from the possible largest amount of oil that could be
obtained in the same solution, if all wells were visited, re-
specting their interval times for being revisited.

The algorithm 3 shows each step of PLS. From lines 1
to 3, all oil production wasted in solutions is calculated
for each welli. In line 4, a listWL is constructed con-
taining all wells sorted in decrescent order according to its
loss. For each of the firstδ wells fromWL, in line 6, a new
visit days combination is created so that the well may be
visited all possible days in the period. In line 7, this combi-
nation of visiting days is inserted in the current solution by
the following way. If the well should be visited in the new
combination and is not visited in the current solution, then
the well is inserted in a current route that contains its nearest
neighbor. In case that the well is in the current solution, but
should not be in the new combination, the well is deleted
from the current route. This process may create routes that
exceed the travel limit timeTmax. So, in line 9, each unfea-
sible route is made feasible by removing wells that present
the major ratio between the decrease in the travel time by
taking it out of the route and its oil production. Due to these
modifications, it may be feasible to insert additional wells
into the routes of the new solution. This procedure is exe-
cuted in line 10.

Algorithm 3 Period Local Search(s,δ)
1: for i=1 to |V | do
2: L[i]← Calculate Loss(i)
3: end for
4: WL← Sort Wells Loss(L);
5: for i = 1 to δ do
6: New V isits← Generate New V isits(WL[i])
7: Insert New V isits(s)
8: end for
9: Make Feasible(s)

10: Insert Available Wells(s)

3.3 GRASP and Path-relinking

We developed two pure GRASP algorithms by combin-
ing one of the two construction procedures with the local
search procedure. To improve the pure GRASP procedures,
we used path-relinking as an intensification strategy. An
elite setSElite is maintained, in which good solutions found
in GRASP iterations are stored to be combined with solu-

tions created by other GRASP iterations. For each solu-
tion s generated in a GRASP iteration, the solutione which
is more diverse froms is selected fromSElite and a path-
relinking is applied between them. A path-relinking is per-
formed by starting from an initial solutionsi, which is the
one with better cost betweens ande, and gradually incor-
porating attributes from a guide solutionsg to it, which is
the one that presents worst cost, untilsi becomes equal to
sg. This procedure is shown in Algorithm 4. The attributes
considered to differ one solution from another are the routes
performed by each BMU in each day. In line 1, the most di-
verse element from the current solutions is selected from
Selite. Then, in line 2, the initial and guide solutions are de-
termined based on their solution costs. In line 3, we check
the attributes that are equal in the initial and guide solution,
i.e, we verify which days the routes for the BMUs are dif-
ferent. From line 4 to line 11, the initial solution is changed
to the guide solution, by changing, for each day, the routes
of the initial solution to the routes of the guiding one. The
changing of the routes of one day may generate an unfeasi-
ble solution, because the period for the recovery of a well
may be not respected. So, in line 7, a procedure to make this
new solution feasible is performed, by taking these wells
out of the routes. In line 9, the current best solution of the
GRASP procedure is updated if the new solution generated
by the path-relinking presents a better cost.

Algorithm 4 PathRelinking(s, Selite, s∗)

1: e← Most Diverse(Selite, s);
2: Determine Initial Guide(s, e, si, sg);
3: ∆← Different Attributes(si, sg);
4: while ∆ 6= φ do
5: spr ← Best Attribute Change(si, sg,∆);
6: Update(∆);
7: Make Feasible(spr);
8: if (spr presents better cost than the best solutions∗

then
9: s∗ ← spr;

10: end if
11: end while

4 Computational Results

We tested two pure GRASP procedures G1 and G2.
G1 combines the construction heuristic SH with the local
search described in 3.2, and G2 combines the RNIH heuris-
tic with the same local search procedure. We also tested
the effect of introducing path-relinking to both strategies
(G1PR and G2PR).

GRASP algorithms were implemented in C, compiled
with gcc compiler version 3.3.3 and were tested on a Intel
Pentium 4 2.80 GHz with 512 Mbytes of RAM.

For the first set of computational experiments, we cre-
ated twelve small instances for the problem with number of
days of the period varying from 1 to 3, number of BMUs
equal to 1 or 2, and number of wells in the interval[5, 15].
These instances were solved using the mathematical formu-
lation developed by us and implemented using the XPRESS
2005 tool. These tests were performed on a AMD Athlon
1.6 GHz with 256 Mbytes of RAM. In Table 1, the first col-
umn identifies the instance: the first number is the number
of days of the period, the second corresponds to the num-
ber of BMUs and the third one to the number of wells. The
second column shows the optimal values found by the exact
algorithm using the software XPRESS, and the third col-
umn (XP) presents the computational time in seconds spent
to find these values. The next four columns show the aver-
age computational times in seconds spent by the four pro-
posed heuristics to find these optimal values. Each instance
was executed by each heuristic ten times using different
seeds. All heuristic algorithms found the optimal values
in much less time than the exact procedure, and all present
similar computational times.

XP G1 G2 G1PR G2PR
Inst. Opt. T(s) T(s) T(s) T(s) T(s)
I[1-1-05] 114 0.1 0.00 0.00 0.00 0.00
I[1-1-10] 450 0.4 0.01 0.01 0.01 0.01
I[2-1-10] 900 1.5 0.02 0.03 0.03 0.03
I[2-2-10] 1300 216.4 0.03 0.03 0.04 0.03
I[1-1-13] 600 2.7 0.02 0.02 0.03 0.03
I[2-1-13] 1110 148.5 0.04 0.04 0.04 0.04
I[2-2-13] 1610 823.8 0.05 0.05 0.06 0.06
I[1-1-14] 300 0.2 0.02 0.01 0.02 0.02
I[1-2-14] 550 3.1 0.03 0.03 0.03 0.03
I[2-2-14] 1050 123.9 0.05 0.05 0.05 0.05
I[3-2-14] 1350 3294.1 0.05 0.07 0.05 0.04
I[3-1-15] 620 4366.1 0.02 0.02 0.02 0.06

Table 1. Results obtained by XPRESS and
GRASP heuristics

For the second set of experimental tests, twelve larger
instances for the problem were created with number of days
of the period chosen from the interval[5, 14], number of
BMUs equal to 2 or 3, and number of wells in the interval
[50, 250].

Each GRASP heuristic performed 200 iterations. Each
instance was executed ten times using different random
seeds. Tables 2, 3 and 4 present the best value found and the
average value of the solution cost. The first column in all
tables identifies the instance and bold values indicate best
values.

In Table 2, the results obtained for the pure GRASP
heuristics G1 and G2 are shown. We can see that G2 found
better solutions than G1 for all instances. Table 3 shows

Inst. G1 G2
Average Best Average Best

I [10-02-050] 2616.7 2778.0 2934.2 3075.0
I [07-02-050] 3727.5 3906.0 4454.7 4683.0
I [07-03-050] 4570.0 4850.0 5330.0 5450.0
I [10-02-050] 5875.0 6400.0 7165.0 7400.0
I [05-02-050] 1982.5 2057.0 2149.8 2276.0
I [15-03-100] 29380.5 30015.0 33277.3 33587.0
I [10-03-100] 17392.4 17751.0 19460.8 19884.0
I [14-02-150] 14991.2 15556.0 18973.1 19663.0
I [07-02-150] 7062.2 7279.0 9072.1 9516.0
I [10-02-200] 13646.6 14560.0 17438.6 17862.0
I [10-02-250] 28688.0 29760.0 39376.0 39680.0
I [10-03-250] 23599.0 24438.0 31525.2 31765.0

Table 2. Solution costs obtained for pure
GRASP heuristics G1 and G2

the results obtained for the pure GRASP algorithm G1 and
with path-relinking (G1PR). We can see that path-relinking
can substantially improves the performance of G1. For all
instances, except the instance I [10-03-100], G1 with path-
relinking found better results than G1.

Inst. G1 G1PR
Average Best Average Best

I [10-02-050] 2616.7 2778.0 2967.9 3007.0
I [07-02-050] 3727.5 3906.0 4378.6 4455.0
I [07-03-050] 4570.0 4850.0 4960.0 5000.0
I [10-02-050] 5875.0 6400.0 6325.0 6450.0
I [05-02-050] 1982.5 2057.0 2198.8 2238.0
I [15-03-100] 29380.5 30015.0 29981.5 30116.0
I [10-03-100] 17392.4 17751.0 17477.8 17751.0
I [14-02-150] 14991.2 15556.0 17706.4 17813.0
I [07-02-150] 7062.2 7279.0 8721.0 8909.0
I [10-02-200] 13646.6 14560.0 16041.0 16221.0
I [10-02-250] 28688.0 29760.0 33888.0 34480.0
I [10-03-250] 23599.0 24438.0 26908.4 27726.0

Table 3. Comparison of pure GRASP G1 with
G1 with path-relinking

In Table 4, we show the results obtained for G2 algo-
rithm and with path-relinking (G2PR). We can see that path-
relinking improves the average values for 11 instances out
of 12 and was able to achieve the best value in 8 instances.
In Table 5, we compare the average results obtained by the
four algorithms. For each instance, we selected the best
average result achieved and calculated the percentage devi-
ation of the results obtained by the other algorithms with
respect to this best value. We can see that the algorithm
G2 with path-relinking provides the best results for all in-
stances. In Table 6, we show for each instance the average
computational time achieved. We can observe that path-

Inst. G2 G2PR
Average Best Average Best

I [10-02-050] 2934.2 3075.0 3131.7 3182.0
I [07-02-050] 4454.7 4683.0 4820.6 4882.0
I [07-03-050] 5330.0 5450.0 5495.0 5550.0
I [10-02-050] 7165.0 7400.0 7360.0 7400.0
I [05-02-050] 2149.8 2276.0 2262.7 2284.0
I [15-03-100] 33277.3 33587.0 33542.3 33780.0
I [10-03-100] 19460.8 19884.0 19576.8 19884.0
I [14-02-150] 18973.1 19663.0 19630.5 19749.0
I [07-02-150] 9072.1 9516.0 9475.10 9596.0
I [10-02-200] 17438.6 17862.0 17780.6 17970.0
I [10-02-250] 39376.0 39680.0 39376.0 39680.0
I [10-03-250] 31525.2 31765.0 31570.0 31765.0

Table 4. Comparison of pure GRASP G2 with
G2 with path-relinking

Inst. G1 G2 G1PR G2PR
I [10-02-050] -0.164 -0.063 -0.052 0.00
I [07-02-050] -0.227 -0.076 -0.092 0.00
I [07-03-050] -0.168 -0.030 -0.097 0.00
I [10-02-050] -0.22 -0.026 -0.141 0.00
I [05-02-050] -0.124 -0.050 -0.028 0.00
I [15-03-100] -0.124 -0.08 -0.106 0.00
I [10-03-100] -0.112 -0.06 -0.17 0.00
I [14-02-150] -0.236 -0.033 -0.098 0.00
I [07-02-150] -0.255 -0.043 -0.080 0.00
I [10-02-200] -0.233 -0.019 -0.098 0.00
I [10-02-250] -0.271 0.00 -0.139 0.00
I [10-03-250] -0.252 -0.01 -0.148 0.00

Table 5. Percentage deviation of average re-
sults

relinking increases very little the computational time, while
increasing significantly the quality of the solutions.

Inst. G1 G2 G1PR G2PR
I [10-02-050] 2.58 3.22 3.02 3.64
I [07-02-050] 2.61 3.75 2.79 3.95
I [07-03-050] 3.05 4.22 3.17 4.34
I [10-02-050] 3.07 4.26 3.38 4.54
I [05-02-050] 1.41 1.69 1.52 1.78
I [15-03-100] 29.97 38.05 32.12 40.18
I [10-03-100] 10.09 13.77 10.76 14.47
I [14-02-150] 63.21 71.15 65.77 74.05
I [07-02-150] 21.42 30.9 22.04 31.57
I [10-02-200] 86.67 104.61 88.37 106.48
I [10-02-250] 119.84 165.68 121.67 167.60
I [10-03-250] 99.30 152.93 101.36 155.26

Table 6. Average Computational Time (sec-
onds)

5 Conclusions

This paper presented some proposals to solve approx-
imately a particular period vehicle routing problem. We
developed a mathematical formulation for this problem,
and construction and local search heuristics to implement
GRASP algorithms. We also applied path-relinking to the
pure GRASP heuristics to improve the quality results.

Experimental results showed that, for small instances of
the problem, the GRASP heuristics were able to find the
same results obtained by solving the mixed integer linear
formulation in much less computational time.

For larger instances, the version which uses Random-
ized Nearest Insertion construction algorithm showed bet-
ter results than the Sweep Heuristic. The introduction of
path-relinking improved substantially both pure GRASP al-
gorithms, and did not cause a significant increment in the
computational time.

References

[1] G. Laporte, “The vehicle routing problem: An overview
of exact and approximate algorithms,”European Jour-
nal of Operational Research, vol. 59, pp. 345–358,
1992.

[2] N. Christofides and J. Beasley, “The period routing
problem,”Networks, vol. 14, pp. 237–256, 1984.

[3] D. J. Aloise, L. Moura, B. Assmann, C. Barros, and
J. Neves, “Optimization of employment of oil retrieval
system in the exploration of oil wells fields without
force to flow to the surface,” inRio Oil & Gas Expo
and Conference, 2000.

[4] T. Feo and M. Resende, “Greedy randomized adap-
tive search procedures,”Journal of Global Optimiza-
tion, vol. 6, pp. 109–133, 1995.

[5] M. Resende and C. Ribeiro, “Grasp with path-relinking:
Recent advances and applications.” T. Ibaraki, K.
Nonobe and M. Yagiura, 2005, pp. 29–63.

[6] F. Glover, M. Laguna, and R. Martı́, “Fundamentals of
scatter search and path relinking,”Control and Cyber-
netics, vol. 39, pp. 653–684, 2000.

[7] B. Gillet and L. R. Miller, “A heuristic algorithm for
the vehicle-dispatch problem,”Operations Research,
vol. 22, pp. 340–349, 1974.

[8] E. Lawler, J. K. Lenstra, A. R. Kan, and D. B. Shmoys,
The traveling salesman problem: A guided tour of
combinatorial optimization. Wiley Series in Discrete
Mathematics and Optimization, 1995.

