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Abstract

The Covering Tour Problem (CTP) is a generalization of the Traveling Salesman
Problem (TSP) which has several actual applications. It is defined on an undirected
graph G = (V U W, E), where W is a set of vertices that must be covered. The
problem consists of determining a minimum length Hamiltonian cycle on a subset
of V such that every vertex of W is within a given distance d from, at least, one
node in the cycle. This work proposes reduction rules to a generalization of the CTP
and also a new Integer Linear Program formulation.
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1 Introduction

This work presents a filtering technique, composed by some reduction rules
that minimize meaningfully CTP original instances’size. This technique can be
applied to exact or approximated methods. Being the CTP not very explored,
it also proposes a mathematical formulation and a metaheuristic based on
GRASP [5] and VNS [6] concepts. The Covering Tour Problem (CTP) was
first introduced by Current [1]. This Problem can be defined as follows: let G =
(VUW, E) be an undirected graph, where VUW = {1, ...,n} is the vertex set
and E = {(i,7) | 4,7 € VUW,i < j} is the edge set. Vertex s = 1 is the source
node, V is a set of vertices that might be visited, T" C V is a set of vertices
that must be visited (s € T'), and W is a set of vertices that must be covered.
A distance matrix C' = (¢;;), defined on E, uses the Euclidean metric. The
problem consists of determining a minimum length tour or a Hamiltonian cycle
over a subset of VUW in such way that the tour contains all vertices of T, and
every vertex of W is covered by the tour, i.e., it lies within a distance d from a
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vertex of the tour. The CTP is NP-Hard as it reduces to a TSP when d = 0 and
V' = W. Such matter has not received much attention in the literature so far.
Two heuristic and two exact methods have been presented for the CTP. The
first heuristic was proposed to generate a set of solutions to the exact method
[2]. The second one [3] combines a heuristic for the TSP to another one for the
Set Covering. Maniezzo et al. [4] presented three Scatter Search metaheuristic
to the CTP. The Covering Tour Problem was first formulated by Current
and Schilling [2]. Later, Gendreau et al. [3] and Maniezzo et al. [4] presented
new formulations for the CTP. Both existing formulations provide traditional
constraints to avoid unconnected subtours dealing with an exponential number
of associate constraints. This paper proposes a new linear integer programming
formulation based on flow variables which satisfies the subtour elimination
constraints in another form. The basic formulation idea is to associate a flow
variable to each edge (i, j) € E. This approach allows to generate a polynomial
number of associate constraints and not an exponential number as the ones
already proposed. The presented formulation considers a generalized version
of the CTP, where among all vertices of T" and a subset of V, the tour may
also contain the vertices of W. Let yy, for £ € V', be a (0 — 1) binary variable
equal to 1 if and only if vertex k belongs to the tour. If & € T, then y; is
necessarily equal to 1. Let x;;, ¢,7 € V and 7 # j, another binary variable,
equal to 1 if and only if edge (i, 7) belongs to the tour. A binary coefficients
o, equal to 1 if and only if I € W can be covered by k € V (i.e.,cix < ¢), and
let Sy ={k € V| oy = 1}) for every | € W. We also defined a non-negative
integer flow variable z;;, associated to each edge (i,j) € E, i # j. It represents
the flow through the arc (i, j). Then the CTP can be stated as:

(PRR) minimize Y ¢y, st (1)
i<j|i,jev
Du>1 (View), (2)
keS;
Sz + Y mh = 2y (VE e VUW), (3)
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T < z; (Vi,Vj € VUW);
zij > (23)/ (V] + W]+ 1) (Vi,Vj € VUW),
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yr € {0,1} (Vk e V\T) and ;€ {0,1} (Vi,Vj e VUW)



Zij € 7" (VZ,V] eVu W) (10)

In the formulation, defined by constraints (1)-(10), the constraints (2) ensure
that every vertex of W is covered by the tour. The constraints (3) represent
the flow conservation equations . Constraints (4) and (5), unable disconnect
subtours. The constraints (6) and (7) ensure that the generated tours from
the flow variable (z;;) and from decision variable (x;;) match. Constraints (8)
ensure that every vertex of 7" belongs to the tour. Finally, constraints (9) and
(10) represent the integrality requirements.

2 Reduction Rules for the Generalized version of the CTP

This work considers a generalized version of the CTP (GCTP). It consists of
finding a minimum length tour also through a subset of W, instead of only a
subset of V. In this circumstances, the existing reduction rules does not work.
Being the CTP a very large instance problem, the use of filtering techniques
give effectiveness to exact methods and to high complexity heuristics. Below,
some rules for the GCTP are proposed. Let Cob = (cob;;) be a |W| x [V UW|
(0 — 1) matrix where cob;; = 1,7 € W,j € VUW if and only if ¢;; < d. Sets
W and V' can be reduced by applying the following reduction rules only once:

e Transform every vertex ¢ € W for which cob;, = 1, with k € T, in a vertex
e V\T;
e Remove every vertex i for which cobj; =0, Vj € W, from V\T.

In addition, a metaheuristic algorithm was developed to approximately solve
the CTP, following the guidelines of the GRASP ( Greedy Randomized Adaptive
Search Procedures, proposed by Feo and Resende [5]. In the first phase, the
metaheuristic generates an initial feasible solution for the problem. In the local
search phase, concepts of VNS (Variable Neighborhood Search)[6] are used.

(VUW)| | EM | EM+RR | GRASP | GRASP+RR

10 5,6 0,2 3,1 0

15 1239 7,8 16,4 4,3

20 ok 203.4 54 29,7

25 ok 4759,9 145 93,4
Table 1

Required time (in sec) to find the optimal solution. The (**) denotes that exact
solutions were not found in 4 hours of processing time. EM: exact method using
original graph, EM+RR: exact method using reduction rules, GRASP: GRASP with
original graph, GRASP+RR: GRASP using reduction rules



This work presents a generalized version of the CTP called Generalized Cov-
ering Tour Problem (GCTP). The contributions of this work include a new
mathematical formulation and some reduction rules for the GTSP. Partial
computational testes show a significant reduction in the instances’ size, some-
thing about 40% to 60% with instances generated randomly, varying the per-
centage of |T| and |[W|. In addition to the results described in Table 1, a set of
instances with 200 and 300 nodes were also considered . The execution time
in both cases was fixed at 1200 seconds. The final solutions obtained by our
heuristic GRASP using the proposed reduction rules were (in average) 63,6%
and 64% respectively better than the results produced by GRASP when ap-
plied to the original graphs. These results show the reduction rule impact to
approximately or optimally solve the GTSP.

Related to exact methods, we verify that the already existing formulations
for the CTP are inappropriate when implemented to softwares like XPRESS
because of the high number of constraints to avoid disconnected subtours.
Hence, a new mathematical formulation that decreases the number of lines in
the input matrix is presented. The reduction tests here proposed enable a more
intensive search even with metaheuristic under more sophisticated mechanisms
like the one proposed in this paper which is based on GRASP/VNS concept.
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