
Combining an Evolutionary Algorithm with

Data Mining to Solve a Single-Vehicle

Routing Problem

H. G. Santos a, L. S. Ochi a, E. H. Marinho a,
L. M.A. Drummond a

aDepartment of Computer Science, Universidade Federal Fluminense, Niterói,
Brazil

Abstract

The aim of this work is to present some alternatives to improve the performance
of an Evolutionary Algorithm applied to the problem known as the Oil Collecting
Vehicle Routing Problem. Some proposals based on the insertion of Local Search
and Data Mining modules in a Genetic Algorithm (GA) are presented. Four al-
gorithms were developed: a Genetic Algorithm, a Genetic Algorithm with a Local
Search procedure, a Genetic Algorithm including a Data Mining module and a
Genetic Algorithm including Local Search and Data Mining. Experimental results
demonstrate that the incorporation of Data Mining and Local Search modules in
GA can improve the solution quality produced by this method.

Key words: Evolutionary Algorithms, Data Mining, Vehicle Routing

1 Introduction

Evolutionary algorithms and Genetic Algorithms (GA), its most popular rep-
resentative, are part of the research area of Artificial Intelligence inspired by
the natural evolution theory and genetics, known as Evolutionary Compu-
tation. Those algorithms try to simulate some aspects of Darwin’s natural
selection and have been used in several areas to solve problems considered in-
tractable (NP-complete and NP-hard). Although these methods provide a gen-
eral tool for solving optimization problems, their traditional versions [26,11,15]
do not demonstrate much efficiency in the resolution of high complexity Com-
binatorial Optimization (CO) problems . This deficiency has led researchers to
propose new hybrid evolutionary algorithms (HEA) [8,24,5], sometimes named

Preprint submitted to Elsevier Science 11 November 2005

“memetic algorithms” ([20,21], which usually combine better constructive al-
gorithms, local search and specialized crossover operators. The outcome of
these hybrid versions is generally better than independent versions of these
algorithms. In this paper we propose an HEA for a routing problem which in-
corporates all features cited before plus an additional module of Data Mining
(DM), which tries to discover relevant patterns in the best solutions found so
far, in order to guide the search process to promising regions of the search
space. After presenting the problem, we describe a GA and afterwards, three
improved versions: GA with local search, GA with data mining and GA with
data mining and local search.

2 The Oil Collecting Vehicle Routing Problem

Concerning oil exploitation, there is a class of onshore wells called artificial
lift wells where the use of auxiliary methods for the elevation of fluids (oil
and water) is necessary. In this case, a fixed system of beam pump is used
when the well has a high productivity. Because oil is not a renewable product,
the production of such wells will diminish until the utilization of equipment
permanently allocated to them will become economically unfeasible. The ex-
ploitation of low productivity wells can be done by mobile equipment coupled
to a truck. This vehicle has to perform daily tours visiting wells, starting and
finishing at the Oil Treatment Station (OTS), where separation of oil from
water occurs. Usually the mobile collector is not able to visit all wells in a
single day. In this context, arises the problem called Oil Collecting Vehicle
Routing Problem (OCVRP). In this problem, the objective is to collect the
maximum amount of oil in a single day, starting and finishing the route at
OTS, respecting time constraints. The OCVRP can be considered as a gen-
eralization of the Traveling Salesman Problem (TSP) which is classified as
NP-hard. Thus, it is possibly harder to solve than the TSP.

Formally, given a set W = {1, · · · , n} of locations, where location 1 represents
OTS and all other locations represent wells, let pi be the estimated daily
production of well i ∈ W (p1 = 0), tij be the estimated time for traveling from
location i to location j and L the time limit for routes, the OCVRP can be
formulated as the following mixed integer programming (MIP) problem:

Maximize :

f(x) =
∑

i∈W
sipi (1)

Subject to :∑

j∈W,j 6=i
xij = si ∀i ∈ W (2)

2

∑

i∈W,i6=j
xij = sj ∀j ∈ W (3)

yij ≤ (|W | − 1)xij ∀i, j ∈ W, i 6= j (4)
∑

j∈W,j 6=1

y1j = (
∑

i∈W
si)− 1 (5)

∑

i∈W,i6=j
yij −

∑

k∈W,j 6=i
yjk = sj ∀j ∈ W − {1} (6)

∑

i∈W,j∈W,i6=j
tijxij ≤ L (7)

s1 = 1 (8)

si ∈ {0, 1} ∀i ∈ W, i 6= 1 (9)

xij ∈ {0, 1} ∀i, j ∈ W, i 6= j (10)

Where si indicates if well i will be visited, that is, whether it is part of the
route (si = 1) or not (si = 0) and xij indicates whether arc (i, j) will be in-
cluded on the route (xij = 1) or not (xij = 0). Constraints 2 and 3 ensure that
for active wells, and only for these wells, there must be one input and one out-
put arc included in the route. Constraints 4, 5 and 6 are subtour-elimination
constraints, where yij represents the “flow” in arc (i, j) [22]. Constraint 7 pre-
vents from exceeding the time limit, and constraint 8 ensures that OTS is
included in the route.

Although for routing problems in general there are some recent successful
applications of GAs [5,19,24], for problems similar to OCVRP, such as the
Traveling Purchaser Problem [25], the Prize Collecting Problem [4] and the
Orienteering Problem [12], they are scarce [13].

3 Genetic Algorithm

This section describes an overview of the GA proposed to solve the OCVRP.
In order to represent a solution, we employ a direct representation, where
each individual is coded by a variable size list of integer numbers, where genes
correspond to wells pertaining to route coded by an individual. The last gene
of each individual always represents the Oil Treatment Station, using 1 to
code it. The position of a well in this list represents its order in the route. A
sample individual is showed in Figure 1. In this case, the following route is
represented: OTS - well 16 - well 34 - · · · - well 58 - well 44 - OTS. Note that
the route always starts at OTS, in spite of the first gene not representing it.
Throughout the text, we will denote individuals by ind and wells(ind) will
denote the number of wells of individual ind. Also, indi will denote the i-th
visited well (or OTS, for indwells(ind)+1) and time(ind) will denote the time

3

Fig. 1. Example of an individual

needed to perform the route encoded in ind. The fitness function is exactly
the objective function presented in Section 2.

To generate the initial population, individuals are constructed using an it-
erative procedure, similar to the constructive phase of GRASP [7,29]. They
are built taking into account a greedy criterion which is used to define which
wells can be included in partial solutions. This criterion is based on pi/tji ra-
tio, where pi is the production rate of the candidate well i and tji is the time
spent to travel from the last well j included in the partial solution to the well
i. Thus, at each iteration, a well is selected from a list that contains all wells
not yet included in the solution, with pi/tji ratio in the range [rmin, rmax]. Let
r be the greatest pi/tji ratio among all wells not yet included in the solution
and r be the smallest ratio among these same wells then rmin = r − α(r − r)
and rmax = r . The α parameter should be selected in the range [0,1], allowing
the choice of the randomization degree of individual generation. This process
is executed while the total time consumed on the route being constructed has
not reached the time limit L. Once the addition of a given well w ∈ W pro-
duces a partial route with an associated time greater or equal than the time
limit (not including the time to return to OTS), the reparation procedure is
started.

The reparation procedure transforms an incomplete, infeasible solution, into a
complete, feasible one, in the following way: in order to turn the OTS inclusion
possible, this procedure removes, iteratively, the last well in the route until
the solution including OTS satisfies the time limit constraint.

Our GA uses a genetic operator different from traditional crossover operators.
A new individual (offspring) is generated from np solutions (parents) of the
current population, where np varies from one up to the size of the popula-
tion. Each parent solution is chosen by a tournament procedure that selects
the fittest individual from a set of k individuals randomly selected from the
population.

The crossover operator proposed here combines information from parent solu-
tions and the heuristic criterion employed in the constructive phase, as follows:
during each iteration of offspring generation, a well is chosen to take part in
the route. This well is randomly chosen from a list of remaining wells taking
into account a probability distribution that favors the addition of wells with
the highest γi = (1+ζji)∗(pi/tji), where ζji is the frequency which well i (can-
didate well) is the successor of well j (last well added to the partial solution)
in parent solutions. The probability of chosing a given well is proportional to

4

procedure Insert(ind)

1: start:
2: U ←W \ {ind1, · · · , indwells(ind)+1}
3: while |U | > 0 do
4: u← i ∈ U | pi ≥ pj∀j ∈ U
5: U ← U \ {u}
6: for k ← 0 to wells(ind) do
7: if time(ind) + insertion(ind, u, k) ≤ L then
8: Insert well u in ind at position k
9: goto start

10: end if
11: end for
12: end while

end.

Fig. 2. Pseudo-code for Insert

the position of this well in a list sorted by non-ascending order of the greedy
criterion γi, as suggested in [6]. In this work, polynomial distribution proba-
bility was chosen. This process is executed while the total time consumed on
the route being constructed has not reached the time limit. It is important
to note that our crossover operator does not rely only on information from
parent solutions, allowing the occurrence of offsprings with genetic code not
available on parents. Thus, there is no need of incorporating a mutation oper-
ator. During the evolutionary process, the population remains at a fixed size,
i.e., the insertion of β new individuals substitutes the β worst individuals in
the population.

3.1 Genetic Algorithm with Local Search

Local search is a post-optimization procedure that allows a systematic search
in a solution space by using a neighborhood structure [17]. In this work two
neighborhood structures were used, aimed at increasing the amount of col-
lected oil for a feasible solution for the problem (base solution).

In both neighborhoods, whose pseudo-codes are shown in Figures 2 and 3,
a set U of wells not yet included in the current solution is maintained. The
first neighborhood - N1 (procedure Insert), tries to add into the current
solution each well pertaining to set U , searching for the first possible position
for insertion, from 0, before the first visited well, until wells(ind), after the
last one. In line 7, insertion(ind, u, k) represents the increase in time resulting
from the insertion of u in the route of ind, at position k.

The second neighborhood - N2 (procedure Swap), tries to exchange each well

5

procedure Swap(ind)

1: start:
2: for k ← 1 to wells(ind) do
3: U ← W \ {ind1, · · · , indwells(ind)+1}
4: Remove from U wells with production < pindk
5: while |U | > 0 do
6: u← i ∈ U | pi ≥ pj∀j ∈ U
7: U ← U \ {u}
8: if time(ind) + exchanging(ind, u, indk) ≤ L then
9: Replace indk by u in ind

10: goto start
11: end if
12: end while
13: end for

end.

Fig. 3. Pseudo-code for Swap

from the current solution with another from set U . In line 8, exchanging(ind,
u, indk) represents the variation in time needed to perform the route encoded
in ind derived from the replacement of well indk by well u, in ind. First fit
criterion is used in both neighborhoods and the search in a given neighbor-
hood is re-started whenever a better solution is found. Elements are accessed
in the set U in non-increasing order. Local search operators are applied in
newly created solutions from crossover operations and from the Data Mining
intensification procedure, explained in the following section. The probability
of applying local search in these individuals, with neighborhoods N1 and N2

are controlled by parameters probN1 and probN2.

3.2 Genetic Algorithm with Data Mining

With the aim of accelerating the occurrence of high quality solutions in the
population, we propose the incorporation of a Data Mining module in the GA.
This module aims to discover patterns (subroutes) which are commonly found
in the best solutions of the population. This approach significantly differs
from current applications that combine genetic algorithms and data mining
because, until now, most of the efforts deal with the development of GAs
as optimization methods to solve Data Mining problems [14,10], such as the
discovery of association, classification and clustering rules, which is not our
case. The process starts with the creation of an Elite Set of solutions (ES),
which will keep the s best solutions generated in the search process. Initially,
the first s solutions generated are inserted in the ES. Afterwards, this set is
updated whenever a solution which is better than the worst solution in ES
and different from all others ES solutions is generated. The ES will be the

6

database in which we will try to discover relevant patterns. In order to do
this, we implemented an Apriori like algorithm [1,2], which discovers frequent
contiguous sequences in the ES. Although there are very efficient algorithms
for mining sequential patterns, we chose to implement a simpler one, for two
reasons: at first, our ES size will be significantly smaller than databases which
are generally considered for data mining (for this type of CO problem, good
solutions are computationally expensive to produce); secondly, we focused on
the specific problem of finding contiguous sequences, which is easier to solve
than more general sequence pattern mining problems[9,23] . The algorithm re-
ceives the minimum support as an input parameter. This parameter is related
to the size of ES and defines the minimun number of occurrences in ES that
one sequence must have to be considered frequent. Thus, the algorithm will
discover all sequences (subroutes in the ES) of all sizes (≥ 1), which satisfy
the minimal support. For instance, a minimum support of 0.5, indicates that
at least half of ES solutions must incorporate the considered sequence.

Once a set of frequent sequences is available, it is used to guide the construc-
tion of new individuals, in the following way: new individuals are built using
a constructive procedure similar to the one used to build new solutions from
crossover operations, except that no information of frequency in parent solu-
tions is available (ζij = 0, ∀i, j), furthermore, whenever a well is selected to
be added to the partial solution, a set of valid subroutes is built. This set
contains only frequent sequences whose wells do not appear in the partial so-
lution, starting with the selected well. If more than one subroute is found, we
randomly choose from the available ones. The sequence chosen is incorporated
in partial solution. Since time limit constraint can easily be violated through
the addition of a sequence of wells, the reparation operator presented in sec-
tion 3 is applied. If no valid subroute is found in data mining results, only the
selected well is added. Each time that the Data Mining module is triggered, β
new individuals are generated using data mining information. As in crossover
operator, population remains at a fixed size.

Remark that the discovery of relevant patterns relies on having a good set of
elite solutions. In the beginning of the search the average fitness of population
continually increases, causing frequent changes in ES. Hence, data mining is
only worth applying after some iterations have been processed. Also, after
the first DM execution, newer ones must only occur if the ES was modified.
The parameter µ controls how often the DM module will be activated. On
setting up this parameter, very small values shall not be used, in order to
avoid premature convergence.

7

3.3 Genetic Algorithm with Data Mining and Local Search

The application of Data Mining can be used together with Local Search pro-
cedures, through the application of Local Search in new individuals from
crossover operator and from Data Mining procedure. This configures the most
complete version of GA proposed here, named Genetic Algorithm with Data
Mining and Local Search (GADMLS). The pseudo-code for this algorithm
is presented in Figure 4. Initial population is generated using the greedy ran-
domized constructive (GRC) procedure (line 3), which was described in section
3. Function Offspring (line 5) indicates the application of crossover operator
using np parent solutions from population P to generate each one of the β
new individuals. To keep a fixed population size through generations, β worst
individuals of population (function Worst) are removed whenever β new in-
dividuals are included. In the application of Data Mining (lines 14 and 15), β
new individuals are generated using the discovered frequent sequences SEQ by
the GRCDM procedure (Greedy Randomized Constructive with Data Min-
ing), whose functioning was described in section 3.2. The best solution of all
generations (with the highest value of fitness function f(x), where x is the
evaluated solution) is kept and returned by the algorithm. Simpler versions
of this algorithm (GA without Local Search and/or Data Mining) are just as
the algorithm in Figure 4, except by the removal of modules of Data Mining
(lines 13-22) and/or Local Search (calls to Insert and Swap).

3.4 Computational Results

To the best of our knowledge no set of instances were made publicly avail-
able to the OCVRP. Thus, a set of instances (Table 1) with different char-
acteristics were generated. Instances incorporate distances from TSP-Library
problems [28] which can be found at [27]. For each TSP-Library problem
used, four problems were generated, with different well productions and dif-
ferent time limits. Time limits were defined in a way that no trivial solution
was possible (including all wells): these values are always a fraction of the
optimal tour length. The naming convention used for problems was the fol-
lowing: sourceTSP maxProd timeLimitF . Where sourceTSP is the name of
the original TSP instance. Production of wells was randomly generated using
uniform distribution in the interval {1, · · · , maxProd}. Time limit for each
instance is timeLimitF percent of the optimal tour length from TSP-Library.
In Table 1, columns “rows”, “columns” and “binaries” are related to the di-
mensions of the generated MIP problems: number of constraints, variables and
binary variables, respectively.

Algorithms were coded in C and compiled with the GCC 3.3.4 compiler, using

8

procedure GADMLS(popSize,np,s,β,α,sup,µ,probN1 ,probN2)

1: gen← 1;NewIndividuals ← ∅;EliteSet← ∅;
2: bestSolution← ∅;
3: P ← GRC(α, popSize);
4: while not StoppingCriterionReached() do
5: NewIndividuals← Offspring(P, β, np)
6: for each ind ∈ NewIndividuals do
7: Execute, with probability probN1: Insert(ind);
8: Execute, with probability probN2: Swap(ind);
9: end for

10: P ← P ∪NewIndividuals;
11: P ← P\Worst(P, β);
12: Update EliteSet using P ;
13: if (gen > 0 and gen mod µ = 0) then
14: Discover sequences SEQ with minimum support sup in EliteSet;
15: NewIndividuals← GRCDM(SEQ, β);
16: for each ind ∈ NewIndividuals do
17: Execute, with probability probN1: Insert(ind);
18: Execute, with probability probN2: Swap(ind);
19: end for
20: P ← P ∪NewIndividuals;
21: P ← P\Worst(P, β);
22: end if
23: Update bestSolution;
24: gen+ +;
25: end while
26: Return bestSolution;

end.

Fig. 4. Pseudo-code for GADMLS

Fig. 5. Empirical probability distribution of reaching target solution value

flag -O2. Running times were measured with the getrusage function. Pseudo
random numbers were generated using Mersenne Twister generator [18]. Ex-

9

P. Id. Problem Name Rows Columns Binaries Execution Time Limit (seconds)

1 ulysses22 1000 40 529 945 483 5

2 ulysses22 1000 70 529 945 483 7

3 ulysses22 100000 40 529 945 483 4

4 ulysses22 100000 70 529 945 483 7

5 att48 1000 40 2,401 4,559 2,303 9

6 att48 1000 70 2,401 4,559 2,303 13

7 att48 100000 40 2,401 4,559 2,303 9

8 att48 100000 70 2,401 4,559 2,303 13

9 st70 1000 40 5,041 9,729 4,899 16

10 st70 1000 70 5,041 9,729 4,899 25

11 st70 100000 40 5,041 9,729 4,899 16

12 st70 100000 70 5,041 9,729 4,899 25

13 ch130 1000 40 17,161 33,669 16,899 57

14 ch130 1000 70 17,161 33,669 16,899 92

15 ch130 100000 40 17,161 33,669 16,899 59

16 ch130 100000 70 17,161 33,669 16,899 93

17 d198 1000 40 39,601 78,209 39,203 189

18 d198 1000 70 39,601 78,209 39,203 276

19 d198 100000 40 39,601 78,209 39,203 160

20 d198 100000 70 39,601 78,209 39,203 272

21 a280 1000 40 78,961 156,519 78,399 227

22 a280 1000 70 78,961 156,519 78,399 396

23 a280 100000 40 78,961 156,519 78,399 227

24 a280 100000 70 78,961 156,519 78,399 396

25 pr439 1000 40 193,600 385,002 192,720 809

26 pr439 1000 70 193,600 385,002 192,720 1401

27 pr439 100000 40 193,600 385,002 192,720 797

28 pr439 100000 70 193,600 385,002 192,720 1389

29 pcb442 1000 40 196,249 390,285 195,363 683

30 pcb442 1000 70 196,249 390,285 195,363 1126

31 pcb442 100000 40 196,249 390,285 195,363 697

32 pcb442 100000 70 196,249 390,285 195,363 1137

33 att532 1000 40 284,089 565,515 283,023 1359

34 att532 1000 70 284,089 565,515 283,023 2019

35 att532 100000 40 284,089 565,515 283,023 1356

36 att532 100000 70 284,089 565,515 283,023 2041

Table 1
Problem characteristics

periments were executed in a microcomputer with an Athlon XP 1800+ pro-
cessor and 512 Megabytes of RAM, running the Linux operating system, kernel
2.4.29.

In this section the simplest algorithm will be referred as GA, while its com-
position with local search will be referred as GALS, the hybrid version with

10

data mining will be referred as GADM and GADMLS indicates the version
which includes local search and data mining.

In order to compare different versions of algorithms, we stipulated fixed time
limits (stopping criterion in the algorithm of Figure 4), for each instance.
Execution time limits are proportional to instances dimensions, as follows:
given a instance i, the allowed execution time tli is: tli = tci ∗ κ, where tci is
the time needed to build a solution using the constructive algorithm described
in section 3 and κ is a sufficiently large constant (20,000 in our experiments).

The following parameters were used in our genetic algorithm:

• Population size (popSize): 500
• New individuals (β): 50
• Number of parents (np): 50
• Randomization degree (α): 0.5
• Tournament individuals: 2

Versions with the Data Mining module had the additional parameters:

• Minimum support (minSup): 0.5
• Elite set size: (s): 5
• Mining interval: (µ): 50

For versions with local search, all new solutions were transformed in local
optima with respect to both neighborhoods, i.e.: probN1 = 1.0 and probN2 =
1.0.

In Table 2, we show the average solution value, with standard deviation, pro-
duced in 10 independent executions (different random seeds), for different
versions of our algorithms. Results in bold indicate the better average results.
As can be seen, in 80% of problems, the outcome of version with data mining
(GADM) is better than the outcome of version without this module (GA). In
any case, the hybrid GA with data mining and local search obtained, overall,
the best results: it produced the best average solution in 22 out of the 36
problem instances.

In another experiment, the objective was to verify the empirical probability
distribution of reaching a given solution target value (i.e. find a solution with
value as good as the target solution value) in function of time, for different
algorithms. In this experiment we try to assess how fast these algorithms can
generate good solutions. For this experiment, a bigger instance was created:
d657 1000000 70. The solution values were chosen in a way that the slowest
algorithm could terminate in a reasonable amount of time. Execution times
of 100 independent runs were computed. The experiment design follows the
proposal of [3]. Results of each algorithm were plotted (Figure 5) by associating

11

P. Id. GA GADM GALS GADMLS

Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev.

1 8.40 0.03 8.40 0.03 8.41 0.00 8.41 0.00

2 11.31 0.00 11.31 0.00 11.36 0.10 11.45 0.12

3 746.19 3.69 745.37 3.25 759.15 0.00 759.15 0.00

4 1,117.19 16.28 1,124.79 8.86 1,141.91 0.00 1,141.91 0.00

5 13.10 0.28 13.18 0.08 14.02 0.27 13.99 0.28

6 18.92 0.16 19.02 0.24 19.64 0.15 19.70 0.16

7 1,270.40 13.43 1,308.53 22.53 1,352.57 19.72 1,346.40 18.89

8 1,851.49 18.06 1,862.42 32.19 1,943.11 26.65 1,945.70 17.88

9 15.61 0.35 15.75 0.47 16.80 0.27 16.82 0.20

10 24.84 0.41 25.33 0.33 26.26 0.51 26.33 0.54

11 1,762.64 44.00 1,779.50 14.11 1,907.32 37.24 1,913.16 26.12

12 2,487.01 27.35 2,488.42 49.14 2,656.04 50.52 2,667.70 42.24

13 30.61 0.55 30.81 0.63 32.58 0.76 32.50 0.70

14 46.37 1.13 46.39 0.78 48.16 0.54 48.11 0.88

15 2,980.01 75.93 3,009.10 61.25 3,118.62 49.14 3,188.91 89.06

16 4,511.45 68.03 4,585.47 77.92 4,738.50 96.30 4,765.40 49.70

17 35.65 0.87 36.01 0.62 38.93 0.72 39.37 0.55

18 67.31 0.72 67.65 0.83 70.84 0.85 70.39 0.95

19 3,810.39 55.55 3,878.00 83.29 4,025.35 90.83 4,033.73 36.44

20 7,384.82 85.15 7,450.16 103.09 7,773.92 98.03 7,789.02 121.83

21 46.84 0.53 47.96 1.29 50.06 0.92 49.80 1.23

22 78.07 0.97 78.76 1.73 83.16 1.38 83.58 1.41

23 4,986.12 132.21 4,914.60 56.48 5,265.43 118.35 5,292.82 170.79

24 8,258.49 86.84 8,429.63 155.41 8,817.44 160.33 8,708.05 101.63

25 91.78 1.69 91.44 1.29 96.34 1.07 94.68 1.10

26 138.83 1.28 142.43 1.06 144.37 1.67 143.53 1.69

27 9,588.19 244.18 9,750.25 128.91 10,033.14 240.47 10,029.48 309.57

28 14,344.72 108.31 14,491.22 153.81 14,848.62 139.11 14,763.11 134.69

29 82.30 1.24 82.17 1.51 86.71 1.34 87.16 1.68

30 132.15 1.69 133.29 2.04 138.05 1.52 136.61 1.55

31 8,288.89 135.66 8,194.22 160.61 8,709.20 187.28 8,605.22 102.23

32 12,958.52 172.69 13,198.49 315.53 13,526.36 78.17 13,670.47 196.76

33 124.29 1.56 125.86 2.21 128.19 2.51 127.48 1.84

34 176.58 1.53 177.11 0.95 178.59 2.28 179.57 2.09

35 12,483.73 201.48 12,531.07 150.40 12,620.18 192.57 12,624.20 254.79

36 17,661.23 162.54 17,693.57 182.05 17,853.19 138.80 17,876.98 143.68

Table 2
Results for 10 independent executions for different problems (solution values mul-
tiplied by 10−3)

Problem Optimal Solution

ulysses22 1000 40 8.41

ulysses22 1000 70 11.56

ulysses22 1000000 40 759.15

ulysses22 1000000 70 1,141.91

Table 3
Optimal solutions (solution values multipled by 10−3)

the i-th smallest running time rti with the probability pi = (i − 0.5)/100,
which generates points i = (rti, pi), for i = 1, · · · , 100. A simple analysis of
results can be done considering the alignment of curves: leftmost aligned curves
indicate an algorithm with faster convergence, while rightmost aligned curves

12

indicate slower algorithms. The results show that the simplest version (GA)
takes considerably more time to achieve high cumulative probability values
(> 0.5). Versions with data mining and/or local search perform much faster.
There is a probability of 50% of GA to reach the target at 1,250 seconds, while
for other algorithms it takes approximately 850 seconds, as shown in Figure
5.

To validate our experiments, we used the ILOG CPLEX 9.0 [16] to optimally
solve the proposed instances. It successfully solved all problems generated
from ulysses22 TSP-Library instance. Nevertheless, for bigger problems (48
and 70 nodes), the solver unexpectedly halted after some days of processing,
when memory consumption was too high (greater than 10 Gigabytes). Optimal
solution values are shown in Table 3. Our heuristic methods, with data mining
and local search, always produced optimal solutions for 3 of 4 instances with
known optimal solutions.

4 Conclusions and Future Works

In this work we presented three improved versions of an evolutionary algo-
rithm. Versions which include local search and/or data mining were presented.
Although applications of genetic algorithms with local search are abundant in
the literature, the application of data mining to improve the results of evo-
lutionary algorithms is still scarce. The data mining module proposed corre-
sponds to an intensification strategy, since it tries to discover good features
in the best solutions found so far and to apply them in the generation of new
solutions. The addition of the data mining module into the genetic algorithm
(GA) significantly improved this method and the hybrid version with local
search (GADMLS), on average, produced the better results. Results could be
improved if other interactions between modules and/or a more exhaustive set
of experiments were conducted (perhaps, larger running times would benefit
the more computationally expensive version - GADMLS). Nonetheless, our
proposal looks very promising, specially considering problems in which it is
difficult to devise efficient local search algorithms.

Since these hybrid versions consume considerable computational resources, an
interesting future work is the development of parallel versions.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487–499. Morgan

13

Kaufmann, 1994.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 11th Int. Conf.
on Data Engineering, pages 3–14, 1995.

[3] R. M. Aiex, M. G. C. Resende, and C. C. Ribeiro. Probability distribuition of
solution time in GRASP: an experimental investigation. Journal of Heuristics,
8:343–373, 2002.

[4] E. Balas. The Prize Collecting Traveling Salesman Problem. Networks, 19:621–
636, 1989.

[5] J. Berger and M. Barkaoui. A new hybrid genetic algorithm for the capacitated
vehicle routing problem. Operational Research Society, 54:1254–1262, 2003.

[6] J.L. Bresina. Heuristic-biased stochastic sampling. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, pages 271–278,
Portland, 1996.

[7] T. Feo and M. Resende. Greedy Randomized Adaptive Search Procedures.
Journal of Global Optimization, 6:109–133, 1995.

[8] P Galinier and J Hao. Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3(4):379–397, 1999.

[9] M. N. Garofalakis, R. Rastogi, and K. Shim. Mining Sequential Patterns with
Regular Expression Constraints. IEEE Trans. Knowl. Data Eng, 14(3):530–552,
2002.

[10] A. Ghosh and A. Freitas. Special Issue on data mining and knowledge discovery
with evolutionary algorithms. IEEE Trans. on Evolutionary Computation 7(6),
2003.

[11] D.E. Goldberg. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Menlo Park, 1989.

[12] B.L. Golden, L. Levy, and R. Vohra. The Orienteering Problem. Naval Research
Logistics, 24:307–318, 1987.

[13] G. Gutin and A.P. Punnen, editors. Traveling Salesman Problem and Its
Variations. Springer, 2002.

[14] J. Han and K. Micheline. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, 2000.

[15] J.H. Holland. Adaptation in natural and artificial systems. University of
Michigan Press, Ann Arbor, 1975.

[16] ILOG S.A. ILOG CPLEX 9.0: User’s Manual, 2003.

[17] J.K. Lenstra and E.H.L. Aarts, editors. Local Search in Combinatorial
Optimization. John Wiley & Sons, New York, 1997.

14

[18] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Trans. on
Modeling and Computer Simulation, 8(1):3–30, 1998.

[19] D. Mester and O. Braysy. Active guided evolution strategies for large scale
vehicle routing problems with time windows. Computers & Operations Research,
32:1593–1614, 2005.

[20] P. Moscato. On Evolution, Search, Optimization Algorithms and Martial Arts:
Towards Memetic Algorithms. Technical Report 826, California Institute of
Technology, Pasadena, 1989.

[21] P. Moscato and C. Cotta. Handbook of Metaheuristics, chapter A Gentle
Introduction to Memetic Algorithms, pages 105–144. Kluwer Academic Press,
Boston, 2003.

[22] A.J. Orman and H.P. Willians. A Survey of Different Integer Programming
Formulations of the Travelling Salesman Problem. Technical Report LSEOR
04.67, London School of Economics, London, 2004.

[23] J. Pei and J. Han. Constrained frequent pattern mining: a pattern-growth view.
SIGKDD Explorations, 4:31–39, 2002.

[24] C. Prins. A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers & Operations Research, 31:1985–2002, 2004.

[25] T. Ramesh. Traveling purchaser problem. Opsearch, 18:78–91, 1981.

[26] C.R. Reeves. Modern Heuristic Techniques for Combinatorial Problems, chapter
Genetic algorithms, pages 151–188. John Wiley & Sons, New York, 1993.

[27] G. Reineilt. Traveling Salesman Problem. http://www.iwr.uni-heidelberg.de/
groups/comopt/software/TSPLIB95/.

[28] G. Reineilt. TSPLIB - A traveling salesman problem library. ORSA J. Comput.,
3:376–384, 1991.

[29] C.C. Ribeiro and M.G.C. Resende. Handbook of Metaheuristics, chapter Greedy
randomized adaptive search procedures, pages 219–249. Kluwer, 2002.

Acknowledgments

The authors are grateful to CNPq and CAPES that partially funded this
research. Also, authors would like to thank the referees, for their valuable
comments and Professor Eduardo Uchoa (Universidade Federal Fluminense)
and Olinto C. Bassi Araujo (DENSIS-FEE-UNICAMP), for their help with
computational resources and software for this research.

15

