Experimental Comparison of Greedy
Randomized Adaptive Search Procedures for the
Maximum Diversity Problem

Geiza C. Silva, Luiz S. Ochi, and Simone L. Martins

Universidade Federal Fluminense, Departamento de Ciéncia da Computagao
Rua Passo da Patria, 156 - Bloco E - 3 andar - Boa Viagem
24210-240, Niteré6i, RJ, Brazil

{gsilva, satoru, simone}@ic.uff.br

Abstract. The maximum diversity problem (MDP) consists of identi-
fying optimally diverse subsets of elements from some larger collection.
The selection of elements is based on the diversity of their characteristics,
calculated by a function applied on their attributes. This problem be-
longs to the class of NP-hard problems. This paper presents new GRASP
heuristics for this problem, using different construction and local search
procedures. Computational experiments and performance comparisons
between GRASP heuristics from literature and the proposed heuristics
are provided and the results are analyzed. The tests show that the new
GRASP heuristics are quite robust and find good solutions to this prob-
lem.

1 Introduction

The maximum diversity problem (MDP) [5-7] consists of identifying optimally
diverse subsets of elements from some larger collection. The selection of elements
is based on the diversity of their characteristics, calculated by a function applied
on their attributes. The goal is to find the subset that presents the maximum
possible diversity. There are many applications [10] that can be solved using
the resolution of this problem, such as medical treatment, selecting jury panel,
scheduling final exams, and VLSI design. This problem belongs to the class of
NP-hard problems [6].

Glover et al. [6] presented mixed integer zero-one formulation for this prob-
lem, that can be solved for small instances by exact methods. Bhadury et al. [3]
developed an exact algorithm using a network flow approach for the diversity
problem of working groups for a graduate course.

Some heuristics are available to obtain approximate solutions. Weitz and
Lakshminarayanan [12] developed five heuristics to find groups of students with
the most possible diverse characteristics, such as nationality, age and gradua-
tion level. They tested the heuristics using instances based on real data and
implemented an exact algorithm for solving them and the heuristic LCW (Lofti-
Cerveny-Weitz method) was considered the best for solving these instances.

Constructive and destructive heuristics were presented by Glover et al. [7],
who created instances with different size of population (maximum value was 30)
and showed that the proposed heuristics obtained results close (2 %) to the ones
obtained by the exact algorithm, but much faster.

Kochenberger and Glover [10] showed results obtained using a tabu search
and Katayama and Naribisa [9] developed a memetic algorithm. Both report
that computational experiments were carried out, but they did not compare the
performance of their algorithms with exact or other heuristics procedures.

Ghosh [5] proposed a GRASP (Greedy Randomized Adaptive Search Pro-
cedure) that obtained good results for small instances of the problem. Andrade
et al. [2] developed a new GRASP and showed results for instances randomly
created with a maximum population of 250 individuals. This algorithm was able
to find some solutions better than the ones found by the Ghosh algorithm.

GRASP [4] is an iterative process, where each iteration consists of two phases:
construction and local search. In the construction phase a feasible solution is
built, and its neighborhood is explored by a local search. The result is the best
solution found over all iterations. In Section 2 we describe three construction pro-
cedures developed using the concept of reactive GRASP introduced by Prais and
Ribeiro [11], and two local search strategies. In Section 3 we show computational
results for different versions of GRASP heuristics created by the combination of
a constructive algorithm and a local search strategy described in Section 2. Con-
cluding remarks are presented in Section 4.

2 GRASP heuristics

The construction phase of GRASP is an iterative process where, at each iteration,
the elements ¢ € C' that do not belong to the solution are evaluated by a greedy
function g : C — Ry, that estimates the gain of including it in the partial
solution. They are ordered by their estimated value in a list called restricted
candidate list (RCL) and one of them is randomly chosen and included in the
solution. The size of the RCL is limited by a parameter «. For a maximization
problem, only the elements whose g values are in the range [(1 — &)gmaz, Gmaxz)
are placed in RCL. This process stops when a feasible solution is obtained.

Prais and Ribeiro [11] proposed a new procedure called Reactive GRASP, for
which the parameter a used in the construction phase is self adjusted for each
iteration. For the first construction iteration, an a value is randomly selected
from a discrete set A = {aq,...,an}. Each element «; has a probability p;
associated and, initially, a uniform distribution is applied, thus we have p; =
1/m,i = 1,...,m. Periodically the probability distribution p;,i = 1,...,m is
updated using information collected during the former iterations. The aim is to
associate higher probabilities to values of a that lead to better solutions and
lower ones to values of a that guide to worse solutions.

The solutions generated by the construction phase are not guaranteed to be
locally optimal. Usually a local search is performed to attempt to improve each
constructed solution. It works by successively replacing the current solution by a

better one from its neighborhood, until no more better solutions are found. Nor-
mally, this phase demands great computational effort and execution time, so the
construction phase plays an important role to diminish this effort by supplying
good starting solutions for the local search. We implemented a technique widely
used to accomplish this task, that leads to a more greedy construction. For each
GRASP iteration, the construction algorithm is executed X times generating X
solutions and only the best solution is selected to be used as the initial solution
for the local search phase.

In the next subsections, we describe the construction and local search algo-
rithms developed for the GRASP heuristics, using the concepts discussed in this
section.

2.1 Construction phase.

Let E={e; :i € N},N ={1,2,...,n} be a population of n elements and e;,
leL=1{1,2,..1} the l values of the attributes of each element. In this paper,
we measure the diversity between any two elements ¢ and j by the Euclidean

distance calculated as d;; = \/Zi@:l(eik —e;,)%. Let M be a subset of N and
the overall diversity be 2(M) = >, ;. .c)s dij- The MDP problem consists of
maximizing the cost function z(M), subject to |M| =m.

We describe three construction algorithms developed to be used in GRASP
heuristics where all of them use the techniques described before: Reactive GRASP
and filtering of constructed solutions.

K larger distances heuristic (KLD). This algorithm constructs an initial
solution by randomly selecting an element from a RCL of size K at each con-
struction iteration. The RCL is created by selecting for each element i € N, the
K elements j € N\{i}, that exhibit larger values of d;; and sum these K values
of dj;, obtaining s;. Then, we create a list of all elements 7 sorted in descending
order by their s; values and select the K first elements to compose the RCL list.

The procedure developed to implement the reactive GRASP starts consider-
ing m_it to be the total number of GRASP iterations. In the first block of iter-
ations By = 0.4m_it, we evaluate four different values for K € {K1, K2, K3, K4}
and the evaluation is done by dividing the block into four equal intervals ¢;,i =
1,...,4. We use the value K; for all iterations belonging to interval c;,7 = j. The
values of K; are shown in Tab. 1, where u = (n — m)/2. After the execution of

Table 1. K values for block B,

7 Cj K

1{[1,...,0.1m_it] m+pu—0.2u
2|(0.1mit, ...,0.2moit][m 4+ p — 0.1p
3[(0.2mit, ...,0.3mit][m + p + 0.1p
4|(0.3mit, ..., 0.4m_it]|m + p + 0.2p

the last iteration of block B;, we evaluate the quality of the solutions obtained
for each K;. We calculate the mean diversity value 2m; = 37 o <o 1,,,_ir 2(50liq)
for the solutions sol;q,i = 1,...4;q = 1,...,0.1m_t obtained using each Kj.
The values K; are stored in a list LK ordered by their zm; values.

Then for the next block of iterations Bs = 0.6m_it, we divide it into four
intervals y;, each one with different number of iterations, and use the K; values
as shown in Tab. 2. In this way, the values K; that provide better solutions are
used in a larger number of iterations.

Table 2. K values for block Bs

i Yi K
1[[0.dmit, ..., 0.64m_it] [Ik1
2[(0.64mit, . .., 0.82m_it]|lka
3[(0.82meit, . . ., 0.94m_it]|lk3
41(0.94m_it, ..., m_it] lka

At each GRASP iteration, we apply the filter technique for this heuristic by
constructing 400 solutions and only the best solution is sent to the local search
procedure.

The pseudo-code, including the description of the procedure for the construc-
tion phase using K larger Distances heuristic, is given in Fig. 1.

procedure constr KLD(it-GRAS P, m_it, numsol, n, m)

1 best_cost_sol «— 0;
2. K — det_K(it_.GRASP, m_it, LK,4);
3 nume-sol [i] < numc_sol [i] + 1;
4. RCL — Build_RCL(K);
5. for j =1,...,max_sol_filter do
6 sol — {};
7 for k=1,...,m do
8 Randomly select an individual e* from RCL;
9. sol — sol U {e"};
10. RCL «— RCL — {e*};
11. end for;
12. if (z(sol) > best_cost_sol) then do
13. sol_constr < sol;
14. best_cost_sol «— z(sol);
15. end if
16. end for;
17. sol_eval [i, num_sol[i]] < z(sol_constr);
18. if (it GRASP == 0.4m_it) then do
19. LK «— Build_-LK (sol_eval);
20. end if;
21. return sol_constr.

Fig. 1. Construction procedure used to implement the KLD heuristic

In line 1, we initialize the cost of the best solution found in the execution of
max_sol_filter iterations. The value K to be used to build the Restricted Can-
didate List (RCL) is calculated by the procedure det_K in line 2. This procedure

defines the value for K implementing the reactive GRASP described before. In
line 3, the number of solutions found for a specific K is updated and, in line 4,
the RCL is built. From line 5 to line 16, the construction procedure is executed
maz_sol_filter times and only the best solution is returned to be used as an
initial solution by the local search procedure. From line 7 to line 11, a solution is
constructed by the random selection of an element from RCL. In lines 12 to 15,
we update the best solution found by the construction procedure and the cost
of the solution found using the selected K is stored in line 17. When the first
block B, of iterations ends, the values K; are evaluated and put in the list LK
sorted in descending order, in line 19.

K larger distances heuristic-v2 (KLD-v2). This algorithm is similar to the
previously described algorithm, the difference between them is the way that the
Restricted Candidate List is built. In the former algorithm, the RCL is computed
before the execution of the construction iterations and, for each iteration, the
only modification made in the RCL is the removal of the element that is inserted
in the solution.

In this algorithm, the RCL is built using an adaptive procedure, where the
process to select the first element of the constructed solution is the same as of
the KLD heuristic, which means that an element is randomly selected from the
RCL built as described in line 4 of Fig. 1.

Let M. be a partial solution with ¢,1 < ¢ < m elements and i € N\M. a
candidate to be inserted in the next partial solution M. ;. For each ¢, we select
the (K —c— 1) elements j € N\(M.|J{¢}),that present larger values of d;; and
calculate the sum of the (K — ¢ — 1) values of d;; obtaining s;. To select the
next element to be inserted, an initial candidate list is created based on the
greedy function gf(¢) shown in (1), where the first term corresponds to the sum
of distances from the candidate ¢ to the elements j € M., and the second term
stands for the sum of distances from element ¢ to the (K — ¢ — 1) elements that
are not in the solution M, and present larger distances to 7. The initial candidate
list is formed by the elements ¢, sorted in descending order with respect to g f (%),
and the first K elements are selected from this list to build the RCL.

gf(i) =Y dij+si (1)

JEM.

The Reactive GRASP and the construction filter are implemented in the same
way as in KLD. Once this construction algorithm demands much more execution
time than KLD algorithm, only 2 solutions, instead of 400, are generated to be
filtered.

Most distant insertion heuristic (MDI). Let M, be a partial solution with
¢, (1 < ¢ < m) elements, the partial solution M; is obtained by randomly select-
ing an element from all elements i € V.

The second element ms is the element j, which presents the larger distance
dij,i € My,j € N\M. To obtain M.(c > 3) from M._1, the element to be

inserted in the solution is randomly selected from a RCL. The RCL is built
based on the function dsum(j) showed in (2), where the first term of this function
corresponds to the sum of distances between all elements ¢ € M._1. The second
term is the sum between all elements i € M._; to a candidate j that is not in
the partial solution M._;.

dsum(j) = Z Z dyw + Z dyj (2)

1<y<c—2y+1<w<c—1 1<v<ce—1

An initial candidate list (ICL) is created containing the elements j € N\M._1,
sorted in descending order by their dsum(j) values. The first @ X n elements of
ICL are selected to form the RCL.

For this algorithm, the reactive GRASP is implemented in the same way
done for the K larger distances heuristic. The first block By = 0.4m_it is di-
vided into four intervals of the same size and four values for « € {a1, az, as, a4}
are evaluated. Table 3 shows the values of « used for each interval. The values
a;,t = 1,...,4 are evaluated by calculating the mean diversity value zm; =
Zl<q<0_1m_it z(soliq) for the solutions soliq,i = 1,...4;9 = 1,...,0.1m_it ob-
tained using each a;. The values «; are stored in a list La ordered by their zm;
values.

Table 3. a values for block B:

1|cq «@
1[[1,...,0.1mit] 0.03
2[(0.1mit, ..., 0.2m_it]|0.05
3[(0.2mit, ..., 0.3m_3t]|0.07
4/(0.3m_it, ...,0.4m_it]|0.1

The next block of iterations By = 0.6m_it is also divided into four intervals
yi, each one with distinct number of iterations and, for each one, a value of « is
associated, as shown in Tab. 4.

Table 4. o values for block Bs

|y a

1[[0.4m_it, ..., 0.64m_it] [lo,
2[(0.64m_it, . .., 0.82m_it]|laz
3[(0.82m_it, . .., 0.94m_it]|las
41(0.94m_it, ..., m_it] lag

We have also implemented the same procedure described above for filtering
the constructed solutions. In this case, the number of solutions generated is n,
so it depends on the population size of each instance.

Figure 2 shows the construction phase procedure using the MDI heuristic.
In line 1, we initialize the value of the best solution found. The value « to

procedure constr MDI(it-GRASP, m_it, numsol, n, m)
1 best_cost_sol «— 0;
2 a «— det_a(it_ GRASP, m_it, La, 1);
3 nume-sol [i] < numc_sol [i] + 1;
4. N_RCL +— N;
5. for j =1,...,max_sol_filter do
6 sol — {}7
7 Randomly select an individual m; from N;sol « sol U {m1};
8 for all j € N\M; do
9. Compute dimq j
10. mg 1, |dm,, = max(dm,;),j € N\Mi;
11. sol — sol U{m2};
12. end for all;
13. N_RCL «— N — Ma;
14. for k=3,...,m do
15. RCL «— Build-.RCL_a(N_RCL, a);
16. Randomly select an individual e* from RCL;
17. sol — sol U {e"};
18. N_RCL «— N_RCL — {e*};
19. end for;
20. if (z(sol) > best_cost_sol) then do
21. sol_constr < sol;
22. best_cost_sol «— z(sol);
23. end if
24. end for;
25. sol_eval [i, num_sol[i]] < z(sol_constr);
26. if (it_GRASP == 0.4m_it) then do
27. Lo+ Build-La(sol_eval);
28. end if;
29. return sol_constr;

Fig. 2. Construction procedure used to implement the MDI heuristic

be used to build the RCL is calculated by the procedure det_« in line 2. This
procedure selects a based on the reactive GRASP discussed before. In line 3, the
number of solutions found for a specific « is updated and in line 4, the set that
contains the candidates to be inserted in the solution is initialized to contain
all elements belonging to N. From line 5 to line 24, the construction procedure
is executed max_sol_filter times and only the best solution is returned to be
used as an initial solution by the local search procedure. In line 7, the first
element is selected and from line 8 to line 12, we determine the second element
of the solution. From line 14 to line 19, the insertion of the other elements is
performed. For each iteration, in line 15, a RCL is built and, in line 16, an
element is randomly selected from it. In line 18, we update the candidates to
be inserted in the next iteration. In lines 20 to 23, we update the best solution
found by the construction procedure. The cost of the best solution found using
the selected « is stored in line 25. When the first block B; of iterations finishes,
the values «; are evaluated and put in the list L in line 27.

2.2 Local Search Phase

After a solution is constructed, a local search phase should be executed to at-
tempt to improve the initial solution. In this paper, we use two different local
search algorithms. The first one was developed by Ghosh [5] and the second one
by us using the Variable Neighborhood Search (VNS) [8] heuristic.

Ghosh Algorithm (GhA) The neighborhood of a solution defined by Ghosh [5]
is the set of all solutions obtained by replacing an element in the solution by
other that does not belong to the set associated with the solution. The incum-
bent solution M is initialized with the solution obtained by the construction
phase. For each i € M and j € N\M, the improvement due to exchanging i by
Jy Az(i, §) = X uean iy (dju — diw) is computed. If for all ¢ and j, Az(i, j) <0,
the local search is terminated, as no exchange will lead to a better solution.
Otherwise, the elements of the pair (¢,j) that provides the maximum Az(i,5)
are interchanged creating a new incumbent solution M and the local search is
performed again.

SOM Algorithm (SOMA) We have also implemented a local search using a
VNS heuristic. In this case, we use the GhA algorithm until there is no more im-
provement in the solution. After that, we execute a local search based on a new
neighborhood, which is defined as the set of all solutions obtained by replacing
two elements in the solution by another two that are not in the solution. The in-
cumbent solution M is initialized with the solution obtained by the first phase of
the local search. For each (i,j) € M and (v,w) € N\M, the improvement due to
exchanging (i, j) by (v, w), Az((4, §), (v,w0)) = Xy enn fij3 (dvu+ dwu — div —dju)
is computed. If for all pairs (4, j) and (v, w), Az((¢,), (v, w)) < 0, as no exchange
will improve the solution, the local search is terminated. Otherwise, the pairs
(i,7) and (v, w) that provides the maximum Az((4,), (v,w)) are interchanged,
a new incumbent solution M is created and the local search is performed again.

We developed several GRASP heuristics combining the construction proce-
dures with the local search strategies described above and the computational
experiments implemented to evaluate the performance of these heuristics are
presented in next section.

3 Computational Results

We tested nine GRASP procedures that are shown in Tab. 5.

Table 5. GRASP procedures

GRASP procedure|Construction heuristic|Local search heuristic

G1 Ghosh GhA

G2 Ghosh SOMA

G3 MDI GhA

G4 MDI SOMA

G5 KLD GhA

G6 KLD SOMA

GT7 KLD-v2 GhA

G8 KLD-v2 SOMA

G9 Andrade Andrade

The first GRASP procedure G1 is an implementation of the GRASP heuristic
developed by Ghosh and the second one is a procedure that implements Ghosh
construction heuristic but uses the new local search SOMA. G9 is the GRASP
heuristic implemented by Andrade et al. [2]. Except for G9, which code was
kindly provided to us by the authors, all other algorithms were implemented by
us.

The algorithms were implemented in C++4, compiled with g++ compiler
version 3.2.2 and were tested on a PC AMD Athlon 1.3GHz with 256 Mbytes
of RAM. Twenty instances for the problem were created with populations of
sizes n = 100, n = 200, n = 300, n = 400 and n = 500, and subsets of sizes
m = 10%n, m = 20%n, m=30%n and m = 40%n. The diversities in the set
{dij;i < j;i,j5 € N} for each set of instances that have the same population size
were randomly selected from a uniform distribution over [0...9].

In Tab. 6, we show the results of computing 500 iterations for each GRASP
heuristic. The first and second columns identify two parameters of each instance:
the size of the population and the number m of elements to be selected. Each
procedure was executed three times and for each one we show the average value of
the solution cost and the best value found. We can see that the proposed GRASP
heuristics found better solutions than GRASP algorithms found in literature [2,
5]. Algorithm G7, which implements the KLD-v2 for construction phase and
GhA for local search, was the one that found better solutions for larger number
of instances.

Table 7 reports the CPU times observed for the execution of the same in-
stances. The first and second columns identify the two parameters of each in-
stance. For each GRASP heuristic, the average time for three executions and
the time obtained when the best solution was found are reported. Among the
proposed heuristics, algorithm G5 is the most efficient related to execution time.
Heuristic G7, for which we have the best quality solutions, demands more time
than Gb but is not the worst one, showing that this algorithm works very well
for this problem.

We made a deeper analysis for the results obtained for the GRASP heuristics
G1, G5, G6, G7 and G8, which present better solutions and/or shorter execution
times. We selected two instances: the first one has parameters n = 200 and
m = 40, and the second one, n = 300 and m = 90. We executed each GRASP
heuristic until a solution was found with a greater or equal cost compared to
a target value. Two target values were used for each instance: the worst value
obtained by these heuristics and an average of the values generated by them.
Empirical probability distributions for the time to achieve a target value are
plotted in Fig(s). 3 and 4. To plot the empirical distribution for each variant,
we executed each GRASP heuristic 100 times using 100 different random seeds.
In each execution, we measured the time to achieve a solution whose cost was
greater or equal to the target cost. The execution times were sorted in ascending
order and a probability p; = (i —0.5)/100 was associated for each time ¢; and
the points z; = (¢;, p;) were plotted for ¢ = 1,...,100 [1].

10

Table 6. Solutions for GRASP heuristics

0'002.6 | L'99T/6 | 0'02€L6 | 0'0TEL6 | 0'6TEL6 | S'9TEL6 | O'7PELE | O'EEEL6 | 0'CTCL6 | 0'€TCL6 | 0'L2€L6 | G'G2EL6 | 0'L2EL6 | €'9TEL6 | 0'92EL6 | €'22€L6 | 0'VL2L6 | 0'SSCL6 | 002 | 00S
0'G9E9S | 0'09€9S | 0'22S99S | 0'TLS9S | 0'2259S | 02259 | 022595 | 2'T259S | 0'G098S | L'SS0LS | 0'TLS9S | L'7SS9S | 0'€959S | 0'6%S9S | 0'22S9S | G'TLS9S | 0'2259S | 0'TLS9G | OST | 00S
0'v¥192 | 0'62T92 | 0'9€292 | S'62292 | 0°L€292 | 062292 | 0'¥S29Z | 0'Tee9e | 0'T029Z | 0°26T9¢Z | 0°c2e9e | 0'0229e | 0'v2e9e | 0'€Te9Z | 0'6TC9Z | 0'6T292 | 0°'0229Z | 0'6T29Z | 00T | 00S
0'G80L 1'280L 0'9TT. 0'L0TL 0'GTTL S'2TTL 0'22T.L 0'9TT. 0'0ETL 0'v2TL 0'0ETL €'G0TL 0'TETL L'0TTL 0'6,0L 0'6,0L 0'280L €'6,0L | 0S | 00S
0'65€¢9 | 0'SPEZ9 | 0'PSY29 | S'TSY29 | 0'E8YE9 | 0'82¥29 | 0'€TECI | 0'ETEZY | 0'ETECI | 0'ETEZY | 0°2G¥29 | €'6E¥29 | 0'0Lv29 | 0'0S¥29 | 0'€EVE9 | 0'2eve9 | 0'Syve9 | €'2rye9 | 09T | 0oy
0'T6T9E | L'/8T9E | 0'TOE9E | 0'0629€ | 0'€829E | S'2229€ | 0'SLTOE | 0'SLTOE | 0'SLTOE | 0'SLTOE | 0'90€9€ | L'TOE9E | O'STESE | O'TOEYE | O'TOE9E | O'TOEIE | O'YOEIE | L'8629€E | 02T | OO
0'6689T | €'€/89T | 0'0V69T | 0'8€69T | 0'ZE69T | 0'0E69T | 0'2069T | 0'2069T | 0'SZ69T | €'9T69T | 0'8Y69T | L'v¥69T | 0'9S69T | L'9¥69T | 0'8T69T | €'G069T | 0'€069T | G'0069T | 08 | 0OF
0'GE9Y 1'629% 0'GS9Y 0'vS9r 0'6v91 0'Lv9v 0'vS9Y L'vE9Y 0'€S9Y £'GE9Y 0'859% L'vS9r 0'8v9r 0'8v9v 0'929% 0'TT9Y 0'929% 0'sT9Y | ov | oov
0'G58G¢E | 5'e58S€ | 0'T88SE | 0'T88SE | 0'T88SE | 0'828S€ | 0'TZ8SE | 0'TL8SE | 0'TL8SE | 0'TZ8GE | 0'T88GE | 0°2.8S€ | £'188S€E | 0'088SE | 0'T88SE | £'0885€ | 0'T88GE | 0°088S€ | 02T | 00E
0'G890¢ | 2'€/90¢2 | 0'¥E€L0C | 0°L2L02 | 0'L2.02 | 0'92.02 | 0'0¥902 | 0'0¥902 | 0'0¥902 | 0°0¥902 | 0'€€L02 | €'22L02 | 0'82L02 | €'T2L02C | 0'G2L02 | 0'S2L0Z | 0'SeL0Z | 0'SeLoz | 06 | 0OE
0'9.96 0'8596 0'6,96 0'9.96 0'7896 52896 0'8896 0'8596 0'6896 1'1996 0'1896 €'8/96 0'7896 0'8.96 0'7596 £'v796 0',,96 0'2596 | 09 | ooe
0'169¢ | €789 | 0'769¢ | 02692 | 0'169¢ | S'889¢ | 0'¥89¢ | 0'€89z | 0'169¢ | 0'989z | 0'989¢ | 0'6.9¢ | 0'¥69¢ | 0'¥89Z | 0'9992 | 0'999¢ | 0'9992 | 0'999¢ | O€ | 00€E
0'TTZ9T | 0'0029T | 0°G2e9T | 0°'G2e9T | 0°'G2e9T | 0°'G2e9T | 0'TLTIT | 0'0LTIT | 0'2029T | €'28T9T | 0°G2e9T | 0'G2e9T | 0'See9T | L'vee9T | 0°Gee9T | 0'Gee9IT | 0°Gee9T | 0°Gee9T | 08 | 002
0'sev6 | 0'veve | 0'2ev6 | 0'LEv6 | 0'2Ev6 | 0'LEv6 | 0'2€v6 | 0'ZEv6 | 0'2Ev6 | O'LEV6 | 0'2EV6 | 0'LEV6 | 0'.e¥6 | €'veEve | 0'Lew6 | 0'ZEv6 | 0'LEV6 | 0'LEV6 | 09 | 00T
0'Siiy €'Eviy 0'8viry [X:1244 [oX:1444 0'Lvvy 0'0ShY 9444 0'8viy €9y 0'8viry 0'9viy 0'8viry L'9vvy 0'Eriy [X4444 0'Eviy o'svyy | or | 00z
0'SveT 0'€veT 0'L¥2T 0'L¥2T 0'L¥eT 0'LveT 0'L¥2T 0'L¥2T 0'L¥2T 0'L¥2T 0'L¥2T 0'L¥2T 0'LvZT 1'S¥2T 0'ceeT 0'€eeT 0'€eeT o‘eeet | 0oZ | 0oC
0'zrTy €'orTy 0'ZrTy 0'erTy [ok47244 (k47214 0'eyIy 0'eyIy 0'zyTy 0'zrTy 0'ZrIy 0'ZrIy 0'ZrTy 0'zrTy 0'eyIy 0'eyIy 0'ZrTy 02yTy | ov | 00T
0'/Sve L'vSve 0'LShe 0'LGve 0'LGve 0'LSve 0'LSve 0'LSve 0',Sve 0'LShe 0'LSve 0'LGve 0'LSve 0'L5¥C 0'LSve 0',Sve 0',Sve 0'/S¥e | oc | 00T
0'G6TT L'T6TT 0'G6TT 0'G6TT 0'G6TT 0'G6TT 0'S6TT 0'S6TT 0'S6TT 0'S6TT 0'S6TT 0'S6TT 0'S6TT 0'G6TT 0'8.TT 0'8LTT 0'8LTT 0'8LTT | 0z | 00T
0'€EE 0'EEE 0'EEE 0'EEE 0'EEE 0'EEE 0'EEE 0'€EE 0'€EE 0'EEE 0'EEE 0'EEE 0'EEE 0'EEE 0'8T¢E 0'8TE 0'8TE 0'8TE 0T | ooT

1s9q abelane 1s9q abelane 159q abelane 159q abelane 1590 abelane 1s9q abelane 159q abelane 159 abelane 159 abesane | w u

69 89 yA3) 99 SO 7O €9 [43] 19

11

Table 7. CPU time for GRASP heuristics (seconds)

S'€ET6C | 92882 | £'TE08ET | £'€0SLET | 8'0v8Y8 | ¥'8,9¥8 | 8'€TS98 | 0'L¥298 |cv'v¥68E | €'€v06E | T'GL9LTT | 9'2€6LTT | 0'0T8SL | 8'866S. | G'00CSTT | €'LETSTT | ¥1'S¥208 | 60'25208 | 002 | 00S
9'/808 6'226.L 6',T¢88 | 2'85T88 | 0'v6SSS | 1'868SS | €'€LTS9 | €'280S9 | 0'9vS.e | ¥'1S06¢C | 0'6¥29L | S'€vy9. | 0'9896v | L'2T96V | ¥S'C9LGL | €9'8909L | 6'2verS | 9'26EVS | OST | 00S
2'809T €'TT9T 2'9Tvee | S'eveee | T'eLv9z | €'€TS9Z | €'6€26T | 8'0026T | ¢'9T6TT | L'T6TT | ¢'SS82E | 1'888¢€ | T'zegee | €'718L¢e | 0'9v¥STE | S'2vSTE | T'8¥7092 | 6'82T9¢ | 00T | 00S

S'vSe S'vSe ¥'/816 €'1.76 0'S00L 9'8869 8'0vSY 8'GSSY 9'GE6C 6'VE6C 8'0vEL 9'2Sv.L 9'7999 8'G295 T'€S2L €'v0EL 2'9.TS ¥'2eTs | 0S | 00S
9'60TS | €'%90S | 2'9502S | 9'cv0eS | S'0SGCE | 9'ev8ze | ¢'¢10/2 | v'ev69C | €'¥89ST | €0SLST | 6'TLpSY | T'T9TSY | ¥'9600€ | 2'0TO0E | 2'6T8TS | L'26V1S | ¢'€Lzee | 8'LT¢ze | 09T | 0ov
8'768T 0'9vET T'187€E | 9'v6SEE | 8'¥8Tee | 9€'8E02Z | 0'€SS9T | 2'0299T | 6'2600T | S'2600T | €'0v68¢ | L'1888¢ | 6'02¢6T | £'T02¢6T | 0'98¢ee | T'S02eE | S'¥920¢ | €'0T20e | 02T | 0o

T'189 5'289 ¥'€82GT | T'GL2ST | €'1Sv0T | €'v9r0T £'6218 T'2208 0'852S 5'992S S'TGLET | 0'CTLLET | 9'T9TOT | 9'8¥00T | 0'6¥8YT | 9'€EBYT €'veL6 61596 | 08 | oOY

S'TIT T'90T v'LL0V 2'990% 6'S6TE L'e0ze T'vv0e L'vv0e €'80¢T 1'802T z'oLee 0'T.€€ §'18/¢ 0'06.2 2'Tree €'ezee 8'/Sve €'69ve | ov | oor
2'S6TT 9'v8TT | TO'C9GLT | 2LL1GLT | ¥'€eyTT | S'8SPTT 1'G128 8'9T¢8 8'zShy [>144 8'GEBST | £'2¥8ST | 8'8L20T | S'62E0T | €'/8GST | £'CL9ST 0'S.96 Z'ovL6 | 02T | 00E

1'509 €'G09 6'02¥0T | 9'¥TSOT €189 G'6289 8'GrTS L'v9TS '9/2¢€ 9'092¢ 6'€658 0'2858 9'906S 9'996S 6',0T8 T'1ST8 2'909S 2'€09S | 06 | 00E

L'9Te €'G12 €'616V 6'vLLY LT'ET9E ¥'0GvE €'208¢ T'0082 S'/89T S'069T ¥'200% 1'866€ 6'676¢C ¥'vS62 9'€2SE 2'/SS¢e z'osve Z'Llve | 09 | o0E

e'ze e'ee €'20rT £'sovT 9'¢STT ¥'6STT §'sv9 8'vv9 Z'eTy L2ty 9'06TT 6'68TT £'8/6 S'6.6 8'v06 1'806 1'2TL L'2TL 0g | 00E

8'see z'see 9'/8vY §'20SY 6'0£0€ 8'TG0E €'/2ET 0'62ET 9'c08 €'v08 1'8/9¢2 1'€192 8'Gv8T 0'0S8T 0'0£92 1'629¢2 9'8€9T 0'L¥9T 08 | 002

eYTIT S'eTT 1'26.2 0'2082 0'T96T 8'8G6T 1'866 ¥'900T 9'829 9'929 9'€eLT 9'STLT 2'ST2T 0'vzeT ¥'GL9T 6'G99T €290T €'G/0T 09 | 002

2'6€ £'6€ ¥'286 £'986 T'18L L'v8L €'20S €'0TS V'L1E €'8T¢ T'€E8 9'Ge8 6'€€9 9'5e9 §'/z8 £'Ge8 9'799 6'T9S ov | 002
2'9 €'9 €'00€ 1'70€ 8'292 9'€92 9'66 0'70T 0'TL L'TL 6'LvC 9'Lve z'vee £'vee 6'102 v'€0e €'SpT ST 0¢ | ooC
8T 9T 0'vee 'veT 6'79T 9'G9T 9'GeT z'9zT £'88 2'68 0'/8T T'/8T 9'/€T 8'geT 6'96T 1'86T 9'ceT 6'0€T ov | 00T
V'L S'L 8'LvT £'8rT 0'TTT L'TTT 6'LL T'6L 6'9G v'.S €211 9'€TT €'06 0'T6 2'eeT V'eCT 2'/8 c'es8 0€ | 00T
L' 8'C ¥'8L S'6L L'€9 8'v9 0'9g 0'.€ v'.z 2'8¢ 1'6S S'09 €'25 €'es 6'29 L'v9 6'Gy v'iv 0c¢ | oot
¥'0 '0 £'62 z'og T'LZ 0'82 0'TT 8'TT 9'6 ¥'0T €'ze T'€e 12 %44 S'8T €'6T 6'9T 08T 0T | 00T
159q abesane 159 abelane 159q abesane 159 abelane 159q abesane 159 abelane 159q abesane 159 abelane 159q abesone | w u

69 89 yA3) 99 SO 1) €9 [43] 19

12

1 T
Target: 4442 ;
H i ’ / H
LT G S e T —
0.6 |— —
=
= 0.5 e —
S
=
LB B —
LT B T 2 T e —
i
0.1 |- —
° P i -
0.1 1 10 100 1000 10000
1 T
Target: 4443 .
0.8 |
0.7 |-
=
= ; L
= LB
S
a- H
OLA s
.’ . L
0.2 b et AT
0.1 |
o T i
o.1 1 10 100 1000

Time (sec)

Fig. 3. Comparison of GRASP heuristics for the instance n = 200, m = 40 with targets
values 4442 and 4443

We compared the proposed GRASP algorithms with Ghosh algorithm (G1)
by evaluating the average probability that G1 presents when we have the proba-
bility values equal to 0.9 and 1.0 for the proposed GRASP heuristics. We obtain
these values from Fig(s). 3 and 4. For example, we can obtain the probability
values for G1, when we have a probability value equal to 0.9 for G5. In this
case, we have a value of 0.12 for both target values 4442 and 4443, 0.83 for tar-
get 20640, and 0.7 for target 20693. The average of these values is 0.44. So we
have evaluated these average values for G5, G6, G7 and G8 and the results are
presented in Tab. 8.

We can see that although the algorithm G1 presents a good convergence to
the target values, the proposed algorithms G5, G6, G7 and G8 were able to
improve this convergence.

13

1 T - T
0.9 —
Target: 20640 B
0.8 oo T |
0.6 |— —
= E
£ 0.5 e
S
=
L T U B e L e i l i L i i i i iii-
O.3 fmverme e e AT —
0.2 e —
0.1 |—
o H
0.1 1
Time (sec)
1 T
0.9 b -
Target: 20693
0.7 |— —
1 2= O S S
=
= H H H
B 0.5 —
=3
= i
0.4 fererer —
LT T S ,,—s—e————_ i iR —
Lo B i —
1 Y T S S SO]
o i - -
o.1 1 10 100 1000 10000

Time (sec)

Fig. 4. Comparison of GRASP heuristics for the instance n = 300, m = 90 with targets
values 20640 and 20693

4 Concluding Remarks

This paper presented some versions of GRASP heuristic to solve the maximum
diversity problem (MDP). The main goal of this work was to analyse the influence
of the construction and local search heuristics on the performance of GRASP
techniques.

Experimental results show that the versions that use KLD or KLD-v2 con-
struction algorithms and Gha or SOMA local search algorithms (G5, G6, G7
and G8) significantly improve the average performance of the best GRASP ap-
proaches proposed in the literature (G1 and G9).

Our experiments also show that if the execution time is restricted (limited
to smaller value), version G5 is a good choice since it obtains reasonable results
faster (see Fig(s). 3 and 4). On the other hand, if the execution time is not an

14

Table 8. Comparison of convergence of solutions

probability |G1-G5|G1-G6|G1-G7|G1-G8
0.9 0.44 0.5 0.7 0.75
1.0 0.6 0.67 [0.91 [0.95

issue, versions G7 and G8 tend to produce the best solutions (see Tabs. 6 and

7)

Acknowledgments. The authors acknowledge LabPar of PUC-RIO (Rio de

Janeiro, Brazil) for making available their computational facilities on which some
computational experiments were performed. We thank Paulo Andrade for allow-
ing us to use the code developed by him for algorithm G9. We also acknowledge
Coordination of Improvement of Personnel of Superior Level (CAPES) support
for providing a master fellowship to Geiza C. Silva.

References

1.

10.

11.

12.

Aiex, R. M., Resende, M. G. C., Ribeiro, C. C.: Probability distribuition of solution
time in GRASP: an experimental investigation, Journal of Heuristics, 8 (2002),
343-373

. Andrade, P. M. F., Plastino, A., Ochi, L. S., Martins, S. L.: GRASP for the Max-

imum Diversity Problem, Proceedings of MIC 2003, (2003)

. Bhadury J., Joy Mighty E., Damar, H.: Maximing workforce diversity in project

teams: a network flow approach, Omega, 28 (2000), 143-153

Feo T. A., Resende, M. G. C.: Greedy randomized adaptive search procedures,
Journal of Global Optimization 6 (1995), 109-133

Ghosh, J. B.: Computational aspects of maximum diversity problem, Operations
Research Letters 19 (1996), 175-181

Glover, F., Hersh, G., McMillan C.: Selecting subsets of maximum diversity, MS /IS
Report No. 77-9, University of Colorado at Boulder, (1977)

Glover, F., Kuo, C-C., Dhir,K. S.: Integer programming and heuristic approaches
to the minimum diversity problem, Journal of Business and Management 4(1),
(1996), 93-111

Hansen, P., Mladenovié, N.: An introduction to variable neighborhood search,
Metaheuristics, Advances and Trends in Local Search, Paradigms for Optimiza-
tion, S. Voss et al. editors, (1999) 433-458

Katayama, K., Naribisa, H.: An evolutionary approach for the maximum diversity
problem, Working Paper, Department of Information and Computer Engineering,
Okayama University of Science, (2003)

Kochenberger, G., Glover, F.: Diversity data mining, Working Paper, The Univer-
sity of Mississipi, (1999)

Prais, M., Ribeiro, C. C.: Reactive GRASP: an aplication to a matrix decomposi-
tion problem in TDMA traffic assignment, INFORMS Journal on Computing 12
(2000), 164-176

Weitz, R., Lakshminarayanan, S.: An empirical comparison of heuristic methods
for creating maximally diverse group, Journal of the operational Research Society
49 (1998), 635-646

