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Abstract Mathematical function libraries for scientific computation play an essen-
tial role in scientific development. These libraries allow researchers to focus their
efforts on solving higher-level problems while the implementations provided by the
libraries make good use of available computer resources. The Geometric Algebra
Template Library (GATL) is a C++ library of data structures and mathematical func-
tions for arbitraryGeometricAlgebras (GAs).GATLuses templatemetaprogramming
to implement a lazy evaluation strategy at compile-time. Thisway,GATL is capable of
performing optimizations on the programs during the compilation of executable files,
reducing the computational cost that programswill have at runtime.More specifically,
we have designed GATL to automatically execute low-level algebraicmanipulation in
the procedures described by the programmer using GA operations. The aim of GATL
at compile-time is to simplify each described procedure by performing symbolic opti-
mizations on expressions, leading to more efficient programs.

1 Introduction

It is well-known that Geometric Algebra (GA) is a powerful mathematical system
encompassing concepts like Complex Numbers, Quaternion Algebra, Grassmann-
Cayley Algebra, and Plücker Coordinates under the same framework [9, 16, 18, 21].
GA is mainly based on Clifford Algebra, but with a strong emphasis on geometric
interpretation. As such, it is an appropriate mathematical tool for modeling and solv-
ing geometric problems in physics, chemistry, engineering, and computer science.
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This contribution discusses the application of the lazy evaluation strategy at com-
pile time as a promising approach for the implementation of efficient programs based
onGA. Lazy evaluation defers the evaluation of expressions until other computations
need the expressions’ results. We present the Geometric Algebra Template Library
(GATL) as proof of concept of how toexplore lazy evaluation at compile time to reduce
both computational cost andmemory footprint of programs.GATL is a high-levelC++
library that includes a data structure that represents GA expressions that operate mul-
tivectors in arbitrary metric spaces and dozens of operations of this algebra. In con-
trast to other lazy solutions such asGaalet [25],GATL conducts symbolic optimiza-
tions on expressions during compilation. Solutions like Gaalop [5, 17] also execute
algebraicmanipulations at compile time to simplify expressions. In this case, the solu-
tion uses an external tool to perform symbolic optimizations and replaces the original
source code by the optimized counterpart version of it. GATL, on the other hand, per-
forms symbolic optimizations by the ingenious use of themetaprogramming template
capabilities of C++.

In Sect. 2, we present an overview of the implementation strategies that have been
employed in defining code optimizers, libraries, and library generators for GA.
Section3 describes the internal structure of GATL and how it implements lazy evalu-
ation and compile-time simplification. The performance of other solutions for GA is
compared to GATL in Sect. 4. Finally, we draw our conclusions in Sect. 5.



Exploring Lazy Evaluation and Compile-Time Simplifications ... 113

2 Overview of Implementation Strategies forGeometric
Algebra

One can classify the solutions that provide data structures andmathematical functions
toworkwithGA in terms of their type as code optimizers, libraries, or library genera-
tors. The solutions can employ twodifferent strategies for evaluating the implemented
operations. Namely, lazy evaluation and eager evaluation. We call implementation
strategy the combination of a type of solution with an evaluation strategy. Table1
relates some existing solutions with their classification regarding their type, evalua-
tion strategy, supported data types at runtime, and programming languages.

Section1 introduces the lazy evaluation as the strategy that defers the evaluation of
expressions until other computations need the expressions’ results. In eager evalua-
tion, the arguments to a function are always evaluated completely before the function
is applied. It is important to emphasize that the actual evaluation strategy is intrinsic
to the programming language. All programming languages mentioned in this section
employ theeager evaluation strategy.But inall of them, it is possible to implementdata
structures that simulate laziness.Therefore, the solutions indicated as “lazy”makeuse
of implementation tricks to simulate laziness in eager languages.

Table 1 Classification of solutions for GA regarding their type, evaluation strategy, supported data
types at runtime, and the programming languages
Solution Type Evaluation Strategy Runtime Data types Programming

languages

clifford [1] Library Eager Numeric Python 3

Gaalet [25] Library Lazy Numeric, Symbolic† C++

Gaalop [5, 17] Code Optimizer Eager Numeric C, C++, CUDA,
OpenCL, MATLAB

Gaigen [13] Library Generator Eager Numeric C, C++, C#, Java

galgebra [3, 23] Library Eager Symbolic Python 2, Python 3

Gallant [8, 12] Library Eager Numeric Java

ganja.js [7] Library Generator Eager Numeric C++, C#, Javascript,
Python 3, Rust

Garamon [2] Library Generator Eager Numeric C++

GATL Library Lazy Numeric, Symbolic C++

GluCat [19] Library Eager Numeric C++, Python 2

GMac [10] Code Optimizer Eager Numeric C++, C#, VB.NET,
F#, IronPython

Grassmann.jl [24] Library Eager Numeric, Symbolic Julia

Klein [20] Library Eager Numeric C++

Liga [4] Library Eager Numeric Julia

TbGAL [26] Library Eager Numeric, Symbolic† C++, Python 2,
Python 3

Versor [6] Library Eager Numeric, Symbolic† C++

†As a template-based C++ solution, it is likely to support symbolic data types for multivector coef-
ficients at runtime. However, this capability has not been asserted by the authors
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CodeOptimizers.When a programmer uses a code optimizer, he/shewrites snippets
of the source code of his/her program using the representation language provided by
the optimizer. The representation language is not necessarily the same used to write
the rest of the program. Before compiling the whole program, the optimizer analyzes
the snippets of specialized code,maps the input variables to symbols, and converts the
calls to operations of the algebra into mathematical expressions. Such expressions, in
turn, aremanipulated algebraically in order to simplify them. The result of themanip-
ulation is then translated into source code in the programming language chosen by the
programmer, and compiled with the rest of the program.
Gaalop [17] is an example of code optimizer for GA. It is a software that expects

procedures implemented using CLUScript [22] as input and converts them into
simpler C, C++, CUDA, OpenCL, or MATLAB code. Gaalop uses the Maxima
system for the manipulation of symbolic expressions. Charrier et al. [5] developed a
Gaalop Pre-Compiler for C++, CUDA, and OpenCL that takes CLUScript snip-
pets declared in pragma directives [27] and optimize them producing inline code for
a given source file. The source code produced by Gaalop is evaluated eagerly. Nev-
ertheless, in theory, it does not show any performance issues at runtime since the sim-
plification process runs before the compiling process is triggered.
GMac [10] is another code optimizer that produces code fragments from a descrip-

tion of an algorithm in a domain-specific language. It can be configured to generate
textual code files using an API that is accessible through any .NET language, includ-
ing C++, C#, VB.NET, F#, and IronPython. Currently, GMac depends on Wolfram
Mathematica for symbolic processing. The generated code is evaluated eagerly.

Libraries.When using libraries, the programmer declares variables whose types are
data structures provided by the solution and calls subroutines that represent GA oper-
ations implementedby the library.clifford [1],galgebra [3, 23],Gallant [8,
12],GluCat [19], Grassmann.jl [24], Klein [20],Liga [4], TbGAL [26], and
Versor [6] are examples of GA libraries that employ the eager evaluation strategy.
For eager libraries, theonlypossibleoptimizationsare those that affect individual calls
of subroutines, because eager evaluation solves each subroutine call before passing its
result as an argument for the next call.
Versor uses the metaprogramming capabilities of C++ templates to perform

compile-time specialization of subroutines based on the arguments passed to them,
producing results that compute and store only the multivector components whose
coefficients may be non-zero at runtime. To perform such simplification at compile-
time, Versor assumes that the coefficients stored by the input multivectors are non-
zero values since the actual valueswill only be known at runtime. In contrast, the basis
blade associated with each coefficient is known at compile time. Through the alge-
braicmanipulation of the basis blades of the inputmultivectors, the library can predict
which components of the resultingmultivector will be equal to zero andwhichwill be
different from zero, eliminating the need for calculating the former and maintaining
the storage andcomputationof the latter.However, as illustrated in the followingcode,
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eager evaluation prevents the library from suppressing intermediate results thatwould
be unnecessary when considering a sequence of operations.

Other eager libraries presented in Table1 do not simplify subroutine according to
their arguments at compile time. The only exception is clifford [1], which uses
the just-in-time (JIT) compilation feature of Python to improve the performance of
subroutine calls. The JIT functionality was extended for C�4,1 by Gajit [15].

Libraries for GA that employ the lazy evaluation strategy provide two types of
data structures to representmultivectors. Themore straightforward kind of data struc-
ture represents concrete multivectors, i.e., multivectors that store their components
in memory at runtime. The other kind of data structure encodes (lazy) multivector
expressions, i.e., expressions obtained by operating concrete multivectors and other
expressions. Typically, a multivector expression arg can be evaluated implicitly by
assigning it to an existing concrete multivector variable or explicitly by calling func-
tions like eval(arg) and arg.eval() that return a concrete multivector.
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To the best of our knowledge, Gaalet [25] and GATL are the only libraries for
GA that employ the lazy evaluation strategy. By combining C++ templates metapro-
gramming and lazy evaluation, both solutions extend the compile-time specialization
capability of Versor to include the suppression of unnecessary computations over
sequences of operations, inline function calls, and avoid storage of temporary values.
The main difference between Gaalet and GATL is that GATL’s lazy evaluation sys-
tem of template expressions implements an algebraicmanipulator that conducts sym-
bolic manipulations equivalent to those performed by Gaalop, but without the need
for an external tool. Also, unlike Gaalet and Versor, GATL allows multivector
coefficients to assume known values at compile-time, thus reducing storage cost at
runtime. This latter feature is especially useful in representing points with unit homo-
geneous coordinate and constant multivector.

The code examples that follow illustrate, respectively, the use of Gaalet and
GATL in solving the same rotation case presented for Versor.
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LibraryGenerators. For this kind of solution, the programmer first defines the para-
meters of his/her programming language andGAof interest in the generator software.
The generator then produces implementations of data structures and GA operations
from scratch. This set of implementations, in turn, can be used by the programmer like
conventional libraries inwritinghis/herprograms.Gaigen [13],ganja.js [7], and
Garamon [2] are examples of library generators forGA (Table1). The three solutions
generate eager libraries but only Gaigen implements an optimization mechanism
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for individual subroutines based on use cases.When usingGaigen, the programmer
must generate the initial library without optimizations and use it in his/her program
with the profiling functionality enabled. Profiling data is then interpreted byGaigen,
which produces an optimized version of the GA library by pruning unused multivec-
tor components. The final compilation of the program must be done considering the
optimized version of the generated library.

3 TheGeometric AlgebraTemplate Library (GATL)

GATL is aC++17 template librarydefined in its headersfiles.There is nobinary library
to link to, no configured header file, or dependencies to external libraries. Therefore, if
youwant to use GATL, you can use the header files right away. Section3.1 presents an
overview of GATL’s front-end, i.e., the set of data structure and subroutines available
to the programmer while using the library. The internal organization and implemen-
tation of the library correspond to the back-end presented in Sect. 3.2.

3.1 GATL’s Front-End

According to the GATL’s conventions, the root directory for the header files that the
programmer will include in his/her source files is the gatl folder. The header file
that encloses allGATL implementations isgatl/ga.hpp. Fromthisheader, thepro-
grammer has access to the ga namespace, which is the main namespace of the GATL
library. In C++, namespaces are declarative regions that provide scope to the names
of the types, subroutines, and constants inside it. The following classes correspond to
the most important data structures in GATL’s front-end:

clifford_expression<CoefficientType, Expression>
ACliffordexpression.The templateparameterCoefficientTypecanbeeither
a native arithmetic type (e.g.,double,float,int) or third-party classes imple-
menting arbitrary-precision arithmetic or symbolic computation. It specifies the
data type of the multivector’s coefficients. The Expression parameter is a type
describing the internal structure of the Clifford expression. Depending on the defi-
nition of this parameter, the Clifford expression will be classified as concrete mul-
tivector or (lazy)multivector expression (see Sect. 2).

lazy_context<CliffordExpression1, CliffordExpression2, …>

Aclass todefine lazyarguments for lazyevaluationofCliffordexpressions. It keeps
references to the set of instances of clifford_expression<…> informed as
input argument and produces multivector expressions having the concrete coeffi-
cients and basis blades in the input set replaced by symbols.
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metric_space<MetricSpaceType>
The basemetric space class fromwhich all specializedmetric space classes derive.
The parameter MetricSpaceTypemust be one of those specialized spaces.

That’s it.Only three classes!Andmost of the time, theprogrammerdoesnot have to
worry about parameterizing these classes since GATL provides helper functions and
auxiliary headers for pre-defined GAs. Also, it is strongly recommended to use the
auto placeholder type specifier [27] whenever possible.

The last programcodepresented inSect. 2 illustrates theuseof GATL. In this exam-
ple, gatl/ga3e.hpp (line 1) is an auxiliary header defining the namespace ga3e
(line 3) for a GA for 3-dimensional Euclidean geometry (C�3,0) with basis vectors
{e1, e2, e3}. The specialized metric space class in this example is euclidean_
metric_space<3>. It is used inside the header to declare the static constant object
space. This object is implicitly passed as argument to all metric and non-metric
products called in this example, such as the geometric and outer products (lines 17
and 19). e1 and e2 (line 17) are also static constant objects defined in the names-
pace ga3e. The constants e1 and e2 and the variables a, a_, phi_, R_, b_, and b
are instances of the clifford_expression<…> class assuming different types
in the Expression parameter. Notice the use of the auto placeholder to deduce
the type of a variable from the initializer. In line 14, the lazy variable is of type
lazy_context<…>. Typically, we use the helper function make_lazy_con
text(arg1, …) to initialize it. We also use the helper functions vector
(arg1,…) and scalar(arg) to initialize Clifford expressions in lines 12 and 14.
In line 17, the helper templatec<arg> initializes a clifford_expression<…>
whose Expression parameter wraps the constant scalar value 2. The difference
between a wrapped constant value and a regular constant value is that the former can
be handled at compile time by the symbolic simplification mechanism implemented
by GATL’s back-end (Sect. 3.2).

In its current version, GATL includes the following set of namespaces for specific
GAs. These namespaces already use thega namespace.Also, they overload allmetric
operations in ga by setting their respective metric:

ga1e, ga2e, ga3e, ga4e, ga5e
GAs for Euclidean geometry (C�n,0), with basis vectors {e1, e2, · · · , en}.

ga1h, ga2h, ga3h, ga4h
GAs for homogeneous geometry (C�d+1,0), with basis vectors {e1, e2, · · · , ed , e+}.

ga1m, ga2m, ga3m
GAs for Minkowski spaces (C�d+1,1), with basis vectors {e1, e2, · · · , ed , e+, e−}.

ga1c, ga2c, ga3c
GAs for conformal geometry (C�d+1,1),with basis vectors {e1, e2, · · · , ed , no, n∞}.

The header file for each namespace is its name followed by the .hpp extension, e.g.,
gatl/ga3e.hpp,gatl/ga3h.hpp,gatl/ga3c.hpp, andsoon.Please, refer
toexamples in theGATL repository [11] to seehowtodeclareCliffordAlgebrasC�r,p,q
with arbitrary (p, q, r) signatures and assuming arbitrary metric matrices.
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Thedocumentation in [11] also includes the complete reference to helper functions
and GA operations implemented by GATL. Among them, we highlight:

+rhs Unary plus.
-rhs Unary minus.
lhs + rhs Addition.
lhs - rhs Subtraction.
gp(lhs, rhs [, mtr]) Geometric product (same as lhs ∗ rhs).
op(lhs, rhs [, mtr]) Outer product (same as lhs ^ rhs).
rp(lhs, rhs [, mtr]) Regressive product.
lcont(lhs, rhs [, mtr]) Left contraction (same as lhs < rhs).
rcont(lhs, rhs [, mtr]) Right contraction (same as lhs > rhs).
dot(lhs, rhs [, mtr]) Dot product (same as lhs | rhs).
hip(lhs, rhs [, mtr]) Hestenes’ inner product.
sp(lhs, rhs [, mtr]) Scalar product.
cp(lhs, rhs [, mtr]) Commutator product.
dp(lhs, rhs [, tol] [, mtr]) Delta product.
conjugate(arg) Clifford conjugation.
involute(arg) Grade involution.
reverse(arg) Reversion (same as ~arg).
rnorm_sqr(arg [, mtr]) Squared reverse norm.
rnorm(arg [, mtr]) Reverse norm.
inv(arg [, mtr]) Inverse of the given versor.
dual(arg [, pseudoscalar [, mtr]]) Dualization operation.
undual(arg [, pseudoscalar [, mtr]]) Undualization operation.

According to GATL conventions, lhs and rhs are informal shorthand for, respec-
tively, the left-hand side and the right-hand side arguments of binary operations. The
mtr argumentmust be an instance of the metric_space<…> class, while all other
argumentscanbeeither instancesof theclifford_expression<…>class, native
arithmetic types, or third-party classes implementing arbitrary-precision arithmetic or
symbolic computation.

3.2 GATL’s Back-End

All namespaces mentioned in Sect. 3.1 declare a nested detail namespace. This is
the namespacewhere themagic happens, i.e., the namespace of GATL’s back-end.All
data types described in this section are defined in the detail namespace.
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3.2.1 Expression Structure

The behavior of GATL at compile time and runtime is related to the definition of the
Expression parameter of the instances of clifford_expression<…>
involved in each operation. Recall that as a template parameter, Expression is a
type, not an instance. It represents the description of the structure of the respective
instance of clifford_expression<…>. The possible types for Expression
are:

component<Coefficient, BasisBlade>
A single multivector component whose coefficient is described by the template
parameterCoefficientas a real-valuedexpression, andabasis bladedescribed
by the template parameter BasisBlade.

add<Component1, Component2, …>
The addition of two ormore components of typecomponent<Coefficient,
BasisBlade> having different basis blades.

When the BasisBlade parameter is constant_basis_blade<Basis
Vectors>, it means that the basis blade of the component is known at compile time.
Here, BasisVectors is an unsigned integer value whose bitset represents an unit
basis blade. For instance, in Euclidean geometry, 1 = 0001b stands for e1, 2 = 0010b
stands for e2, 3 = 0011b stands for e1 ∧ e2, and so on.

Basis blades defined at runtime are represented by setting BasisBlade to
dynamic_basis_blade<PossibleGrades, Bitset>, where Possible
Grades is an unsigned integer value known at compile time, indicating the grades
that the runtime-defined component may assume (e.g., 1 = 0001b stands for grade 0,
2 = 0010b stands for grade 1, 3 = 0011b stands for grades 0 and 1, and so on). It is
important to notice that one may predict the possible grades of the outcome of a GA
operation if you know the grades of the arguments, even when the actual basis blades
are unknown. For instance, the grade of the outer product of a 2-blade and a 3-blade
will be 5 unless n < 5. In this case, the resulting grademay be set to any value, and the
resulting coefficientwill be 0 for sure.GATL explores this observation to performsim-
plifications at compile-time, evenon expressionswith runtime-definedmultivector. In
components with dynamic basis blades, the Bitset parameter is a type describing a
bitwise expression with at least one bitset defined at runtime.

So far, only two templates parameters where not described in detail:
CoefficientandBitset. InGATL, theatomic types forCoefficientexpres-
sions are:
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constant_value<Value>
This type wraps a compile-time defined integer value.

stored_value
This type indicates that the value of the coefficient is stored by the current instance
of clifford_expression<…>.

get_value<Tag, Index> and get_map_values<Tag, Index>
These types can be interpreted as variables within an algebraic expression. The
pair of compile-time defined integer values Tag and Indexmakes it possible for
a lazy_context<…> to unequivocally identify the value stored by one of the
instances of clifford_expression<…> informed to it as initialization argu-
ment.Tag indexes the argument passed to the lazy context and Index indexes the
value or values stored by this argument. To different lazy contexts do not confuse
their arguments by defining conflicting Tag values, each lazy_context<…>
instance deduces the minimum value it can assign to Tag by checking which val-
ues have already been used in its arguments.

function<Name, Argument1, Argument2, …>
The function represented by this type is defined by the Name parameter at com-
pile time. The values that Name can assume includes, but is not limited to, add,
mul, power, sine, cosine, and if_else. The expected number of argu-
ments depends on the function’s name, and they can encode real-valued expres-
sions or logical expressions defined on the same set of atomic types.

The atomic types for Bitset are similar to those defined for Coefficient:
constant_value<Value>, stored_bitset, get_bitset<Tag,
Index>, get_map_bitsets<Tag, Index>, and function<Name,
Argument1, …>. The difference is that atomic types for Bitset expressions are
related to basis blades instead to the values of coefficients. Thus, among the possi-
ble values for the Name parameter, we highlight bitwise_and, bitwise_or,
bitwise_xor, and if_else.

When the Expression parameter of a clifford_expression<…> only
includes components with constant_basis_blade<…>, constant_
value<…>, and function<…> types, we say that we have a concrete multivector
completely defined at compile time. These multivectors do not occupy space in the
compiled program because they do not store anything. Also, they do not depend on
other multivectors. The e1 object in the sample code is an example of such multivec-
tor type:
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The objects e2 and c<2> are also concrete multivectors defined at compile time.
The object b is an example of concrete multivector defined at runtime. As can be

seen in its type definition, b stores three double-precision floating-point values:

Thus, the size of b at runtime is 3 × 8 bytes = 24 bytes. In GATL, concrete multi-
vectors store their runtime-defined coefficients and bitsets using sequence contain-
ers of type std::array or associative containers of type std::map. The asso-
ciative container is used when more than one component of the multivector resulting
from an operation have overlapping sets of possible grades, and runtime-defined bit-
sets. In this case, the description of the Expression parameter is simplified in the
final clifford_expression<…> type and all components having overlapping
PossibleGrades sets are put in the same std::map. Otherwise, the sequential
container is chosen to store the data. Notice that it is possible for a
clifford_expression<…> type to use std::array and std::map simul-
taneously to store componets with different configurations.

Lazymultivector expressions dependon concretemultivectors to have the values of
their coefficients or the bitsets of their components computed at runtime. InGATL, the
Expression parameter of all lazy clifford_expression<…> objects
includes at least one getter type. For instance, the type of the R_ object in the sample
code includes get_value<2, 0>. Thus, the object R_ depends on the 1st coeffi-
cient (std::array is zero-base indexed [27]) of the 2nd argument of the lazy con-
text:
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Lazy multivector expressions do not store anything. Thus, variables of this kind
do not take up memory space at runtime. Of course, if you compile your program in
debug mode, then these variables will have 1 byte each to be addressed by the debug-
ger. However, in release mode, they are usually optimized by the compiler.

3.2.2 Expression Simplification and Evaluation

Whenwe state that GATL employs the lazy evaluation strategy, we are referring to the
possibility for the programmer to start a lazy context, operate the lazy context argu-
ments by callingGAoperations, and evaluate such expressions later.However, strictly
speaking, the explicit use of a lazy context by the programmer is optional. Thismeans
that the sample program code presented for GATL could have been written without
using the lazy context. However, in this case, the evaluation of the sequence of opera-
tions would be in an eager fashion, and the lazy multivectors would be concrete mul-
tivectors with coefficients defined at runtime. In addition, variable b would have the
extra component of grade 3 observed in the sample code of the Versor library, since
the suppression of this component would not be foreseen by GATL. The programmer
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would choose to use a lazy context if he/she thinks that there are pertinent simplifica-
tions to be made in a certain part of his/her program.

Nevertheless, all subroutines implemented by GATL initializes a lazy context to
benefit from any simplifications thatmay arise from the algebraicmanipulation of the
components of its arguments. It means that the implementation of all GATL subrou-
tines looks like this:

Here, CTi and Ei encode the types assumed by, respectively, the template parame-
ters CoefficientType and Expression of the i-th argument of the function
foo(…), MST is the MetricSpaceType parameter, and make_lazy_
context_tuple(…) is a helper shorthand function for calling lazy = make_
lazy_context(…) and […] = lazy.arguments(). C++14 introduced
decltype(auto) to delay the return type deduction after the dust of template
instantiation has settled [27].

In high-level operations like dualization, inversion, and versor application, the
implementation placed between the creation of the lazy context and the evaluation of
the result is similar to what is expected from the user of the library. That is, by calling
products and grade-dependent sign-change operations implemented byGATL as sub-
routines. Core operations, on the other hand, are implemented in a special way. They
apply generative template metaprogramming to process the Expression parame-
ters of the input arguments andproduce the type set to theExpressionparameter of
the non-concrete multivector result_. It is at this moment that GATL applies alge-
braic simplification. For example, geometric product, outer product, regressive prod-
uct, and inner products implement a set of recursive templates to apply distributivity
over addition, and partial template specialization to enable conditional branching to
suppress arithmetic operations that equal compile-time defined constant values.More
specifically, when the compiler instantiates a template that implements a core opera-
tion,GATL’s lexicographic expression ordering convention tries to put the subexpres-
sions defined on the same get_value<…> (or get_bitset<…>) types close to
each other. Whenever predefined patterns are identified, they are replaced by simpler
equivalent expressions.

Calling the lazy.eval(result_) function causes the instantiation of a new
clifford_expression<…> object. The Expression parameter of the new
object will be derived from the Expression parameter describing result_. The
coefficients and bitsets stored by the newobject (if any) are computed by the lazy con-
text by traversing the result_’s Expression parameter and solving
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subexpressions defined on the occurrences of get_value<…>, get_map_
values<…>, get_bitset<…>, and get_map_bitsets<…> related to
instances of the clifford_expression<…> objects given as input. The current
lazy context instance does not evaluate subexpressions definedon coefficients and bit-
setswithTagvalues coming fromother lazy contexts, nor subexpressions completely
defined on constant values. It is because it is clear that the evaluation of these subex-
pressions must be deferred to another part of the program.

4 Experimental Results

Wehave used theGABenchmark Project [14] to assess the execution time of GATL in
comparison to other C++ solutions for GA. The GA Benchmark Project started from
informal conversations among developers who attended to AGACSE 2018, in Camp-
inas, Brazil. The idea was to build a suitable environment to compare GA solutions.
It is an effort to define standards andmethodologies for benchmarking GA code opti-
mizers, libraries, and library generators. The goal of the project is to help physicists,
chemists, engineers, and computer scientists to choose the GA solution that best suits
their practical needs, aswell as to push further the improvement of the compared solu-
tions and to motivate the development of new tools. GA Benchmark is built on the
Google Benchmark, a open source library to benchmark code snippets.

The GA Benchmark version 2.0.3 includes the evaluation of twelve binary opera-
tions (commutator product, geometric product, inverse geometric product, dot prod-
uct, Hestenes’ inner product, left contraction, right contraction, scalar product, outer
product, regressive product, addition, and subtraction) and tenunary operations (dual-
ization, undualization, versor inversion, normalization under reverse norm, squared
reverse norm, unary minus, unary plus, Clifford conjugation, grade involution, and
reversion) applied to k-blades having grades ranging from k = 0 to k = n on eleven
models of geometry (Euclideanmodelswith basis vectors {e1, · · · , en} and n ∈ {2, 3,
4, 5}, homogeneous models with basis vectors {e1, · · · , en−1, e+} and n ∈ {3, 4, 5},
Minkowski spaces with basis vectors {e1, · · · , en−2, e+, e−} and n ∈ {4, 5}, and con-
formal models assuming {e1, · · · , en−2, no, n∞} and n ∈ {4, 5}). GABenchmark also
includes the evaluation of an inverse kinematics algorithm assuming the conformal
model of 3-dimensional Euclidean space, where n = 5 and the set of basis vectors
depends on the solution.

For each possible configuration of input grades in unary and binary operation, GA
Benchmark generates random blades (or pairs of random blades) and measures the
mean execution times of 30 evaluations of the operation. For the inverse kinemat-
ics algorithm, the inputs are random sets having five angular values each. The time
required to build input data is not considered when calculating the execution times.

Thebenchmark is ready tocompare sevenC++solutions forGA.Namely,Gaalet
[25], Gaalop [5], Garamon [2], GATL, GluCat [19], TbGAL [26], and Versor
[6]. For GluCat, the benchmark includes comparison considering framed-based and
matrix-based multivectors. We performed the comparison in a notebook running
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Table 2 Ranking of performance of the compared solutions on binary and unary operations accord-
ing to the gold first method
Solutions Medals Compilation

errors1 2 3 4 5 6 7 8

GATL 247 75 1 0 0 0 0 0 0

Versor 246 76 1 0 0 0 0 0 0

Gaalop 246 18 0 0 0 0 0 0 59

Gaalet 238 26 0 0 0 0 0 0 59

TbGAL 34 56 97 107 26 3 0 0 0

Garamon 26 255 42 0 0 0 0 0 0

GluCat
(framed)

6 60 151 72 22 12 0 0 0

GluCat
(matrix)

0 3 45 108 151 16 0 0 0

Ubuntu 18.04 operating system (Linux kernel version 4.4.0) on bare metal. The com-
puter was equipped with 16 Gb of RAM and one Intel Core i7-8550U processor with
1.99GHz and 8 cores. The C++ source codes were compiled using GCC 7.4.0 with
O3 optimization in release mode and single thread. The tables and charts that fol-
low only show results considering conformal, Euclidean, andMinkowski geometries,
sincehomogeneous andEuclideanmodels are equivalent.The complete set of logfiles
produced for the experiments, as well as detailed charts for all operations and models
of geometry, are available at the GitHub repository of the GA Benchmark project as
the results reported on February 5th, 2020.

Table2classifies the compared solutionsusing thegoldfirstmethod, i.e.,basedfirst
on the number of goldmedals, then silver, and so on. A solution receives a goldmedal
(medal #1) whenever its performance is better than that of other solutions in a partic-
ular case of binary or unary operation with input arguments having specific grades.
The second best-placed solution receives a silver medal (medal #2), and so on. The
medals are distributed among the solutions for testing cases implemented as native
subroutines and models of geometry by all of them. Therefore, only Euclidean and
Minkowskimodels were considered here, because Gaalet and GluCat implement
conformal geometry assuming {e1, e2, · · · , e+, e−} as basis vectors (like the
Minkowskimodel) insteadof {e1, e2, · · · , no, n∞}.Regarding thesetof availableoper-
ations, unfortunately, the front-end of most of the solutions is incomplete. As can be
seen in Table3, the only operations implemented by all solutions are geometric prod-
uct, outer product, and reversion. From the results in Table2, it is possible to conclude
that the code optimizer (i.e., Gaalop) and libraries that explore template metapro-
gramming to perform compile-time specialization of subroutines (i.e., Gaalet,
GATL, andVersor) present equivalent performancewhen themean processing time
of common operations are considered. The last column of Table2 shows the number
of cases where the benchmark program could not be compiled due to errors raised by
the solution.
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Table 3 Binary and unary operations implemented as native subroutines by the compared solutions

The comparison of the mean execution times of complete algorithms aims to ver-
ify the ability of each solution to induce the optimization of sequences of operations
andnot only of individual subroutines. Figure1 shows themean execution times of the
inverse kinematics algorithm. The GA Benchmark does not included TbGAL in this
comparison because the original algorithmperforms the addition of generalmultivec-
tors andTbGALonly implements the addition and subtractionoperationsof scalar val-
ues, vectors, pseudovectors, and pseudoscalars. It is becauseTbGAL stores blades and
versors as collections of scalar and vector factors instead of as the weighted sums of
basis blades. In Fig. 1(a), we only include the result obtained for the frame-based ver-
sion of GluCat, because the mean execution time of the matrix-based version of the
library is four times higher for this algorithm. Since both frame andmatrix-based ver-
sions belong to the same library, we used the onewith better performance. In Fig. 1(b)
we highlight the Top-3 solutions. The vertical lines on each of the bars on the graph
indicate one standard deviation confidence interval.

Surprisingly, according to Fig. 1(a), Gaalet proved to be the least efficient solu-
tion. We believe that better results can be achieved if the user carefully inspects the
outcome of each sequence of operations. In this way, he/she will be able to instruct
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Fig. 1 Mean execution times of the inverse kinematics algorithm implemented using six C++ solu-
tions for GA (a), and the detailed view of the results of the Top-3 solutions (b)

the library to suppress unnecessary components in the intermediate results. But such
a task can be difficult and laborious.

When comparing Garamon and GluCat, we conclude that Garamon achieved
better results because it stores the multivector components as per grade arrays, while
GluCat uses dictionaries to store individual components. The high cost of both solu-
tions is related to the time needed to manage the dynamic memory used by the algo-
rithm’s intermediate variables.

The detailed view of the results obtained for Gaalop,GATL, and Versor is pre-
sented in Fig. 1(b). The proposed library achieved better results because the lazy eval-
uation and compile-time simplification mechanisms were able to eliminate unneces-
sarymultivector components andarithmetic operations.The samedegreeof optimiza-
tion is not achieved by the eager evaluation strategy employed by Versor. The opti-
mized codes generated by Gaalop show that the lack of performance of the solution
in this algorithmis related to the substitutionof expressions suchas x2, x3, etc., bycalls
to thestd::pow(base,exponent) function.GATL, on the other hand, uses one
or twomultiplications to raise x to the powers 2, 3, and 4. The std::pow(…) func-
tion requires many more processing cycles than multiplication.

5 ConcludingRemarks

This contribution presents GATL, a C++ library that applies the lazy evaluation strat-
egy and template metaprogramming to conduct symbolic optimizations on expres-
sions at compile-time to improve the runtime performance of GA-based programs.

In addition to runtime performance, GATL is concerned with being user friendly
and intuitive. In other words, we expect the implementation of equations written with
GA to be as straightforward as possiblewithout compromising the proper use of avail-
able computing resources.To this end,GATLoffers dozens ofGAoperations ready for
use and completely integrated with the lazy evaluation concept.
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Currently, GATL does not include modules for data visualization. However, in our
experience, the results produced with GATL can be easily integrated with other visu-
alization solutions, such as ganja.js [7].
GATL supportsCliffordAlgebrasassumingmetricmatriceswitharbitrary (p, q, r)

signatures and arbitrary sets of basis vectors. The practical use of GATL’s current ver-
sion is limited to spaces with up to n = p + q + r = 7 dimensions, except in special
situations where the operated multivectors are made up of a small amount of com-
ponents. This limitation is also observed in other templates-based GA libraries such
as Versor and Gaalet. It is related to the ability of the compiler to analyze and
instantiate the templates. Fortunately, each newversion of theC++ language includes
features that allows us to replace complex templates by simpler counterparts. Conse-
quently, the expectation is that in the future it will be possible to work with algebras
in higher dimensions and produce programs that compile in less time.

The development of computational tools for GA is a living ecosystem. We hope
that the ideas presented in this contribution will help developers to improve existing
solutions and serve as inspiration for the development of innovative tools.
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