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Abstract—The automatic detection and tracking of human
body parts in color images is highly sensitive to appearance fea-
tures such as illumination, skin color and clothes. As a result, the
use of depth images has been shown to be an attractive alternative
over color images due to its invariance to lighting conditions.
However, body part detection and tracking is still a challenging
problem, mainly because the shape and depth of the imaged
body can change depending on the perspective. We present the
MSAIE' that uses both color and depth information to perform
body part detection, tracking and pose classification. The MSAIE
method makes use of Accumulative Geodesic Extrema (AGEX),
Affine-SIFT (ASIFT). Three different classifiers were applied in
our study to analyze which would be the best for human pose
classification. This method can be integrated to computer games
that intend to use the Natural User Interface (NUI) paradigm.

Keywords-Body part detection; body part tracking; pose recog-
nition; pose classification; background subtraction; classification
algorithms.

I. INTRODUCTION

Since 2010, important advances have been achieved in
Computer Vision research, especially in gesture recognition.
Those advances have created many new possibilities of ap-
plications of Human-Computer Interaction, health-care and
digital games [1]. We developed the Jecripe [2] game that
is designed for children with Down syndrome. The Jecripe
game became a successful application and received different
awards?, being translated to five different languages. This
game consists of a set of different activities that stimulate
different cognitive abilities. The stimulation of the imitation

IThe name MSAIE is an acronym for each of the used concepts in our
approach: Medial Axis transformation, for data filtering; Adapted AGEX, for
the body part detection; ASIFT, for the body parts tracking, Aligned /mages
(RGB-D), and Estimation, also for tracking.

2Until December 2013, the Jecripe game received the Award from the
Cultural Secretariat of Rio de Janeiro State and Best Accessibility Project
Award from Guarulhos City. Jecripe was highlighted by the press in several
communication vehicles such as radio and television programs, newspapers
and websites.

3Jecripe is available at www,jecripe.com in Portuguese, Spanish, English,
German and Turkish.

cognitive ability and the launch of low cost devices for Natural
User Interface (NUI) motivated this study.

Low-cost capture devices of depth images promoted facili-
ties in gesture recognition research. In 2010, Microsoft Kinect
was launched, and it is described in [1]. Shotton et al. present
how the device works and its applicability to digital games.
The interaction with Kinect characterizes the NUI paradigm.

The context of body part detection and tracking requires
information filtering to address only the necessary information.
To filter the information, it is necessary to accomplish some
tasks. The first task is to remove the most basic useless in-
formation, which is the background. Without the background,
we can then handle the human body pixels. However, body
part detection does not need all of the human body pixels. We
decided to apply the Medial Axis transformation to filter an
even larger amount of pixels. The Medial Axis provides the
number of pixels that enable detection of the five main body
parts. Then, a tracking method must be developed. We used a
feature extraction and matching method to track each of the
body parts from one image to the next image in a sequence.

Body part detection and tracking in image sequences is
challenging because this task requires information filtering
to bring about the use of less information. The resulting
information must be structured because it will provide the
detection of the body parts. The body parts are tracked with an
algorithm, frame by frame, to store time sequence information.
We use a feature extraction and matching algorithm as part of a
tracking method because it compares two input images. Once
there are human poses to be identified, we use the position
of each body part in each image in a sequence to define the
human poses that can be applied to classification algorithms
for prediction purposes.

The contributions of this work* are as follows: (a) A com-
parison among different background subtraction algorithms;
(b) The combination of the AGEX and ASIFT methods using
aligned RGB and depth images for labeling five major defined

“This text is related to the first author’s Ph.D. Thesis.
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body parts (hands, feet and head); (¢) Tracking each of
the body parts using an adapted ASIFT matching algorithm;
(d) Description of how different classification algorithms can
be used in human pose classification in the digital games
context; and (e) A comparative analysis of three classification
algorithms in human pose classification.

Due to space limitation, this paper does not present
a detailed description of the proposed method or results
achieved. The full thesis [3] and the list of related pub-
lications, courses, pending submissions are available at
http:/fwww.ic.uff.br/"medialab/Andre/mSaie.html.

II. BACKGROUND SUBTRACTION

The task of background subtraction is facilitated with the
depth information that is available. It is, therefore, quite
surprising to see that only a few studies on this subject
can be found that use depth information for a background
subtraction task. Before we make the background subtraction,
we first align the depth and color information to have the
correspondence of depth information of each colored point in
the image (Figure I — (1)). In the background subtraction task
(Figure T — (2)), we compared four background algorithms
in different situations and chose the Minimum Background
Subtraction Algorithm [4].

III. BODY PART DETECTION AND TRACKING

The task of human body part detection and tracking is not
trivial. Addressing the human body is challenging because
its shape can be very different from one person to another.
Additionally, humans have different skin colors, and clothes

can vary in both their colors and shapes. These reasons, among
others, make body part detection a complex task. Because
body part detection can be used for body part tracking, certain
aspects must be considered, such as the human skeleton
and medial axis (Figure I — (3)). Even knowing the human
skeletons profile, we must assume that there are many degrees
of freedom [5].

Reliable results on body part detection and tracking tasks
have been achieved by using depth information. Depth infor-
mation outperforms intensity images in the sense that they
intrinsically remove appearance features, such as the color of
the skin, the color of the clothes and different background ap-
pearances, which can vary for different objects and colors [5].
Additionally, depth images provide extra information about the
imaged objects, i.e., their actual geometry.

The objects geometry is given with the point distances
between these objects and the sensor that forms a point cloud.
The points of the point cloud can be used for body part
detection, as vertices of a graph, and they can be connected
with weighted edges. The weight of each edge is the Euclidian
distance between the connected points. The generated graph
can be used to detect body parts in the extremes of a graph.
This approach is used in a method that is described by
Plageman et al [5], for which the interesting points are called
the AGEX points (Figure I — (4)).

The proposed solution is based on the key observation that
once the body parts are detected in one frame, the same body
parts can be used by matching methods for tracking each
of them in the next frame. For this task, we describe the
MS5AIE Method, which detects and tracks the body parts. In



the beginning of every image sequence that we use as input
for our method, the person must stand in front of the sensor
in the T-pose. We describe the T-pose a person with open
arms and feet together on the floor. Then, the AGEX points
are detected (Figure I — (4)) with the head and arms over the
centroid and feet under the same centroid. Until the starting
configuration stands, we can label the detected points as head,
arms and feet (Figure I — (5.1)). If the starting configuration
changes, then the detected points are tracked. The tracking
method (Figure I — (5.2)) is composed by three stages: (a)
flow estimation (b) ASIFT features extraction and (c) features
matching. The results of the mentioned stages are combined
to label the detected body parts.

IV. HUMAN POSE CLASSIFICATION

Once we have detected and labeled body parts, the method is
able to classify which pose the person is in a given moment. A
classification task is composed by two stages: the construction
of a classifier data training (Figure I — (6)) and the classifier
model (Figure I — (7)). The method constructs the classifier
data training (Figure I — (6)) with a number of training
tuples as input. In our case, the training tuples are built by
a sequence of coordinates of each of the body parts according
to a grid. We manually classified the training tuples using
possible movements that can be done in the Jecripe game.
The classifier model (Figure I — (7)) receive as input a set of
training tuples from the classifier data training. The classifier
model constructs a model which is used to predict the class of
a testing tuple. A testing tuple is given as input to the classifier
model and the output of this model is the same training tuple,
however, with its predicted class. It was not clear which would
be the best classification algorithm to be used in our context.

The literature provided only a few studies that compared
classification algorithms in the context of games. To the best
of our knowledge, no work in the literature has made a
comparison among the classification algorithms in human pose
recognition in the context of games. In this task, we propose
an analysis of classification algorithms that use the MSAIE
method: the C4.5 Gain Ratio Decision Tree, Nave Bayes
Classifier and K-Nearest Neighbor (KNN) Classifier. As a
consequence of this study, the results can help researchers to
choose among the selected algorithms for use in human pose
classification in a digital games context.

In this work, the algorithms receive as input the labels and
the locations of the body parts according to an N x N grid
that is defined inside the bounding box that contains the whole
body of the imaged subject. A bounding box was used to
identify the cell number of the body parts. The bounding box
provides the relative positions according to the detected human
body.

V. EXPERIMENTS AND RESULTS

The described approach was implemented in Python and
was evaluated on real image sequences. The ASIFT algorithm
was implemented in C++. We used the reference implemen-
tation provided by Morel and Yu [6]. To perform the distance

transformation, we used OpenCV adaptive thresholding and
other basic image processing procedures. The image sequences
were collected using a Kinect sensor.

The classification algorithms were evaluated using the data
mining tool WEKA 3.6.8. To adopt the traditional classifiers
C4.5 Gain Ratio Decision Tree, Naive Bayes and KNN, we
used the J48, Naive Bayes and Ibk implementations that are
available in the WEKA tool, respectively.

We used k-fold cross-validation in our test. In this approach,
the dataset is randomly partitioned into k& subsets. Only one
subset is used as validation data for testing the model. The
other k£ — 1 subsets are used for training the classification
model. The cross-validation process is repeated k times. Each
of the k subsets is used only once for validation. The final
result is the average of the results obtained at each round. In
our experiments, we used k£ = 10.

We previously collected sequences with human poses that
were inspired in the Jecripe game [2]. The poses define the
classes, which are: T-pose, dancing, play guitar, and play
drums. Three other movements, which were not related to the
game, were also included: punch, kick and kick + punch.

We characterize the classes as the following: The T-pose
constitutes a person with both arms and hands at the same level
as the shoulders. In the dancing class, one of the hands is on
the head; the other hand is on the hip, and one or both feet arc
on the ground. As a consequence, we have six combinations of
poses for the class dancing: (i) left hand on the head and feet
on the ground; (ii) left hand on the head and moving left foot;
(iii) left hand on the head and moving right foot; (iv) right
hand on the head and feet on the ground; (v) right hand on
the head and moving right foot; and (vi) right hand on the
head and moving left foot. All of the six poses have the same
class, which is dancing.

In the playing guitar class, the user imitates the moves
of playing an instrument, shaking the right hand while the
left hand stays at the same level as his/her shoulders. The
playing drums class is when the user shakes his/her hands up
and down alternately. There are two possible poses for the
punch class, both of which have feet on the ground: (I) right
hand and (IT) left hand. Similar to the punch, the kick class
can be made with: (a) right foot and (b) left foot, with both
hands below the centroid. The kick + punch class can be made
in four different poses: (A) kick with left foot and punch
with left hand; (B) kick with left foot and punch with right
hand; (C) kick with right foot and punch with right hand; and
(D) kick with right foot and punch with left hand.

We used three different volunteers in our experiments: A,
B and C. For each user, we collected a different number of
sequences. Volunteer A is male, 1.76 meters tall, and has dark
hair. Table I shows the collected sequences with Volunteer A.
We collected 17 sequences with all of the classes.

Volunteer B is male, 1.90 meters tall and has blond hair.
Volunteer B made 14 different sequences in four classes, all
of them without self-occlusion. All of the possible poses for
each of the four classes were collected. Table II details each
of the collected poses from Volunteer B.



TABLE I
IMAGE SEQUENCE EVALUATION FOR VOLUNTEER A.

TABLE III
IMAGE SEQUENCE EVALUATION FOR VOLUNTEER C.

Sequence Movement Number Tracking Sequence Movement Number Tracking

Number of Images | Until The End Number of Images | Until The End
Sequence Al dancing (i) 140 yes Sequence C1 dancing (i) 48 yes
Sequence A2 dancing (i) 116 yes Sequence C2 dancing (iv) 69 yes
Sequence A3 dancing (ii) 100 yes Sequence C3 dancing (iii) 45 yes
Sequence A4 playing guitar 140 yes* Sequence C4 dancing (ii) 54 yes
Sequence AS playing drums 190 yes* Sequence C5 dancing (v) 54 yes
Sequence A6 playing drums 130 yes* Sequence C6 dancing (vi) 45 yes
Sequence A7 playing drums 130 yes* Sequence C7 punch (I) 90 yes
Sequence A8 punch (I) 84 yes Sequence C8 punch (II) 88 yes
Sequence A9 punch (I) 81 yes** Sequence C9 kick (b) 49 yes
Sequence A10 kick (a) 66 yes Sequence C10 kick (a) 54 yes
Sequence All dancing (iii) 58 yes Sequence C11 | kick + punch (C) 90 yes
Sequence A12 dancing (ii) 68 yes Sequence C12 | kick + punch (D) 100 yes
Sequence A13 | kick + punch (A) 57 yes Sequence C13 | kick + punch (B) 85 yes
Sequence Al4 dancing (iv) 104 yes
Sequence AlS dancing (v) 152 yes
Sequence A16 dancing (vi) 98 yes
Sequence A17 | kick + punch (D) 55 yes work and the manual classification of the pose in each frame.
*Tracked until the end of the sequence but it had a problem

in the presence of self-occlusion.

**Problem caused by movement velocity.

TABLE 11
IMAGE SEQUENCE EVALUATION FOR VOLUNTEER B.

Sequence Movement Number Tracking

Number of Images | Until The End
Sequence B1 dancing (i) 99 yes
Sequence B2 dancing (iv) 84 yes
Sequence B3 dancing (iii) 84 yes
Sequence B4 dancing (ii) 62 yes
Sequence B5 dancing (v) 72 yes
Sequence B6 dancing (vi) 79 yes
Sequence B7 punch (I) 65 yes
Sequence B8 punch (II) 75 yes
Sequence B9 kick (b) 70 yes
Sequence B10 kick (a) 79 yes
Sequence BI1 | kick + punch (C) 73 yes
Sequence B12 | kick + punch (D) 74 yes
Sequence B13 | kick + punch (B) 99 yes
Sequence B14 | kick + punch (A) 97 yes

Volunteer C is female, 1.66 meters tall and has dark hair.
Similar to Volunteer B, we collected sequences of four dif-
ferent classes with Volunteer C. Additionally, no problem was
detected during the collection of the poses, which shows that
the M5AIE method works well in sequences that do not have
self-occlusions. We collected 13 sequences with Volunteer C
because we wanted to test fewer training tuples with the pose
kick + punch (A).

We observed that the MSAIE method had problems with
poses that had self-occlusions. The problems were detected in
the playing guitar and playing drums poses. This problem
detection was crucial for the collection of the other users
sequences; as a result, we avoided collecting these poses.
However, we kept the results to make the tuples and test the
classification algorithms. In only one sequence, the tracking
method had problems that were caused by the movement
velocity, but the pose classification was not affected.

The dataset that was used for both the training and testing
comprises the grid-coordinates that body parts assume at each
frame of a set of image sequences that were produced for this

We varied the number of cells of the grid in each frame, as
follows: 8 x 8 (Table IV), 16 x 16 (Table V), 32 x 32 (Table VI)
and 64 x 64 (Table VII).

The set of k values for the KNN algorithm is {1, 3, 5, 7, 9,
11}, and different distances were used in our experiments. We
combined the set of k& values with the Manhattan, Chebyshev
and Euclidean distances. For each of the N values of the grids
N x N, we made a data set that had all of the tuples from the
three different users that made the described poses and 2128
tuples.

Table IV, where N = 8, shows that the Naive Bayes Classi-
fier gave the highest number of incorrectly classified instances
(21.22%). For all of the other classifiers, the percentage of
instances that were correctly classified were above 93%. The
C4.5 Gain Ratio Decision Tree had similar results as the KNN
algorithm when k >= 3. As the £ value increased, the percent-
age of correctly classified instances decreased. Nevertheless,
the Manhattan distance had the best results for every % value.
The best of all of the results in Table IV were with K = 1,
primarily from using the Manhattan distance, with a 98.24%
correct. Most of the errors made by the classifier were from
confusing dancing with punch and kick + punch classes.

Considering N = 16 (Table V), once more, the Naive Bayes
Classifier gave the highest percentage of incorrectly classi-
fied instances, with 28.74%. For all the other classifications,
the incorrectly classified instances were less than 8%. The
C4.5 Gain Ratio Decision Tree had only similar results with
k >= 7 considering the Manhattan and Euclidean distances.
If we consider only the values with the same value k, the
Chebyshev distance gave the worst results. On the other hand,
the Manhattan distance gave the best results. We could observe
that the best results were obtained again with & = 1 and
the Manhattan distance. Again, increasing the value of k, the
results become worse for all of the used distances. The best
percentage of correctness with N = 16 (98.84%) was slightly
better than with N = 8 (98.24%), when both used k¥ = 1 and
the Manhattan distance. The dancing class was confused with
the playing guitar, punch and kick + punch classes.

With N = 32, similar to with N = 8 and N = 16,



TABLE IV TABLE VI

RESULTS FOR N = 8. RESULTS FOR N = 32.
Classification with Grid 8 x 8 Correct® | Incorrect™* Classification with Grid 32 x 32 Correct® | Incorrect™*
C4.5 Gain Ratio Decision Tree 97.26% 2.74% C4.5 Gain Ratio Decision Tree 98.59% 1.41%
Naive Bayes 78.78% 21.22% Naive Bayes 76.17% 23.83%
KNN with K=1 and Manhattan Distance 98.24% 1.76% KNN with K=1 and Manhattan Distance 99.72% 0.28%
KNN with K=1 and Chebyshev Distance 98.07% 1.93% KNN with K=1 and Chebyshev Distance 99.58% 0.42%
KNN with K=1 and Euclidean Distance 98.24% 1.76% KNN with K=1 and Euclidean Distance 99.77% 0.24%
KNN with K=3 and Manhattan Distance 97.79% 2.21% KNN with K=3 and Manhattan Distance 99.39% 0.61%
KNN with K=3 and Chebyshev Distance 97.01% 2.99% KNN with K=3 and Chebyshev Distance 98.45% 1.55%
KNN with K=3 and Euclidean Distance 97.66% 2.34% KNN with K=3 and Euclidean Distance 99.34% 0.66%
KNN with K=5 and Manhattan Distance 96.89% 3.11% KNN with K=5 and Manhattan Distance 99.34% 0.66%
KNN with K=5 and Chebyshev Distance 95.94% 4.06% KNN with K=5 and Chebyshev Distance 97.93% 2.07%
KNN with K=5 and Euclidean Distance 96.60% 3.40% KNN with K=5 and Euclidean Distance 98.83% 1.17%
KNN with K=7 and Manhattan Distance 96.23% 3.77% KNN with K=7 and Manhattan Distance 99.15% 0.85%
KNN with K=7 and Chebyshev Distance 94.22% 5.78% KNN with K=7 and Chebyshev Distance 97.32% 2.68%
KNN with K=7 and Euclidean Distance 95.99% 4.01% KNN with K=7 and Euclidean Distance 98.64% 1.36%
KNN with K=9 and Manhattan Distance 95.94% 4.06% KNN with K=9 and Manhattan Distance 98.73% 1.27%
KNN with K=9 and Chebyshev Distance 93.32% 6.68% KNN with K=9 and Chebyshev Distance 95.82% 4.18%
KNN with K=9 and Euclidean Distance 95.86% 4.14% KNN with K=9 and Euclidean Distance 98.03% 1.97%
KNN with K=11 and Manhattan Distance 96.31% 3.69% KNN with K=11 and Manhattan Distance 98.26% 1.74%
KNN with K=11 and Chebyshev Distance 93.20% 6.80% KNN with K=11 and Chebyshev Distance 95.21% 4.79%
KNN with K=11 and Euclidean Distance 96.15% 3.85% KNN with K=11 and Euclidean Distance 97.37% 2.63%
*Correctly Classified Instances *Correctly Classified Instances
**Incorrectly Classified Instances **Incorrectly Classified Instances

TABLE V TABLE VII

RESULTS FOR N = 16. RESULTS FOR N = 64.
Classification with Grid 16 x 16 Correct* | Incorrect™* Classification with Grid 64 x 64 Correct®* | Incorrect™*
C4.5 Gain Ratio Decision Tree 97.39% 2.61% C4.5 Gain Ratio Decision Tree 98.54% 1.46%
Naive Bayes 71.26% 28.74% Naive Bayes 77.02% 22.98%
KNN with K=1 and Manhattan Distance 98.84% 1.16% KNN with K=1 and Manhattan Distance 99.81% 0.19%
KNN with K=1 and Chebyshev Distance 98.31% 1.69% KNN with K=1 and Chebyshev Distance 99.62% 0.38%
KNN with K=1 and Euclidean Distance 98.79% 1.21% KNN with K=1 and Euclidean Distance 99.81% 0.19%
KNN with K=3 and Manhattan Distance 98.36% 1.64% KNN with K=3 and Manhattan Distance 99.62% 0.38%
KNN with K=3 and Chebyshev Distance 96.33% 3.67% KNN with K=3 and Chebyshev Distance 98.26% 1.74%
KNN with K=3 and Euclidean Distance 97.97% 2.03% KNN with K=3 and Euclidean Distance 99.34% 0.66%
KNN with K=5 and Manhattan Distance 98.02% 1.98% KNN with K=5 and Manhattan Distance 99.44% 0.56%
KNN with K=5 and Chebyshev Distance 95.60% 4.40% KNN with K=5 and Chebyshev Distance 97.23% 2.77%
KNN with K=5 and Euclidean Distance 97.58% 2.42% KNN with K=5 and Euclidean Distance 99.20% 0.80%
KNN with K=7 and Manhattan Distance 97.39% 2.61% KNN with K=7 and Manhattan Distance 99.25% 0.75%
KNN with K=7 and Chebyshev Distance 95.22% 4.78% KNN with K=7 and Chebyshev Distance 96.76% 3.24%
KNN with K=7 and Euclidean Distance 97.29% 2.71% KNN with K=7 and Euclidean Distance 98.92% 1.08%
KNN with K=9 and Manhattan Distance 97.20% 2.80% KNN with K=9 and Manhattan Distance 99.01% 0.99%
KNN with K=9 and Chebyshev Distance 94.30% 5.70% KNN with K=9 and Chebyshev Distance 95.39% 4.61%
KNN with K=9 and Euclidean Distance 96.86% 3.14% KNN with K=9 and Euclidean Distance 98.50% 1.50%
KNN with K=11 and Manhattan Distance 96.47% 3.53% KNN with K=11 and Manhattan Distance 98.50% 1.50%
KNN with K=11 and Chebyshev Distance 92.90% 7.10% KNN with K=11 and Chebyshev Distance 94.55% 5.45%
KNN with K=11 and Euclidean Distance 96.18% 3.82% KNN with K=11 and Euclidean Distance 97.84% 2.16%

*Correctly Classified Instances

*Correctly Classified Instances

**Incorrectly Classified Instances

the Naive Bayes classifier gave the smallest percentage of
correctly classified instances (76.17%). All of the other results
had more than 95% correctness on instances of classification.
If we compare the C4.5 algorithm with KNN (without the
Chebyshev distance), we obtain similar results to when k >=
9. The best results were with K = 1 but with the Euclidean
distance (99.77%), which was followed very closely by the
Manhattan distance (99.72%). This result is even better than
the best result in Table V. Most of the incorrectly classified
instances occurred with instances of dancing, punch and kick
+ punch. Table VI shows the results for N = 32.

Table VII shows the results with N = 64. As was expected,
the Naive Bayes had 22.98% incorrectly classified instances,

**Incorrectly Classified Instances

followed by KNN with & = 11 and the Chebyshev distance,
which had 5.45% incorrect. All of the others gave more than
94% correctly classified instances. The C4.5 algorithm had
similar results with only KNN when k£ = 11. Similar to the
other best results, in Table VII, KNN with k = 1 gave the best
results with both distances, Manhattan and Euclidean, with
exactly the same value, 99.81%. Because the results are very
close to 100% using N = 64, we could observe a relatively
high number of errors using Naive Bayes, which gave errors
in the classes dancing, punch and kick + punch.

Until this point, we exposed the results, showing each table
in an isolated way. However, we can observe additional results
by comparing the tables with one another. All of the algorithms



had similar results while considering the same algorithm with
different N values. In all of the cases, the worst results came
from the Naive Bayes Classifier. The C4.5 had similar results
with KNN depending on the k value of each Table. Although
the results are very similar from one table to another, we can
see that the results of the C4.5 algorithm and KNN become
better when /N becomes higher. Considering the distances, in
general, the Manhattan gave the best results if we compare
the same k value in every Table. The Euclidean distance gave
very similar results to the Manhattan, and only once the results
from the Euclidean distance were better than the Manhattan
distance. In all of the KNN experiments, the Chebyshev
distance gave a percentage of incorrectly classified instances
that was higher than for the other two considered distances.

We believe that if we continue to increase the value of N,
it could improve the results even more until a certain limit
value is obtained. From that limit value for N onward, the
results could start to become worse (as mentioned in item 3,
above). Perhaps if we normalized the coordinates according to
the bounding box instead of a grid divided into cells, we could
obtain the best results. We consider the KNN with £ = 1 and
the Manhattan distance as the winning algorithm.

According to the concept of each distance measure, our
inference for why we obtained the worst results using the
Chebyshev distance is that this distance undervalues the dis-
tance between the body parts in each frame and the classifier
makes mistakes when making its predictions. The Chebyshev
distance gives the longest distance considering all of the axis
distances from point A to another point B. Then, the body parts
can be closer than they actually are to each other. However,
the Manhattan and Euclidean distances can be more realistic
for human movements. This last assumption should be the
reason for the best results for the Manhattan distance, and the
Euclidean distance gives very similar results in comparison to
the Manhattan distance.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The focus of this thesis is on Computer Vision and Digital
Games research. In fact, the primary motivation for this
work is to contribute with research that makes it easier to
implement different concepts in Natural User Interfaces. Since
the beginning of the development of the Jecripe game [9], [2],
there was the intention to stimulate the movements of children
with Down syndrome throght NUIL.

The first stage of this study was the background subtraction
task. In the background subtraction task we had done a study
to compare different algorithms considering images collected
from Kinect. We adapted some of the algorithms to make all
of them in equal conditions of comparison. The results of this
study motivated us to use the Minimum Background algorithm
and we published this work in [4].

This thesis describes the MSAIE method for detecting and
tracking five main parts of the human body (head, hands and
feet) in sequences of RGB-D images. The proposed approach
combines an effective background subtraction method, the
discrete medial axis transformation, in the construction of

simpler graphs to be used in the detection of AGEX points,
heuristics for labeling, and ASIFT-based tracking of labeled
structures. The experiments and first results of the MSAIE
method were published in [7].

To prove that the M5AIE method is effective, including on
the human pose prediction task, we made a comparison among
the classification algorithms when applied to human pose
recognition in the game context. In this study, we proposed and
developed a detailed analysis using the MSAIE with different
algorithms. We published the we had done concerning a
comparison of different classification algorithms in [8].

We presented the MSAIE method which was implemented
as a proof of concept. Recently, the literature presented en-
couraging studies with real time results for the Medial Axis
transformation and the SIFT algorithm. We intend to improve
our method and integrate it with computer games. We will
present how our research contributed in different computer
science research area [10] and another study will give more
details on how our research contributed mainly for the Human-
Computer Interaction area [11].
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