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Abstract. The K–Discretizable Molecular Distance Geometry Problem
(KDMDGP) is a subclass of the Distance Geometry Problem (DGP),
whose complexity is NP-hard, such that the search space is finite. In this
work, the authors describe it completely using Conformal Geometric
Algebra (CGA), exploring a Minkowski space that provides a natural
interpretation of hyperspheres, hyperplanes, points and pair of points as
computational primitives, which are largely relevant to the KDMDGP.
It also presents a theoretical approach to solve the KDMDGP using
ideas from classic Branch-and-Prune (BP) algorithm in this new fashion.
Time complexity analysis and practical computational results showed
that the naive implementation of the CGA is not as efficient as classical
formulation. In order to illustrate this, preliminary results are displayed
at the end and, also, directions to future developments.
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1. Introduction

Let (M, dM) be a metric space. Considering a simple and undirected graph
G = (V,E, d), where the edges in E are weighted by the distance function d :
E −→ R+, the exact-distance case of the Distance Geometry Problem (DGP)
asks whether there exists an embedding x of G into M such that

∀{u, v} ∈ E, ‖x(u)− x(v)‖M = d({u, v}) , du,v, (1)

where ‖·‖M is the norm provided by the metric dM. It has been proved to
be NP–complete for K = 1 and NP–hard for K > 1 [32].
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There are examples of applications of this problem in several areas
or dimensions. For lower dimensions (K ≤ 3), the Clock Synchronization
Problem (CSyP), the Sensor Network Localization Problem (SNLP) and the
position-analysis of the Assur Kinematic Chains can be held, respectively,
as DGPs in R, R2 and R3 [22, 31]. Applications for dimensions greater than
K = 3 include the Graph Embedding Subproblem (GES), which arises in many
areas of Machine Learning, including deep neural networks [21].

If M is the Euclidean space R3, such problem is named Molecular Dis-
tance Geometry Problem (MDGP), which has shown to be a suitable model
to look for tridimensional molecular conformations, usually solved in terms
of Continuous Optimization [7, 27, 28]. Moreover, inspired by the applica-
tion of the MDGP for proteins, its search space can be discretized so that it
can be explored by combinatorial tools [19]. This subclass of the MDGP is
the so-called Discretizable Molecular Distance Geometry Problem (DMDGP).
The main method for solving it computationally is the so-called Branch-
and-Prune (BP) algorithm, a combinatorial method that uses sphere in-
tersections recursively [23]. One can set it to look up only for one solu-
tion, which is called BPone. Furthermore, some existing symmetry equiv-
alence (congruence) relations on V have been discovered, allowing compu-
tational improvements on BP, which is summarized in what follows and
described in details in [29]. Considering two realizations of G as congru-
ent is equivalent to say that one can be got from the other by the evalu-
ation of partial reflections in the symmetry vertices, the ones from the set
SG = {v ∈ V : 6 ∃{u,w} ∈ E such that u + 3 < v ≤ w}, preserving the
distances between all the pair of points for both. This existence proves what
has been empirically noticed that the number of solutions for each DMDGP
is power of two (since the reference frame is fixed) and also gives the result
that finding only one solution is enough, as all the remaining ones can be
determined using partial reflections. From this fact, an adaptation for BP
is driven and called symBP. It simply follows what has been sketched up
in the latter, that is, it takes the solution from BPone and finds all the
other solutions by applying sequences of partial reflections in the symmetry
vertices [29]. Another interesting feature is that such symmetries also have
afforded an environment to solve the DMDGP using parallel computing. For
inatnce, Fidalgo et al. [13] have proposed an efficient manner of splitting an
instance depending only on the symmetry vertices, minimizing the number
of pruning restraints yet to be checked after the joining of the parts.

Liberti et al. [24] generalize the DMDGP for any RK defining the
KDMDGP, an acronym for K-Discretizable Molecular Distance Geometry
Problem, and they also restated symBP as an outline method to handle the
K-dimensional case, where they suggest the resolution of the sphere inter-
section problem following [6]. A complete survey about Euclidean Distance
Geometry (with a complete taxonomy) can be found in [24].

There are some works in literature that connect Clifford Algebra and
Distance Geometry, taking advantage of the coordinate-free character and
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the geometrical interpretation of blades and rotors in the Conformal Geo-
metric Algebra (CGA), e.g., [1–3,8,16,17,34]. To the best of our knowledge,
neither the KDMDGP nor the symBP are wholly described in terms of CGA
in the literature so far. The advantage of having such a description is allow
the use, under the same mathematical formalism, of concepts coming from
formalisms that are typically treated in a decoupled form, such as matrix
algebra, Plucker coordinates, complex numbers, quaternion algebra, intersec-
tion of two or more objects (not necessarily rounds or flats, only), among
others. Thus, the main goal of the present work is to provide a complete the-
oretical description of the KDMDGP with exact distances, for any K, using
CGA, as it is a useful domain to treat spheres, planes, lines, and motions in a
creative and satisfactory way. Moreover, a first attempt to solve it completely
in this environment is represented by an algorithm that mimics symBP, but
using the closed-form sphere-intersection representation of CGA. We call it
CsymBP. In order to test it when applied to artificial instances, we present
and discuss some computational issues of the CsymBP.

This paper is organized as follows. The KDMDGP is presented in Sec-
tion 2 and CGA, together with its proper operations for the KDMDGP, is
shortly presented in Section 3. Section 4 brings the most significant contribu-
tion of this work, focusing on the theoretical description of the problem via
CGA. Section 5 presents the CsymBP algorithm, shows preliminary compu-
tational results, and discusses its strength and weakness. Finally, Section 6
draws conclusions and points to promising directions for future works.

2. K–Discretizable Molecular Distance Geometry Problem

Let G = (V,E, d) be an undirected and simple graph, with n = |V | vertices,
whose edges are weighted by d : E −→ R+, andNG(v) = {u ∈ V | {u, v} ∈ E}
be the Neighbourhood of v, for any v ∈ V . Moreover, given a total or-
der relation < on V , let γG(v) = {u ∈ V | u < v} be the set of all prede-
cessors of v, Uv = NG(v) ∩ γG(v) be the set of the adjacent predecessors of
v, ρG(v) = |γG(v)|+ 1 be the rank of v in G with respect to < and, at last,
let Equations. (2) and (3) be, respectively, the Cayley-Menger Formula

∆K(U) =

√
(−1)K+1

2K(K!)2
CM(U) (2)

and the Cayley-Menger Determinant

CM(U) =

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1
1 0 d20,1 · · · d20,K
1 d20,1 0 · · · d21,K
...

...
...

. . .
...

1 d20,K d21,K · · · 0

∣∣∣∣∣∣∣∣∣∣∣
, (3)

whose non-zero entries are the Euclidean distances in RK between all the
pairs of points from a set U = {P0, P1, . . . , PK} of K + 1 point elements.
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Suppose that < in V satisfies the following assumptions:

(i) Uvi contains exactly the K immediate adjacent predecessors to vi;
(ii) G[Uvi ], i.e., the subgraph induced by Uvi , is a K-clique on G; and

(iii) ∆K−1(Uvi) > 0, ∀i > K.

The KDMDGP associated to G is the problem of looking for embeddings
x : V −→ RK , which are called Realizations of G, such that the distance
constraints from Equation (1) are satisfied by d.

Furthermore, the set of all realizations of G in RK (modulo translations
and rotations) is denoted by XK

G and we also say that x, y ∈ XK
G are congruent

if and only if ‖xu − xv‖ = ‖yu − yv‖, for all {u, v} ∈ E, what is denoted as
x ≡ y [25]. It is possible to see that ≡ is an equivalence relation which
performs a congruence-based partition on XK

G , from what one can find a
finite number of incongruent realizations (representing all of them) [25] and
whose set will be denoted in this work as SKG = XK

G / ≡.
It is remarkable that determining each vertex is equivalent to the prob-

lem of computing the intersection of K distinct hyperspheres in RK which
has, at most, two positions [6]. Besides, Liberti et al. [24] provided a conve-
nient split E = ED∪EP , such that ED∩EP = ∅. ED = {{u, v} ∈ E | u ∈ Uv}
is the set of the Discretization Edges (which is complete), as it is directly as-
sociated to (i), and EP = E \ED is the set of the (additional) Pruning Edges,
which can be empty, as they are not guaranteed from Assumptions (i)–(iii).

Some remarks can be driven from EP . First, the occurrence of a pruning
edge incident in a vertex implies that it can be positioned uniquely (intersec-
tion of K + 1 hyperspheres). Second, additional edges are responsible for de-
termining the symmetry set SG = {v ∈ V : 6 ∃{u,w} ∈ E such that u+K <
v ≤ w}, that determines the symmetry hyperplanes which are, respectively,
uniquely defined by the positions of the K immediate predecessors in the
current realization [25]. Additionally, it provides a deterministic way to know
the number of realizations (modulo translations and rotations) for G via the

expression |XK
G | = 2|S

K
G | [29], e.g., if n = 20 and three symmetry vertices,

namely 4, 11, and 16, then it has exactly |XK
G | = 8 feasible conformations

(modulo translations and rotations). Also, they define infeasibilities in the
problem, which are important to guarantee that the tree is not going to grow
to much, as it increases in power of 2. Finally, this binary structure provides
a tree-structure to explore the search space which will be denoted here as TG.
A possible tree associated with the previous example is depicted in Fig. 1.

Liberti et al. [24] restated BP and BPone for any RK (Algorithm 1,
where SK−1(c, r) is the sphere entered at c with radius r > 0). Also, after
extracting both possible positions in the branching phase, symBP prunes to
choose the right one. Direct Distance Feasibility (DDF) is the pruning device
used here, by checking if each calculated distance of the q-th vertex is ‘close’
to the available distance data, that is,

|di,q − ‖xi − xq‖ | < ε, ∀i < q and {i, q} ∈ E, for ε > 0.
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Figure 1. An exampling TG of a 3DMDGP with 20 vertices
and 3 symmetry vertices, whose ranks are 4, 11, and 16 [13].

Algorithm 1 BPone algorithm

Require: v ∈ V \ {1, . . . ,K} and an embedding x = x′ for G[γG(v)].
1: function BPone(v, x)

2: P ←
⋂

u∈NG(v),u<v

SK−1(xu, du,v)

3: for xv ∈ P do
4: x← (x,xv)
5: if v = n then
6: return success, x
7: end if
8: status, y← BPone(v + 1, x)
9: if status = success then

10: return success, y
11: end if
12: end for
13: return fail
14: end function

Other works from literature present alternative approaches to deal with
hypersphere intersection and, then, to handle the KDMDGP. For instance,
Coope uses LU factorization [6], Gonçalves adopts a least-squares approach [14],
and Maioli et al. works with QR factorization [26].
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3. Conformal Geometric Algebra of RK

Geometric Algebra (GA) is the name given by David Hestenes for Clifford
Algebra (CA), intending to emphasize that geometric objects in various geo-
metric models can be suitably described by algebraic operations and axioms.
CGA represents the Conformal Geometric Model of RK in terms of GA, in-
troduced by Friederich Wachter (1792–1817) by noting that there is a surface
in the Hyperbolic Space which is metrically equivalent to the Euclidean space,
the so-called Horosphere. The associated algebra is described as follows, and
one can find all details about that in [9, 20,30].

The basis for the Minkowski Space R2 with signature (1, 1) (R1,1) is
given by {e+, e−}, such that e2+ = +1 and e2− = −1. So, the Conformal Split

RK+1,1 of RK+2 is defined as the direct sum RK+1,1 = RK⊕R1,1, whose basis
is {e1, . . . , eK , e+, e−}. A very important structure in RK is the Null Cone
KK+1, defined by the null vectors X ∈ RK+1,1 such that X2 = X · X = 0,
where · denotes the inner product. The two most important null vectors

defined here are e∞ , e+ + e− and eo ,
1

2
(e+− e−), where e2∞ = e2o = 0 and

e∞ ·eo = −1. Furthermore, the Conformal Model HK
a of RK is its embedding

into RK+1,1, provided by the operator C : RK −→ KK+1, established by

C(x) = x +
1

2
x2e∞ + eo. (4)

Now, let X = C(x), Y = C(y) ∈ HK
a . Considering the Minkowski norm ‖·‖M

and the inner product of vectors in HK
a , given by X · Y = −1

2
‖x− y‖2, the

operator C̃ : RK −→ HK
a , set by C̃(x) = C(x) = X, is an isometry. This is

verified, for C̃(x) is onto and satisfies ||X−Y ||2M = −2X ·Y = ‖x− y‖2, what
is a very important fact for the connection between CGA and a KDMDGP.
As C̃ is invertible, we then have that C̃−1 : HK

a −→ RK , which is pontually

defined by C̃−1(X) = x.

Therefore, the Conformal Algebra ClK+1,1 consists on the conformal
model HK

a with the Geometric Product (or Clifford Product) of vectors given by

XY = X · Y +X ∧ Y, (5)

as ∧ denotes the the Wedge Product of vectors X and Y (see Grassmann [15]).
Further special elements, important operations, and properties of this algebra
that will be widely used in this article are described, what is necessary for
its interdisciplinary appeal. The wedge product of a finite number of vectors
B = X1 ∧ . . . ∧Xk is named a k-Blade, where k is the Grade of B, denoted
by gr(B). If the vectors are linearly independent, the geometric interpreta-
tion of B is a k-dimensional subspace. One interesting example is the unit
Pseudoscalar I, which represents the attitude of the whole RK+2.

A meaningful operation here is the Left Contraction (or simply Contrac-
tion) of multivectors in ClK+1,1, denoted by XcY . When applied to blades,
the contraction returns a subspace of RK+2, with grade gr(Y ) − gr(X),
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that is included in Y and is orthogonal to X. Another important opera-
tion is the Reverse of the k-blade B, given by B̃ = Xk ∧ . . . ∧ X2 ∧ X1 =
(−1)k(k−1)/2B. Those operations are employed in the definition of the Squared

Reverse Norm of a blade A, by ‖A‖2 = AÃ = AcÃ, and for the Inverse of A,

by A−1 = Ã/ ‖A‖2, where / denotes the Inverse Geometric Product.

In order to describe the orthogonal complement of the subspace deter-
mined by the K-blade A, a duality relation is established. So, the Dual of A
is defined by A∗ = AcI−1. And, as A∗∗ 6= A, the Undual of A is given by
A−∗ = AcI. It is easy to see that (A∗)−∗ = A and that (A∧B)−∗ = AcB−∗,
for another blade B.

In this paper, geometric entities are always represented in the Inner-
Product Null-Space (IPNS) paradigm, which is important to remark in order
to exclude possible ambiguities. Thus, the hypersphere σ with radius r and

center X is algebraic represented in ClK+1,1 by σ = X − 1

2
r2e∞ and that

X1 ∧X2 ∧X3 ∧ · · · ∧XK ∧ e∞ is the dual representation of the hyperplane π,
uniquely determined by the family of points {Xi}. Moreover, a point X ∈ HK

a

is such that X ∈ σ if and only if X · σ = 0. A crucial and original outcome,
then, is stated.

Proposition 3.1. If σ1, · · · , σK are the hyperspheres σi = Xi−
1

2
rie∞ in HK

a ,

then the hyperplane π, uniquely determined by {Xi}, can be represented by

π = (σ1 ∧ · · · ∧ σK)c (e∞cI) . (6)

Proof. Using the wedge product properties, we have

σ1 ∧ σ2 ∧ · · · ∧ σK = X1 ∧X2 ∧X3 ∧ · · · ∧XK

+ (−1)1
1

2
r21(e∞ ∧X2 ∧X3 ∧ · · · ∧XK)

+ (−1)2
1

2
r22(e∞ ∧X1 ∧X3 ∧ · · · ∧XK)

...

+ (−1)K
1

2
r2K(e∞ ∧X1 ∧X2 ∧ · · · ∧XK−1).

(7)

By applying the wedge product by e∞ on the right-side of Equation (7), the
dual representation of the hyperplane π ends up to be

σ1 ∧ σ2 ∧ · · · ∧ σK ∧ e∞ = X1 ∧X2 ∧X3 ∧ · · · ∧XK ∧ e∞ = π∗. (8)

Finally, using the Equation (8), the undualization with its properties and the
blade D = σ1 ∧ · · · ∧ σK , we can conclude that

π = (π∗)−∗ = (D ∧ e∞)−∗ = Dce−∗∞ = Dc(e∞cI), (9)

completing the proof. Here, D is a K-blade interpreted as the pair of points
resulting from the intersection of K spheres. �
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Given vectors X,Y ∈ HK
a interpreted as normalized finite points, writ-

ten according to Equation (4), their Perpendicular Bisector is the hyperplane
π that can be computed using π = X−Y . If one knows π and wants to extract
both points X and Y from the pair of points D, one can use D∗ = X ∧ Y
and the expressions presented by Dorst et al. [9, Eq. (14.13), p. 427]

X =
D∗ +

√
D∗D∗

−e∞cD∗
and Y =

D∗ −
√
D∗D∗

−e∞cD∗
. (10)

4. The CGA Version of the symBP for Solving a KDMDGP

Let G = (V,E, d) be a KDMDGP graph with n vertices and x = (xi) ∈ XG,
an arbitrary realization of G in RK , for n > K > 0. As it is possible to
biunivocally identify each xi to a Xi ∈ HK

a , for C̃(xi) = Xi, the sequence
X = (Xi) is defined and, then, the following result can be stated.

Theorem 4.1. The sequence X = (Xi) is a realization of G in the metric
space (HK

a , dM ), where dM is the distance provided by the norm ‖·‖M .

Proof. It follows directly from the facts that, for each i, Xi = C̃(xi) and that

the operator C̃ is an isometry, preserving the same distances and constraints
as the associated Euclidean realization. �

In this section, we present the main original contribution of the present
theoretical work, which gives another example of the relation between both
GA and DG research areas. In this way, all the KDMDGP compounds, with
exact distances, will be merged entirely into CGA terms, including discretiza-
tion, pruning, and symmetries. Also, some preliminary computational issues
about this are displayed.

4.1. Results of discretization edges and pair of points determination

As discussed in Section 2, discretization edges ensure that there exist two pos-
sible positions for the j-th vertex, namely x′j and x′′j , since the j−K immedi-
ate predecessors are all determined and whose positions are xj−K , . . . ,xj−1,
for j = K+1, . . . , n. In addition, both x′j and x′′j lie in the intersection of the
(Euclidean) hyperspheres Sij , centered in xi and whose radius is rij = di,j .
Also, they are symmetric w.r.t the hyperplane Πj , uniquely determined by
xi, for all i = j−K, . . . , j− 1 [24]. The conformal version of the hypersphere

Sij will be denoted in this article by σ
(j)
i .

Proposition 4.2. The primal representation of Πj, embedded in HK
a , can be

written as the odd versor

πj = Djc(e∞cI), (11)

where Dj = σ
(j)
j−K ∧ σ

(j)
j−K+1 ∧ . . . ∧ σ

(j)
j−1.

Proof. It is enough to apply Proposition 3.1 to the hyperspheres σ
(j)
j−K , σ

(j)
j−K+1,

. . . , σ
(j)
j−1 and taking Dj as stated, one is able to attain what is desired. �



CGA to describe the exact DMDGP at any dimension 9

It is possible, now, to express explicitly both possible positions for the
representatives of x′j and x′′j in HK

a and affirm what comes next.

Proposition 4.3. Let X ′j = C(x′j) and X ′′j = C(x′′j ). Both conformal points

can be calculated from σ
(j)
j−K , σ

(j)
j−K+1, . . ., σ

(j)
j−1 by the expressions

X ′j =
D∗j +

√
D∗jD

∗
j

−e∞cD∗j
and X ′′j =

D∗j −
√
D∗jD

∗
j

−e∞cD∗j
, (12)

where Dj = σ
(j)
j−K ∧ σ

(j)
j−K+1 ∧ . . . ∧ σ

(j)
j−1.

Proof. As in Proposition 4.2, one knows Dj a priori and its dual D∗j can then
be computed. Thus, it is sufficient to apply the formulas from Equation (10).

�

In this context, as in the Euclidean version of the KDMDGP, both
points are one reflection of the other through the hyperplane Πj (primarily
represented by the versor πj) which also defines the perpendicular bisector
of them. It is asserted as follows.

Proposition 4.4. Let X ′j and X ′′j be the two points in HK
a separated by the

symmetry plane Πj, mentioned in the beginning of this section. The odd versor
πj = Djc(e∞cI) is such that

X ′j = −πjX ′′j π−1j and X ′′j = −πjX ′jπ−1j . (13)

Proof. By definition,
D∗j = X ′j ∧X ′′j . (14)

Then, the result of e∞ contracted on D∗j is exactly πj , since

e∞cD∗j = e∞c
(
X ′j ∧X ′′j

)
=
(
e∞cX ′j

)
∧X ′′j −X ′j ∧

(
e∞cX ′′j

)
= X ′j −X ′′j .

The result of squaring D∗j is the square of X ′j ·X ′′j for

D∗jD
∗
j =

(
X ′j ∧X ′′j

) (
X ′j ∧X ′′j

)
=
(
X ′j ∧X ′′j

)
c
(
X ′j ∧X ′′j

)
= X ′jc

(
X ′′j c

(
X ′j ∧X ′′j

))
= X ′jc

((
X ′′j cX ′j

)
∧X ′′j −X ′j ∧

(
X ′′j cX ′′j

))
=
(
X ′j ·X ′′j

)2
. (15)

Finally, we demonstrate that from Equations (12) one can get Equa-
tions (13) and vice-versa:

X ′j =
D∗j +

√
D∗jD

∗
j

−e∞cD∗j
= −

(
D∗j +

√
D∗jD

∗
j

) (
e∞cD∗j

)−1
= −

(
D∗j +

√
D∗jD

∗
j

)
π−1j

= −
(
X ′j ∧X ′′j +X ′j ·X ′′j

)
π−1j

= −
(
X ′jX

′′
j

)
π−1j

= −
((
X ′j −X ′′j

)
X ′′j
)
π−1j
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= −πjX ′′j π−1j .

The second expression in Equation (12) is completely analogous. �

Next theorem states that symmetric realizations x and y of a KDMDGP
in RK , in terms of partial reflections, are biunivocally related to realizations
X and Y in HK

a which are also symmetric each other up to partial reflections,
preserving all distances.

Theorem 4.5. Let G = (V,E, d) be a KDMDGP graph, x ∈ XG, j be a
fixed vertex in V \ {1, . . . ,K}, p, q ∈ V such that j < p < q and πj the
hyperplane associated to xj. If x′′p and x′′q are symmetric to x′p and x′q w.r.t.
πj, respectively, then ∥∥X ′′q −X ′′p ∥∥2M =

∥∥X ′q −X ′p∥∥2M . (16)

Proof. The isometry implies that

‖ X ′′q −X ′′p ‖
2
M = ‖ x′′q − x′′p ‖

2
= ‖ x′q − x′p ‖

2
= ‖ X ′q −X ′p ‖

2
M . (17)

�

4.2. Results of pruning edges and partial reflections

Also, from Section 2, each additional edge incident on the current vertex
guarantees the uniqueness of the position. Thus, any algorithmic method to
extract the realizations by sphere intersections must use those data. There-
fore, we can model DDF in CGA fashion, as in Algorithm 2.

Let xi be a position for the i-th vertex and {i, q} ∈ EP such that
q > K + 1 and |q − i| ≥ K + 1.

Theorem 4.6. A possible position xq, from the q-th vertex of G, is feasible
w.r.t the given pruning edge {p, q} and position xp if and only if Xq ∈ σi,
where σi = Xi −

1

2
d2i,qe∞.

Proof. It is clear by definition that xq is feasible (w.r.t {p, q} and xp) if
and only if xq ∈ SK−1

p , where SK−1
p is an hypersphere centered in xp with

radius dp.q. But, SK−1
p , xq and xp are, respectively, represented in HK

a by
the vectors σp, Xq and Xp. That is, we can restate that xq is feasible if and
only if Xq ∈ σp. On the other hand, Xq ∈ σp if and only if Xq ·σp = 0, which
is true, since

Xq · σp = Xq ·
(
Xp −

1

2
d2pqe∞

)
= Xq ·Xp −

1

2
d2pq (Xq · e∞) (18)

and Xq ·Xp = −1

2
d2pq and Xq · e∞ = −1, completing the result. �

It implies that DDF is reduced to Xq ·σp = 0, a dot product evaluation.
A corollary follows directly from Theorem 4.6.

Corollary 4.7. Let {i1, q}, . . . , {iw, q} be all the pruning edges inciding into

the q-th vertex. If xq is a feasible position, then Xq ∈ σ(q)
i1
∧ . . . ∧ σ(q)

iw
.
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Algorithm 2 CGA Direct Distance Feasibility

1: function Cddf(q, Eq
P ,X)

2: if Eq
P = ∅ then

3: return success
4: else
5: S ←

∧
p<q σ

(q)
p

6: Y ← X · S
7: if Y = 0 then
8: return success
9: else

10: return fail
11: end if
12: end if
13: end function

5. Computational Issues

Algorithm 3 outlines the CsymBP procedure, an algorithm that mimics
symBP ipsis litteris, all fashioned using CGA.

In Section 5.1, we compare the computational cost of CsymBP against
the combination of the symBP algorithm [29] with the computation of the
points of intersection of K hyperspheres using the QR matrix decomposition-
based approach proposed by Coope [6]. More specifically, we present a theo-
retical comparison in terms of the number of arithmetic operations (i.e., ad-
ditions/subtractions, multiplications, and divisions) necessary to evaluate the
wedge products in line 2 of Algorithm 3 and the number of operations eval-
uated by Coope’s approach. In addition, Section 5.2 presents a comparison
of executions times of the implementation of both algorithms in Julia Pro-
gramming Language [4], using the Liga library [11].

Our implementation of both algorithms first looks for one solution with-
out exploiting redundant paths in the implicit tree-structure that explores
the search space (e.g., a dark path in Figure 1) and then apply the sym-
metries to determine all solutions (e.g., all other valid paths in Figure 1).
We have implemented the algorithms in an iterative fashion rather than by
using their recursive counterpart in other to avoid overflow in the system’s
stack. These implementation cancels previous unexplored BP calls on the mo-
ment that a solution is discovered. The experiments were performed on an
Intel® Pentium® CPU G3240 with 3.10 GHz×2 and 4 Gb of RAM, running
Ubuntu 16.04 operating system.

5.1. Computational Cost

In the following derivations we assume that blades are encoded by multivec-
tors rather than by collections of vector factors. Thus, the K-blade Dj in

Algorithm 3 (line 2) has
(
K+2
K

)
= (K + 2)(K + 1)/2 components, written as:

Dj = σ
(j)
j−K ∧ . . . ∧ σ

(j)
j−1
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=
(
xj−K + eo + β

(j)
j−Ke∞

)
∧ . . . ∧

(
xj−1 + eo + β

(j)
j−1e∞

)
= xj−K ∧ . . . ∧ xj−1

+ γK xj−K+1 ∧ . . . ∧ xj−1 ∧ eo
...

+ γ1 xj−K ∧ . . . ∧ xj−2 ∧ eo
+ γKβ

(j)
j−K xj−K+1 ∧ . . . ∧ xj−1 ∧ e∞ (19)

...

+ γ1β
(j)
j−1 xj−K ∧ . . . ∧ xj−2 ∧ e∞

+ γK,K−1

(
β
(j)
j−K − β

(j)
j−K+1

)
xj−K+2 ∧ . . . ∧ xj−1 ∧ eo ∧ e∞

...

+ γ2,1

(
β
(j)
j−2 − β

(j)
j−1

)
xj−K ∧ . . . ∧ xj−3 ∧ eo ∧ e∞,

where xi = αi,1e1 + αi,2e2 + · · ·+ αi,KeK are the (Euclidean) support vec-

tors of the centers of the hypersheres σi, β
(j)
i = (xi · xi − (r

(j)
i )2)/2 are scalar

values computed once for each hypersphere, and γk and γk,l are constant val-
ues that assume ±1 according to the application of the antisymmetry prop-
erty of the wedge product. In Equation (19), the xj−K ∧ . . . ∧ xj−1 term pro-
duces the component of Dj having the Euclidean pseudoscalar e1 ∧ . . . ∧ eK
as basis blade. The terms γk xj−K∧. . .∧x̆j−k∧. . .∧xj−1∧eo and γkβ

(j)
j−k xj−K∧

. . . ∧ x̆j−k ∧ . . . ∧ xj−1 ∧ e∞ produce the 2K components of Dj whose basis
blades are spanned by K − 1 Euclidean basis vectors and by, respectively, eo
or e∞. Here, x̆j−k denote that xj−k was removed from the product. Finally,

the γk,l(β
(j)
j−k−β

(j)
j−l)xj−K∧. . .∧x̆j−k∧. . .∧x̆j−l∧. . .∧xj−1∧eo∧e∞ terms re-

sult in K(K − 1)/2 components of the multivector after evaluating the wedge
products and collecting the basis blades spanned by K − 2 Euclidean basis
vector and by eo ∧ e∞.

Existing Geometric Algebra source code optimizers and libraries that
implement the lazy-evaluation strategy [33], like, respectively, the Geometric
Algebra ALgorithms OPtimizer (GAALOP) [5] and the Geometric Algebra
Template Library (GATL) [12], evaluate the wedge product in such a way that
the computation naturally reduces to the same operations than the evaluation
of the minors of a matrix whose rows are the vector factors of the blade. As a
result, by using such existing computational solutions, the number of arith-
metic operations required to evaluate xj−K ∧ . . . ∧ xj−1 in Equation (19) is
the same of calculate a K ×K determinant by way of cofactor expansion [10]:

Ndet = K!

(
1 +

K∑
t=1

1

t!

)
− 2. (20)
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Algorithm 3 CsymBP algorithm

Require: v ∈ V \ {1, . . . ,K}, an embedding X = X ′ for G[γG(v)], and a set
Ev

P with the edges incident in v.

1: function CsymBP(v, X, Ev
P )

2: Dj ← σ
(j)
j−K ∧ σ

(j)
j−K+1 ∧ . . . ∧ σ

(j)
j−1

3: for Xv ∈ Dj do
4: if Cddf(v,Ev

P ,Xv) = success then

5: X ← (X,Xv)
6: if v = n then
7: return success, X
8: end if
9: status, Y ← CsymBP(v + 1, X, Ev+1

P )
10: if status = success then
11: return success, Y
12: end if
13: end if
14: end for
15: return fail
16: end function

Given the recursive nature of cofactor expansion, some of the minors
computed during the process are precisely the scalar values resulting from
the wedge product of Euclidean vectors in the terms γk xj−K ∧ . . . ∧ x̆j−k ∧
. . . ∧ xj−1 ∧ eo, γkβ

(j)
j−k xj−K ∧ . . . ∧ x̆j−k ∧ . . . ∧ xj−1 ∧ e∞, and γk,l(β

(j)
j−k −

β
(j)
j−l)xj−K∧ . . .∧ x̆j−k∧ . . .∧ x̆j−l∧ . . .∧xj−1∧eo∧e∞ of Equation (19). As a

result, the evaluation of those terms does not impose additional complexity to
the computation of Dj , except by multiplications and additions/subtractions

required while scaling by β
(j)
j−k and (β

(j)
j−k − β

(j)
j−l), and collecting the ba-

sis blades of the K-vector space. It is important to notice that γk and γk,l
does not impose the evaluation of multiplications. Those constant terms only
switch from addition to subtraction and vice-versa according to rules that
can be deduced in function of the indices of vectors xk and xl, suppressed
from the products.

For the γk xj−K ∧ . . . ∧ x̆j−k ∧ . . . ∧ xj−1 ∧ eo terms,

No = K2 −K (21)

additions/subtractions are required while collecting the basis blades. The

γkβ
(j)
j−k xj−K ∧ . . .∧ x̆j−k ∧ . . .∧ xj−1 ∧ e∞ terms also require K (K − 1) ad-

ditions/subtractions, plus K2 multiplications for scaling by β
(j)
j−k, leading to:

N∞ = 2K2 −K (22)

arithmetic operations. The γk,l(β
(j)
j−k − β

(j)
j−l)xj−K ∧ . . .∧ x̆j−k ∧ . . .∧ x̆j−l ∧

. . . ∧ xj−1 ∧ eo ∧ e∞ terms impose K2 (K − 1)
2
/4 additions or subtractions
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and K (K − 1) /2 multiplications to the process, totaling

No,∞ =
1

4
K4 +

3

4
K2 − 1

2
K3 − 1

2
K (23)

arithmetic operations.

Putting all together, the total number of arithmetic operations required
for computing Dj using existing GA libraries is:

Ntotal = Ndet +No +N∞ +No,∞

= Γ (K + 1, 1) e +
1

4
K4 +

15

4
K2 − 1

2
K3 − 5

2
K − 2

(24)

additions/subtractions and multiplications. In Equation (24), Γ (a, z) is the
incomplete gamma function and e denotes the Euler number. Unfortunately,
this amount of operations is much larger than the 2/3K3 + 5/2K2 addi-
tions/subtractions and multiplications and K squared roots required by Co-
ope’s approach if, for example, the QR factors are calculated by Householder
transformations [6]. Figure 2 illustrates the growth in the number of oper-
ations as a function of K. However, it is essential to emphasize that this
complexity issue is not intrinsic to the GA. It is related to the way existing
libraries implement GA operations. Therefore, the search for other ways of
processing operations without compromising the high level of abstraction pro-
vided by GA is an interesting direction of investigation in Computer Science.
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Figure 2. Number or arithmetic operations evaluated while
computing the intersection of K hyperspheres using the
wedge product (thick) and Coope’s approach (dashed).
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5.2. Numerical Experiments

On this spot, numerical results w.r.t the implementation of CsymBP and
symBP are presented. The artificially-generated instances which are consid-
ered here are the so-called Lavor Instances, completely described in [18].

Two aspects are compared for both methods and for K = 3, 4, and 5 in
Table 1. We apply the CsymBP and symBP implementations and highlight
the number of points in each problem (|V |), the cardinality (|E|), the Mean
Distance Error (MDE), given by

MDE =
1

|E|
∑

(i,j)∈E

|2Xi ·Xj − di,j |
di,j

,

and the processing time (tP ), in seconds, considering smaller instances. On
the other hand, the comparisons displayed in Table 2 regards only dimension
K = 3 for larger instances.

Table 1. Data for KDMDGP with K = 3, 4, and 5, respec-
tively, for both algorithms.

K = 3 K = 4 K = 5

Algorithm |V | |E| MDE tP |E| MDE tP |E| MDE tP

CsymBP 10 45 5.3e−15 0.0013 35 1.5e−15 0.0046 42 8.4e−15 0.0055

symBP 10 45 1.6e−9 0.0001 35 5.9e−16 0.0002 42 7.0e−15 0.0003

CsymBP 20 126 9.8e−13 0.0024 124 8.2e−13 0.0057 99 2.1e−15 0.0077

symBP 20 126 2.8e−15 0.0003 124 6.2e−16 0.0006 99 6.7e−16 0.0003

CsymBP 30 195 3.2e−13 0.0099 204 5.0e−15 0.0155 225 8.4e−15 0.0199

symBP 30 195 3.3e−15 0.0003 204 2.2e−15 0.0004 225 3.1e−15 0.0006

CsymBP 50 438 1.2e−12 0.0100 847 8.9e−14 0.0143 322 5.8e−14 0.0292

symBP 50 438 1.0e−8 0.0008 847 3.6e−14 0.0007 322 1.2e−14 0.0009

CsymBP 70 1103 2.2e−12 0.0182 2310 1.4e−13 0.0280 875 5.1e−14 0.0465

symBP 70 1103 1.5e−8 0.0010 2310 6.7e−14 0.0015 875 1.5e−14 0.0016

CsymBP 100 1291 7.6e−12 0.0241 4779 2.9e−12 0.0340 4170 2.8e−13 0.0642

symBP 100 1291 2.9e−11 0.0015 4779 1.4e−12 0.0024 4170 1.9e−13 0.0035

Table 2. Data for KDMDGP with K = 3 for both algo-
rithms in instances with n = 500, . . . , 2000 atoms.

Algorithm |V | |E| MDE tP

CsymBP 500 8051 1.847398e−8 0.1118

symBP 500 8051 5.774382e−9 0.0361

CsymBP 700 11171 1.938936e−8 0.1625

symBP 700 11171 1.444638e−8 0.0164

CsymBP 1000 14093 3.909181e−7 0.2315

symBP 1000 14093 1.716101e−8 0.0263

CsymBP 2000 32802 4.328062e−6 0.4898

symBP 2000 32802 2.402945e−8 0.0786

It is worth noting that as the dimension of the space grows, the num-
ber of operations in the calculation of the sphere intersections will impact
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substantially on the total time, as highlighted in Section 5.1. In one hand,
CGA provides an elegant framework to express the geometric reasoning that
leads to problem-solving. On the other hand, existing computational tools
implementing Geometric Algebra are still not able to produce systems with
the same computational performance than traditional linear algebra tools
without the user having to intervene directly in the programming. It would
be helpful if, for example, geometric algebra libraries were able to identify
code snippets that represent expressions that could be evaluated by more
robust algorithms, such as the outer product of hyperspheres, even if they
will require mapping to matrices or tensors.

The global view of tests is presented by Figure 3.
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Figure 3. Comparing average processing time between
symBP and CsymBP in several dimensions.

6. Concluding Remarks and Future Works

In the present work, the Discretizable Molecular Distance Geometry Problem
for any finite dimension K with exact distance values is completely described
in Conformal Geometric Algebra terms, free from internal coordinates such
as angles between edges and between hyperplanes. It presented formulas that
translate the geometric meanings directly to algebraic expressions for branch-
ing, pruning, and for finding other solutions using symmetry skills.

In addition, an adaptation of the symmetry-driven Branch-and-Prune
(symBP) algorithm is proposed in order to check what would happen if all
characteristics of it could resemble in CGA. It was named CsymBP and
proved not to be as computationally efficient as the combination of the classic
symBP with the QR matrix-decomposition from Coope’s work [6].

Guiding the future-work track, authors would like to describe the interval-
distance case treatment using CGA, now, for a finite arbitrary dimension by
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relaxing some constraints to have imprecisions. The idea is to attempt to
make what Alves and Dorst performed in the case K = 3 [8, 16]. Also, a
numerical improvement for the CsymBP in the exact-case is pursued and
taking hybrid strategies into account is not discarded.
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