
A GPU-based Architecture for Parallel 

Image-aware Version Control

Jose Ricardo da Silva Junior Toni Pacheco

Esteban Clua Leonardo Murta

Instituto de Computação

Universidade Federal Fluminense



A GPU-based Architecture for Parallel Image-aware 
Version Control

Introduction

GPU processing

VCS operations

Results

Conclusion

Future works

Schedule

2



A GPU-based Architecture for Parallel Image-aware 
Version Control

Version control, nowadays, is considered a vital

component for supporting professional

software development.

Mainly based on files and directories.

Textual artifacts has a well established process.

Unfortunately, VCS for binary data are not yet 

well established.

Introduction

3



A GPU-based Architecture for Parallel Image-aware 
Version Control

Movie industry

Game Industry

Advertising Industry

Introduction

Normally, has more 

binary artifacts (sound, 

3d models, images) 
than textual artifacts 

So many projects are highly binary data intensive!



A GPU-based Architecture for Parallel Image-aware 
Version Control

Normally, to deal with binary data, two paths are 

used:

Store the binary data as a whole between each 
modification.

• Loose semantic information!

• Requires more storage space.

• No processing time.

Implement algorithms to deal with these binary artifacts.

• Allows more semantic for the end user.

• Requires more processing and time!

Introduction

5



A GPU-based Architecture for Parallel Image-aware 
Version Control

What has been changed between these two 

revisions?

Storing binary data as a whole

6

Revision 1 Revision 2



A GPU-based Architecture for Parallel Image-aware 
Version Control

Normally, state-based VCS, such as Git, saves binary

data without any delta information.

High network traffic in projects that uses a lot of binary 
artifacts!

Slow down operations of check –in and –out!

More disk space required.

Loose of productivity!

Storing binary data as a whole

7

Check-out



A GPU-based Architecture for Parallel Image-aware 
Version Control

Store delta information between binary artifacts.

Less disk space required.

Allows more semantic to be presented to user.

On the other hand, normally requires a lot more

processing during check-in and –out operations!

Semantic based algorithms

8

Check-out



A GPU-based Architecture for Parallel Image-aware 
Version Control

Semantic based algorithms

9

In order to process two single images for diff operation, as 

example:

Processing of 2.097.152 elements! 

Revision 1 Revision 2

H
e

ig
h

t:
 1

0
2

4

H
e

ig
h

t:
 1

0
2

4

Width: 1024Width: 1024

1.048.576 pixels 1.048.576 pixels 



A GPU-based Architecture for Parallel Image-aware 
Version Control

Semantic based algorithms

10

Normally, images are composed pixels of three (RGB) or four 

(RGBA) channels, for Red, Green, Blue and Alpha, requiring 

processing each channel, individually during VCS operation.



A GPU-based Architecture for Parallel Image-aware 
Version Control

Due to these observations, we are aimed to:

Give semantic information for image type artifacts;

Process as fast as possible diff, patch and merge operations 

during check-in and –out;

Use less space to store delta between revisions.

Using GPU due to problem characteristics (data 

independency).

Motivation

11

D
IF

F

M
E

R
G

E

P
A

T
C

H



A GPU-based Architecture for Parallel Image-aware 
Version Control

Aimed to locate differences between images

and save its delta.

Uses the XOR operation on each channel to find its 

delta.

Diff on IMUFF

12

C.At(x,y).R = A.At(x,y).R XOR B.At(x,y).R;

C.At(x,y).G = A.At(x,y).G XOR B.At(x,y).G;

C.At(x,y).B = A.At(x,y).B XOR B.At(x,y).B;

A B C

Diff =

Parallel



A GPU-based Architecture for Parallel Image-aware 
Version Control

As can be observed, most of our delta image is composed of 

black colors (zeros).

After compression, this delta leads to small size, requiring less storage

and network bandwidth.

Usually, small deltas are expected between two consecutives 
versions.

Gives the user a high semantic information of the modification.

Diff on IMUFF

13



A GPU-based Architecture for Parallel Image-aware 
Version Control

Aimed to reconstruct others revisions.

Like diff, uses the XOR operation on each channel 

to reconstruct a revision.

Patch on IMUFF

14

B.At(x,y).R = A.At(x,y).R XOR C.At(x,y).R;

B.At(x,y).G = A.At(x,y).G XOR C.At(x,y).G;

B.At(x,y).B = A.At(x,y).B XOR C.At(x,y).B;

A C B

Patch =

Parallel



A GPU-based Architecture for Parallel Image-aware 
Version Control

Some properties of XOR operation in IMUFF:

patch(A,C) = A if C is an empty delta

patch (A,C) = patch(C,A) = B

patch (A,C) = B and patch(B,C) = A

Patch on IMUFF

15

B.At(x,y).R = A.At(x,y).R XOR C.At(x,y).R;

B.At(x,y).G = A.At(x,y).G XOR C.At(x,y).G;

B.At(x,y).B = A.At(x,y).B XOR C.At(x,y).B;

B C A

Patch =

Parallel



A GPU-based Architecture for Parallel Image-aware 
Version Control

Performed to conciliate two revisions created 

in parallel.

Uses the previously diff and patch operations.

Merge on IMUFF

16

A"

B" D"

Changes 

A"

B" D"

Changes 

D
iff

 

C
"

A"

B" D"

Changes 

Patch 

C"

E"

1 2 



A GPU-based Architecture for Parallel Image-aware 
Version Control

Performed to conciliates two revisions created 

in parallel.

Merge on IMUFF

17

In case the same image area are changed, a 
conflict in generated, like a common line based 

VCS.

A 

B 

C=Diff(A,B) 

D 

E=Patch(D,C) 



A GPU-based Architecture for Parallel Image-aware 
Version Control

In order to perform these operations on IMUFF, a GUI is 

freely available at http://josericardojunior.com/imuff/.

Results

18

http://josericardojunior.com/imuff/


A GPU-based Architecture for Parallel Image-aware 
Version Control

Processing time:

Results

19

1"

10"

100"

1000"

10000"

512x512" 1024x1024" 2048x2048" 4096x4096"

T
im

e
%(
m
s)
%

Image%Size%

Image%Processing%Time%

CPU"Diff"

GPU"Diff"

CPU"Patch"

GPU"Patch"

CPU"Merge"

GPU"Merge"

*Using log10 scale.



A GPU-based Architecture for Parallel Image-aware 
Version Control

Comparison between storage for the whole 

binary data and our delta.

Results

20

0,44802&

3&
5,841752&

11,777958&

0,006655&

0,024877&

0,085436&
0,151375&

0,000001&

0,00001&

0,0001&

0,001&

0,01&

0,1&

1&

10&

100&

512x512& 1024x1024& 2048x2048& 4096x4096&

S
iz
e
%(
M
B
y
te
s)
%

Image%Size%

Storage%Space%

Original&

Delta&

*Using the “Where is Waldo” sample.

*Using log10 scale.



A GPU-based Architecture for Parallel Image-aware 
Version Control

Aligned images.

Reasonable for VCS as its track evolutions.

All evolutions must maintain the same image’s 

resolution.

Only work for PNG images.

Restrictions

21



A GPU-based Architecture for Parallel Image-aware 
Version Control

IMUFF is not a VCS as it.

Instead, provides infrastructure to allow any VCS to 

better work with images artifact.

We are planning to develop a plugin for Git and 

Subversion to deal with image artifacts.

Study how to work with movie artifacts.

Future Works

22



A GPU-based Architecture for Parallel Image-aware 
Version Control

Using GPU for VCS processing can speedup up 

to 55x CPU processing.

Working with delta for image artifacts can 

reduce greatly the space required to store it.

Using IMUFF gives the user sematic over its 

image artifacts.

Allow faster check-in and –out of image 

artifacts, also reducing network bandwidth for 

distributed VCS systems.

Conclusion

23



A GPU-based Architecture for Parallel 

Image-aware Version Control

Jose Ricardo da Silva Junior Toni Pacheco

Esteban Clua Leonardo Murta

Instituto de Computação

Universidade Federal Fluminense



A GPU-based Architecture for Parallel Image-aware 
Version Control

GPU (Graphics Processor Unit) is a massively

multi-threaded processor capable of perform
almost thousands of operations/second.

Using GPU for VCS operations

25

Presented in almost 
every personal 

computer! 



A GPU-based Architecture for Parallel Image-aware 
Version Control

Allows for heterogeneous environment.

Both GPU and CPU doing different tasks at the 

same time.

Using GPU for VCS operations

26

instruction

instruction

GPUCPU

Idle

Busy


