
Foundations

Leonardo Gresta Paulino Murta

leomurta@ic.uff.br



Configuration Item

• Hardware or software aggregation subject to configuration 

management 

• Examples:

– CM plan

– Requirement Engineering Process

– Requirements

– Models

– Source-code of component X

– Etc.

Leonardo Murta Foundations 2



Configuration Item

• The selection of CI should take into considerations basic design 

principles such as coupling and cohesion

• High coupling introduces complexity to the building process

– Many dependencies among CI

• Low cohesion introduces complexity to the development process

– Many developers working over the same CI 

• CM benefits from well defined architectures

Leonardo Murta Foundations 3



Leonardo Murta Foundations 4

Configuration Item

System

Module

Procedure

G
ra

n
u

la
rity

Coarse

Fine

Command Paragraph

Section

DocumentProgram

Perspective: Code Documentation

Line

File

Directory

To
o

l D
e

m
a

n
d

Lower

Higher



Derived Item

• A CI may be derived from other CI (source items)

• Example:

– Executable files are derived from the source code

– DB Schema is derived from class models

– Etc.

• CM Strategies

– Version control the derived items

– Document and version control the derivation process (script, tools, 

environment, etc.)

Leonardo Murta Foundations 5



Building

• Process that generates derived items from source items considering 

a target configuration

• Uses automated build scripts to describe the process

• Example:

– makefile,

– build.xml,

– pom.xml

• The build scripts are also subject to CM

Leonardo Murta Foundations 6



Version

• Different instances of the same CI

• Three types of Versions:

Leonardo Murta Foundations 7

Version

Revision Variant
Cooperation 

(draft)

(Conradi and Westfechtel 1998)



Revisions

Leonardo Murta Foundations 8

iMac generations (1998 – 2013)



Variants

Leonardo Murta Foundations 9

Hatchback

Coupe

Sedan

Honda Civic



Cooperation (draft versions)

Leonardo Murta Foundations 10

John’s workspace

Mary’s workspace

Peter’s workspace

Base version



Draft versions may be merged

Leonardo Murta Foundations 11

John’s workspace Mary’s workspace Peter’s workspace

Revisions



Conflicts may happen during merge

Leonardo Murta Foundations 12

John workspace Fred workspace

Revisions



2-way merge

Leonardo Murta Foundations 13

?



3-way merge

Leonardo Murta Foundations 14



Two other important operations…

… for storing, transferring, and comprehending versions

Leonardo Murta Foundations 15

Diff =

Patch =



What is (usually) subject to versioning?

Leonardo Murta Foundations 16

Directory File

FS Element

Binary File Text File Line



How is it (usually) versioned?

Leonardo Murta Foundations 17

Commit A Commit B

Commit C

Commit E

Commit D

Commit F

Commit
Autor

Committer

Message

Timestamp

FS Element
*

*
parents



Versions in the wild

• Multitude of revisions and variants altogether (set aside draft 

versions)

Leonardo Murta Foundations 18

History of Git



But, what are versions good for?

• Synchronizing teamwork

• Reproducing previous configurations

• Exploring possibilities

• Segregating developers

• Customizing products (SPL)

• Tracing bug introduction (bisect)

• Understanding evolution (MSR)

• Auditing changes (annotate)

• Etc.

Leonardo Murta Foundations 19



CM System

Leonardo Murta Foundations 20

Version 1

Version 2

Version 3

Version 4

Version 5



CM System

Leonardo Murta Foundations 21

Version 1

Version 2

Version 3

Version 4

Version 5

Version Control

Issue Tracking



CM System

Leonardo Murta Foundations 22

Version 1

Version 2

Version 3

Version 4

Version 5

Version Control

Issue Tracking



CM System

Leonardo Murta Foundations 23

CI

Version 

Control

Build and 

Release

Issue 

Tracking

Change Requests



Version Control

Leonardo Murta Foundations 24

Topology?

Workflows?

Storage?

Collaboration?

Query?

CI

Repository

C
h
e
c
k
-o
u
tC
h
e
c
k
-in



Topology

Leonardo Murta Configuration Management Foundations 25

Repository

Workspace

Centralized Distributed

ch
e

ck
-i

n
 /

 c
o

m
m

it

ch
e

ck-o
u

t / u
p

d
a

te

Repository

Workspacech
e

ck
-i

n

ch
e

ck-o
u

t / u
p

d
a

te

Repository

Workspace

clo
n

e
 / p

u
ll

p
u

sh



Workflows

• Peer-to-peer system may follow different workflows, according to

the project characteristics

– Individual

– Client-server

– Integration manager

– Dictator/Lieutenants

Leonardo Murta Foundations 26



Individual

Leonardo Murta Foundations 27



Client-server

Leonardo Murta Foundations 28



Integration manager

(fork + pull request)

Leonardo Murta Foundations 29



Dictator/Lieutenants

(cascade pull requests)

Leonardo Murta Foundations 30



Storage

Leonardo Murta Foundations 31

v.3

v.2

v.1

Complete

delta 1à2

v.1

Forward

delta 2à3

delta 3à2

v.3

Reverse

delta 2à1

In-line

v.1 v.2/3

v.1/2 v.3



c.1

Collaboration

Leonardo Murta Foundations 32

c.3

c.2

c.1

Pessimist

merge

Optimist Mixed

c.3
c.2

c.1

merge

c.3
c.2



Query

Leonardo Murta Foundations 33

Repository (version 1)

Artifact1 (version 1)

Artifact2 (version 1)

Artifact3 (version 1)

Repository (version 2)

Artifact1 (version 2)

Artifact2 (version 1)

Artifact3 (version 1)

Repository (version 0)

Repository (version 3)

Artifact1 (version 2)

Artifact2 (version 3)

Artifact3 (version 1)

Artifact4 (version 3)

Repository (version 4)

Artifact1 (version 4)

Artifact2 (version 3)

Artifact3 (version 4)

Artifact4 (version 3)

Artifact1

Version 1

Version 2

Version 4

Artifact2

Version 1

Version 3

Artifact3

Version 1

Version 4

Artifact4

Version 3

Query by artifact

1st change

2nd change

4th change3rd change



Query

Leonardo Murta Foundations 34

1st change

Artifact1 added

Artifact2 added

Artifact3 added

2nd change

Artifact1 changed

3rd change

Artifact2 changed

Artifact4 added

Query by change

4th change

Artifact1 changed

Artifact3 changed

Repository (version 1)

Artifact1 (version 1)

Artifact2 (version 1)

Artifact3 (version 1)

Repository (version 2)

Artifact1 (version 2)

Artifact2 (version 1)

Artifact3 (version 1)

Repository (version 0)

Repository (version 3)

Artifact1 (version 2)

Artifact2 (version 3)

Artifact3 (version 1)

Artifact4 (version 3)

Repository (version 4)

Artifact1 (version 4)

Artifact2 (version 3)

Artifact3 (version 4)

Artifact4 (version 3)

1st change

2nd change

4th change3rd change



Query

Leonardo Murta Foundations 35

Artifact1

Version 1

Version 2

Version 4

Change 4

Artifact1

Artifact3

Version

CI Change

*

1

*

1



Leonardo Murta Foundations 36

Configuration

• A set of CI versions where there is one and only one version per CI

• A configuration can be seen as a CI composed by other CI

• Examples

– System configuration

– Process configuration

– Module X configuration

– Requirements configuration

– Source-code configuration



Leonardo Murta Foundations 37

Configuration vs. version

Configuration

Version

Composite CI Atomic CI

CI

• Generically speaking

– The system S is composed by CI X, Y, and Z

• Concretely speaking

– The configuration 5 of system S is composed by version 2 of CI X, 

version 4 of CI Y, and version 6 of CI Z



Tag

• VCS usually register multiple configurations, but just few are of 

interest to the user

• Tags allow naming such configurations

• Names can be user to indicate versions, quality levels, etc.

Leonardo Murta Foundations 38

1.1

1.2

1.3

HelloWorld.java

1.1

1.2

1.3

Welcome.java

1.1

1.2

build.xml

1.1

1.2

User.java

REJECTED

ACCEPTED

Tags



Leonardo Murta Foundations 39

Configuration vs. version
Composite CI

Conf. 1

Conf. 2

Conf. 3

Atomic CI Atomic CI Atomic CI

V.1

V.2

V.3

V.4

V.1

V.2

V.1

V.2

V.3



Baseline

• “A specification or product that has been formally reviewed and 

agreed upon, that thereafter serves as the basis for further 

development, and that can be changed only through formal change 

control procedures” (IEEE 610.12, 1990).

• Baselines are created at the end of each development phase: 

analysis (functional), design (allocated), and coding (product)

• When is the correct moment for creating baselines?

– Control vs. Bureaucracy

Leonardo Murta Foundations 40



Leonardo Murta Foundations 41

Baseline

SE Tasks

CI

Formal

techinical

reviews

CI

changed

Change

Control
CI

CI

approved

checked-out

CI

stored

[Pressman, 1997] Baseline update process



Leonardo Murta Foundations 42

Baseline (levels of control)

Coordination and 

auditing
Control

Pre baseline:

•Informal

•Without request

•Without evaluation

•Without verification

•Agile

•Ad-hoc

Post baseline:

•Formal

•With request

•With evaluation

•With verification

•Bureaucratic

•Planned

Levels of control



Baseline (levels of control)

Requirement 1 Analysis Design
Baseline 1:

•An. Req. 1

Requirement 2 Analysis Design

Time

Req. Analysis Design Analysis Design Analysis Design

1 Inform. - Formal Inform. Formal Formal

2 - - Inform. - Formal Inform.

Baseline 2:

•An. Req. 1

•Ds. Req. 1

•An. Req. 2

Leonardo Murta Foundations 43



Release

• Noun: Version provided for a specific purpose

• Verb: Formal notification and distribution of a version (usually baseline)

• All release are versions, but not all versions are released

• Sometimes, releases may be developed in parallel due to time to market

• Examples

– Test release

– Staging release

– Product release

Leonardo Murta Foundations 44



Leonardo Murta Foundations 45

Tags naming releases

1.1

1.2

1.3

1.4

1.5

HelloWorld.java

1.1

1.2

1.3

1.4

1.5

Welcome.java

1.1

1.2

build.xml

1.1

1.2

1.3

User.java

1.0.0

1.0.1

1.1.0

1.6

Tags

HEAD



Branches

• Versions that deviate from the main development line

• Allow isolation to the development process

– Usually reintegrated to the main development line

– The reintegration sometimes is a difficult process

• Workspaces (CVCS) can be seen as a temporary branch

• Clones (DVCS) can be seen as repository forks that may lead to 

branches if parallel development occurs

Leonardo Murta Foundations 46



Leonardo Murta Foundations 47

Branch example

1.2

HelloWorld.java

1.2

Welcome.java

1.1

build.xml

1.1

Users.java

1.0.0

Tag

1.0.x

1.2.2.1 1.2.2.1 1.1.2.1 1.1.2.1

Branch

... ... ... ...



Merge

• Help on reintegrating

– Workspaces

– Branches

• It is necessary even when pessimistic concurrency control (lock) is in 

place, due to branches

• Automatic algorithms categories

– Generic (work with all programming languages)

– Language Specific (take into consideration the syntax and semantics of the 

programming language)

Leonardo Murta Foundations 48



Merge

• Types of generic merge algorithms

– 2-way merge

– 3-way merge

Leonardo Murta Foundations 49

X

Y

Z

W

Y

X or W?

Y

Z or nothing?

X

Y

Z

W

Y

X

Y

W

Y

Z



Merge

• Merge occurs for each CI in the branch

• All changes since the common ancestor are taken into consideration

Leonardo Murta Foundations 50

1.1 1.2 1.3 1.4 1.5HelloWorld.java

1.2.2.1 1.2.2.2

D2

D1

1.6

1.6 = 1.2 + D1 + D2



Merge

• Merge can be done incrementally

Leonardo Murta Foundations 51

1.2 1.3 1.4 1.5

HelloWorld.java

1.2.2.1 1.2.2.2

D2

D1

1.6 1.7 1.8

D3

1.2.2.3 1.2.2.4

D4



Merge

• Merge can be done incrementally

Leonardo Murta Foundations 52

1.2 1.3 1.4 1.5

HelloWorld.java

1.2.2.1 1.2.2.2

D2

D1

1.6 1.7 1.8

D3

1.9

1.2.2.3 1.2.2.4

D4

1.9 = 1.6 + D3 + D4



Conflicts

• Situations where it is not possible to perform automatic merge

• Types

– Physical (line of a file)

– Syntactic (elements of the file grammar)

– Semantic (dependencies among elements)

• Current tool support focus on the physical level!

• Examples of physical conflicts

– Parallel change in the same line

– Parallel change and deletion of the same line

– Parallel additions of lines in the same file region

Leonardo Murta Foundations 53



Leonardo Murta Foundations 54

Raw conflict demarcation



Leonardo Murta Foundations 55

IDE conflict resolution



References

• Leon A., “Software Configuration Management Handbook”, Artech 

House, 1st ed., 2004.

• Chacon S., “Pro Git”, 2nd ed., 2014.

Leonardo Murta Foundations 56



Foundations

Leonardo Gresta Paulino Murta

leomurta@ic.uff.br


