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Configuration Item

• Hardware or software aggregation subject to configuration 

management 

• Examples:

– CM plan

– Requirement Engineering Process

– Requirements

– Models

– Source-code of component X

– Etc.
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Configuration Item

• The selection of CI should take into considerations basic design 

principles such as coupling and cohesion

• High coupling introduces complexity to the building process

– Many dependencies among CI

• Low cohesion introduces complexity to the development process

– Many developers working over the same CI 

• CM benefits from well defined architectures
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Derived Item

• A CI may be derived from other CI (source items)

• Example:

– Executable files are derived from the source code

– DB Schema is derived from class models

– Etc.

• CM Strategies

– Version control the derived items

– Document and version control the derivation process (script, tools, 

environment, etc.)
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Building

• Process that generates derived items from source items considering 

a target configuration

• Uses automated build scripts to describe the process

• Example:

– makefile,

– build.xml,

– pom.xml

• The build scripts are also subject to CM
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Version

• Different instances of the same CI

• Three types of Versions:
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Revisions
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iMac generations (1998 – 2013)



Variants
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Cooperation (draft versions)
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Draft versions may be merged
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Conflicts may happen during merge
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2-way merge
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3-way merge
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Two other important operations…

… for storing, transferring, and comprehending versions
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Patch =



What is (usually) subject to versioning?
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How is it (usually) versioned?
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Versions in the wild

• Multitude of revisions and variants altogether (set aside draft 

versions)
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But, what are versions good for?

• Synchronizing teamwork

• Reproducing previous configurations

• Exploring possibilities

• Segregating developers

• Customizing products (SPL)

• Tracing bug introduction (bisect)

• Understanding evolution (MSR)

• Auditing changes (annotate)

• Etc.
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CM System
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CM System
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CM System
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CM System
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Version Control
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Topology
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Workflows

• Peer-to-peer system may follow different workflows, according to

the project characteristics

– Individual

– Client-server

– Integration manager

– Dictator/Lieutenants
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Individual
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Client-server
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Integration manager

(fork + pull request)
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Dictator/Lieutenants

(cascade pull requests)
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Storage
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c.1

Collaboration
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Query

Leonardo Murta Foundations 33

Repository (version 1)

Artifact1 (version 1)

Artifact2 (version 1)

Artifact3 (version 1)

Repository (version 2)

Artifact1 (version 2)

Artifact2 (version 1)

Artifact3 (version 1)

Repository (version 0)

Repository (version 3)

Artifact1 (version 2)

Artifact2 (version 3)

Artifact3 (version 1)

Artifact4 (version 3)

Repository (version 4)

Artifact1 (version 4)

Artifact2 (version 3)

Artifact3 (version 4)

Artifact4 (version 3)

Artifact1

Version 1

Version 2

Version 4

Artifact2

Version 1

Version 3

Artifact3

Version 1

Version 4

Artifact4

Version 3

Query by artifact

1st change

2nd change

4th change3rd change



Query
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Query
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Configuration

• A set of CI versions where there is one and only one version per CI

• A configuration can be seen as a CI composed by other CI

• Examples

– System configuration

– Process configuration

– Module X configuration

– Requirements configuration

– Source-code configuration
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Configuration vs. version

Configuration

Version

Composite CI Atomic CI

CI

• Generically speaking

– The system S is composed by CI X, Y, and Z

• Concretely speaking

– The configuration 5 of system S is composed by version 2 of CI X, 

version 4 of CI Y, and version 6 of CI Z



Tag

• VCS usually register multiple configurations, but just few are of 

interest to the user

• Tags allow naming such configurations

• Names can be user to indicate versions, quality levels, etc.
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Baseline

• “A specification or product that has been formally reviewed and 

agreed upon, that thereafter serves as the basis for further 

development, and that can be changed only through formal change 

control procedures” (IEEE 610.12, 1990).

• Baselines are created at the end of each development phase: 

analysis (functional), design (allocated), and coding (product)

• When is the correct moment for creating baselines?

– Control vs. Bureaucracy
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Baseline (levels of control)

Coordination and 

auditing
Control

Pre baseline:

•Informal

•Without request

•Without evaluation

•Without verification
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Baseline (levels of control)

Requirement 1 Analysis Design
Baseline 1:

•An. Req. 1

Requirement 2 Analysis Design

Time

Req. Analysis Design Analysis Design Analysis Design

1 Inform. - Formal Inform. Formal Formal

2 - - Inform. - Formal Inform.

Baseline 2:

•An. Req. 1

•Ds. Req. 1

•An. Req. 2
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Release

• Noun: Version provided for a specific purpose

• Verb: Formal notification and distribution of a version (usually baseline)

• All release are versions, but not all versions are released

• Sometimes, releases may be developed in parallel due to time to market

• Examples

– Test release

– Staging release

– Product release
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Tags naming releases
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Branches

• Versions that deviate from the main development line

• Allow isolation to the development process

– Usually reintegrated to the main development line

– The reintegration sometimes is a difficult process

• Workspaces (CVCS) can be seen as a temporary branch

• Clones (DVCS) can be seen as repository forks that may lead to 

branches if parallel development occurs
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Branch example
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... ... ... ...



Merge

• Help on reintegrating

– Workspaces

– Branches

• It is necessary even when pessimistic concurrency control (lock) is in 

place, due to branches

• Automatic algorithms categories

– Generic (work with all programming languages)

– Language Specific (take into consideration the syntax and semantics of the 

programming language)
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Merge

• Types of generic merge algorithms

– 2-way merge

– 3-way merge
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Merge

• Merge occurs for each CI in the branch

• All changes since the common ancestor are taken into consideration
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Merge

• Merge can be done incrementally

Leonardo Murta Foundations 51

1.2 1.3 1.4 1.5

HelloWorld.java

1.2.2.1 1.2.2.2

D2

D1

1.6 1.7 1.8

D3

1.2.2.3 1.2.2.4

D4



Merge

• Merge can be done incrementally
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Conflicts

• Situations where it is not possible to perform automatic merge

• Types

– Physical (line of a file)

– Syntactic (elements of the file grammar)

– Semantic (dependencies among elements)

• Current tool support focus on the physical level!

• Examples of physical conflicts

– Parallel change in the same line

– Parallel change and deletion of the same line

– Parallel additions of lines in the same file region
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Raw conflict demarcation
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IDE conflict resolution
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