
Diff

Leonardo Gresta Paulino Murta

leomurta@ic.uff.br

Exercise

• Conceive an algorithm for identifying the differences among two

files without a common ancestor (2-way diff)

Leonardo Murta Diff 2

A

B

C

D

E

F

A

C

D

E

G

F

Possible Solution

• Identify the longest common subsequence among both files

Leonardo Murta Diff 3

A

B

C

D

E

F

A

C

D

E

G

F

A

- B

C

D

E

+ G

F

Possible Solution

• Subtract the longest common sequence from both sides to identify

what was added/removed

Leonardo Murta Diff 4

However, how can we find the longest common

sequence?

• Possible solution:

– Generate all subsequences for one of the files

– Check, for each generated subsequence, if it is also a subsequence of the

other file

• Problem:

– Complexity = O(2nn)

Leonardo Murta Diff 5

LCS

• Problem characteristics

– Can be divided into subproblems

– The subproblems can repeat during recursion (leading to redundant

computation)

• LCS algorithm

– Longest Common Subsequence

– Used both in bioinformatics and diff program

– Adopts Dynamic Programming technique

– Complexity = O(n2)

Leonardo Murta Diff 6

LCS

• Considering the following sequences

– Xi = (x1, x2, ..., xi)

– Yj = (y1, y2, ..., yj)

• Algorithm

Leonardo Murta Diff 7

LCS Xi,Yj() =
Ø if i = 0 ∨ j = 0

LCS(Xi−1,Yj−1), xi() if xi = y j

longest LCS(Xi,Yj−1),LCS(Xi−1,Yj)() if xi ≠ y j

$

%

&
&

'

&
&

LCS

• It can be computed in a bottom-up fashion

– Using a matrix with all elements of one sequence in the line and all

elements of the other sequence in the column

– Computing line 1 and column 1, then line 2 and column 2, and so on

– Storing in each cell the length of the sequence and the path to the cells

that belong to the LCS

Leonardo Murta Diff 8

Longest Common Subsequence

line & column = 0

Leonardo Murta Diff 9

Ø A C D E G F

Ø 0 ← 0 ← 0 ← 0 ← 0 ← 0 ← 0

A ↑ 0

B ↑ 0

C ↑ 0

D ↑ 0

E ↑ 0

F ↑ 0

Longest Common Subsequence

line & column = 1

Leonardo Murta Diff 10

Ø A C D E G F

Ø 0 ← 0 ← 0 ← 0 ← 0 ← 0 ← 0

A ↑ 0 ↖ 1 ← 1 ← 1 ← 1 ← 1 ← 1

B ↑ 0 ↑ 1

C ↑ 0 ↑ 1

D ↑ 0 ↑ 1

E ↑ 0 ↑ 1

F ↑ 0 ↑ 1

Longest Common Subsequence

line & column = 2

Leonardo Murta Diff 11

Ø A C D E G F

Ø 0 ← 0 ← 0 ← 0 ← 0 ← 0 ← 0

A ↑ 0 ↖ 1 ← 1 ← 1 ← 1 ← 1 ← 1

B ↑ 0 ↑ 1 ← 1 ↑ ← 1 ↑ ← 1 ↑ ← 1 ↑ ← 1 ↑

C ↑ 0 ↑ 1 ↖ 2

D ↑ 0 ↑ 1 ↑ 2

E ↑ 0 ↑ 1 ↑ 2

F ↑ 0 ↑ 1 ↑ 2

Longest Common Subsequence

line & column = 3

Leonardo Murta Diff 12

Ø A C D E G F

Ø 0 ← 0 ← 0 ← 0 ← 0 ← 0 ← 0

A ↑ 0 ↖ 1 ← 1 ← 1 ← 1 ← 1 ← 1

B ↑ 0 ↑ 1 ← 1 ↑ ← 1 ↑ ← 1 ↑ ← 1 ↑ ← 1 ↑

C ↑ 0 ↑ 1 ↖ 2 ← 2 ← 2 ← 2 ← 2

D ↑ 0 ↑ 1 ↑ 2 ↖ 3

E ↑ 0 ↑ 1 ↑ 2 ↑ 3

F ↑ 0 ↑ 1 ↑ 2 ↑ 3

Longest Common Subsequence

line & column = 4

Leonardo Murta Diff 13

Ø A C D E G F

Ø 0 ← 0 ← 0 ← 0 ← 0 ← 0 ← 0

A ↑ 0 ↖ 1 ← 1 ← 1 ← 1 ← 1 ← 1

B ↑ 0 ↑ 1 ← 1 ↑ ← 1 ↑ ← 1 ↑ ← 1 ↑ ← 1 ↑

C ↑ 0 ↑ 1 ↖ 2 ← 2 ← 2 ← 2 ← 2

D ↑ 0 ↑ 1 ↑ 2 ↖ 3 ← 3 ← 3 ← 3

E ↑ 0 ↑ 1 ↑ 2 ↑ 3 ↖ 4

F ↑ 0 ↑ 1 ↑ 2 ↑ 3 ↑ 4

Longest Common Subsequence

line & column = 5

Leonardo Murta Diff 14

Ø A C D E G F

Ø 0 ← 0 ← 0 ← 0 ← 0 ← 0 ← 0

A ↑ 0 ↖ 1 ← 1 ← 1 ← 1 ← 1 ← 1

B ↑ 0 ↑ 1 ← 1 ↑ ← 1 ↑ ← 1 ↑ ← 1 ↑ ← 1 ↑

C ↑ 0 ↑ 1 ↖ 2 ← 2 ← 2 ← 2 ← 2

D ↑ 0 ↑ 1 ↑ 2 ↖ 3 ← 3 ← 3 ← 3

E ↑ 0 ↑ 1 ↑ 2 ↑ 3 ↖ 4 ← 4 ← 4

F ↑ 0 ↑ 1 ↑ 2 ↑ 3 ↑ 4 ← 4 ↑

Longest Common Subsequence

line & column = 6

Leonardo Murta Diff 15

Ø A C D E G F

Ø 0 ← 0 ← 0 ← 0 ← 0 ← 0 ← 0

A ↑ 0 ↖ 1 ← 1 ← 1 ← 1 ← 1 ← 1

B ↑ 0 ↑ 1 ← 1 ↑ ← 1 ↑ ← 1 ↑ ← 1 ↑ ← 1 ↑

C ↑ 0 ↑ 1 ↖ 2 ← 2 ← 2 ← 2 ← 2

D ↑ 0 ↑ 1 ↑ 2 ↖ 3 ← 3 ← 3 ← 3

E ↑ 0 ↑ 1 ↑ 2 ↑ 3 ↖ 4 ← 4 ← 4

F ↑ 0 ↑ 1 ↑ 2 ↑ 3 ↑ 4 ← 4 ↑ ↖ 5

Longest Common Subsequence

Leonardo Murta Diff 16

Ø A C D E G F

Ø 0 ← 0 ← 0 ← 0 ← 0 ← 0 ← 0

A ↑ 0 ↖ 1 ← 1 ← 1 ← 1 ← 1 ← 1

B ↑ 0 ↑ 1 ← 1 ↑ ← 1 ↑ ← 1 ↑ ← 1 ↑ ← 1 ↑

C ↑ 0 ↑ 1 ↖ 2 ← 2 ← 2 ← 2 ← 2

D ↑ 0 ↑ 1 ↑ 2 ↖ 3 ← 3 ← 3 ← 3

E ↑ 0 ↑ 1 ↑ 2 ↑ 3 ↖ 4 ← 4 ← 4

F ↑ 0 ↑ 1 ↑ 2 ↑ 3 ↑ 4 ← 4 ↑ ↖ 5

Improvements

• The first implementation of Unix Diff (Hunt & McIlroy, 1976) uses a

variation of this LCS algorithm

– ! " space complexity

– ! "!# $%& " time complexity

• The current implementation of Unix Diff (Miller & Myers, 1985)

does not fill the whole matrix

– ! " space complexity

– ! "#' time complexity, where d is the edit distance

Leonardo Murta Diff 17

Miller & Myers algorithm

• bootstrap: Add zeros to the diagonal while the symbols match

• While the lowermost and rightmost cell is empty

– Rule 1: For each filled cell, inserts its value added by one in the cell in the

right

– Rule 2: For each filled cell, inserts its value added by one in the cell in the

bottom

– Rule 3: For each filled cell, recursively inserts its value in the cell in the

diagonal (bottom right) if the symbols in the diagonal match

Leonardo Murta Diff 18

Shortest Edit Distance

d = 0: bootstrap

Leonardo Murta Diff 19

Ø A C D E G F

Ø 0

A ↖ 0

B

C

D

E

F

Shortest Edit Distance

d = 1: rule 1

Leonardo Murta Diff 20

Ø A C D E G F

Ø 0 ← 1

A ↖ 0 ← 1

B

C

D

E

F

Shortest Edit Distance

d = 1: rule 2

Leonardo Murta Diff 21

Ø A C D E G F

Ø 0 ← 1

A ↑ 1 ↖ 0 ← 1

B ↑ 1

C

D

E

F

Shortest Edit Distance

d = 1: rule 3

Leonardo Murta Diff 22

Ø A C D E G F

Ø 0 ← 1

A ↑ 1 ↖ 0 ← 1

B ↑ 1

C ↖ 1

D ↖ 1

E ↖ 1

F

Shortest Edit Distance

d = 2: rule 1

Leonardo Murta Diff 23

Ø A C D E G F

Ø 0 ← 1 ← 2

A ↑ 1 ↖ 0 ← 1 ← 2

B ↑ 1 ← 2

C ↖ 1 ← 2

D ↖ 1 ← 2

E ↖ 1 ← 2

F

Shortest Edit Distance

d = 2: rule 2

Leonardo Murta Diff 24

Ø A C D E G F

Ø 0 ← 1 ← 2

A ↑ 1 ↖ 0 ← 1 ← 2

B ↑ 2 ↑ 1 ← 2

C ↑ 2 ↖ 1 ← 2

D ↑ 2 ↖ 1 ← 2

E ↑ 2 ↖ 1 ← 2

F ↑ 2

Shortest Edit Distance

d = 2: rule 3

Leonardo Murta Diff 25

Ø A C D E G F

Ø 0 ← 1 ← 2

A ↑ 1 ↖ 0 ← 1 ← 2

B ↑ 2 ↑ 1 ← 2

C ↑ 2 ↖ 1 ← 2

D ↑ 2 ↖ 1 ← 2

E ↑ 2 ↖ 1 ← 2

F ↑ 2 ↖ 2

Shortest Edit Distance

Leonardo Murta Diff 26

Ø A C D E G F

Ø 0 ← 1 ← 2

A ↑ 1 ↖ 0 ← 1 ← 2

B ↑ 2 ↑ 1 ← 2

C ↑ 2 ↖ 1 ← 2

D ↑ 2 ↖ 1 ← 2

E ↑ 2 ↖ 1 ← 2

F ↑ 2 ↖ 2

Diff Algorithms in Git

• Myers
– Diff algorithm proposed by Myers with speed optimizations that may lead to a

non-minimal edit distance

• Minimal
– Myers with a guarantee of minimal edit distance

• Patience
– Just considers the unique lines in both files for computing the LCS, potentially

leading to a more precise result

• Histogram
– Extends the Patience algorithm to support low-occurrence common lines instead

of just unique lines, potentially leading to faster executions

Leonardo Murta Diff 27

References

• Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., 2001.

Introduction to Algorithms, 2nd ed., MIT Press.

• Hunt, J., McIlroy, M., “An Algorithm for Differential File

Comparison”, Bell Laboratories, 1976.

• Miller, W., Myers, E., “A File Comparison Program”, Software:

Practice and Experience, v. 15, n. 11, p. 1025-1040, 1985.

Leonardo Murta Diff 28

Diff

Leonardo Gresta Paulino Murta

leomurta@ic.uff.br

