Exploratory Data Analysis of Software Repositories via GPU Processing

Jose Ricardo Esteban Clua Leonardo Murta

Anita Sarma

Introduction

Introduction

- Software development leaves behind the activity logs for mining relationships
 - Commits in a version system
 - Tasks in a issue tracker
 - Communication
- Finding them is not a trivial task
 - There is an extensive amount of data to be analyzed
 - Data is typically stored across different repositories
- Creating the right query is not a trivial task

Related Work

- Several research try to help in project explorations:
 - Tesseract and CodeBook: interactive investigation among files, developers, and commits through a graph of relationships, providing answer for specific questions
 - Information Fragment: allows users to compose queries and views from tasks, change sets, etc. to explore relationships between entities

Problems

 Different approach focusing on a particular development aspect (confirmatory analysis)

– Allows exploration specific relationships set a priori

 Normally restrict the data to be analyzed in order to be feasible

• Most of them operate at a coarse grain (file)

Dominoes

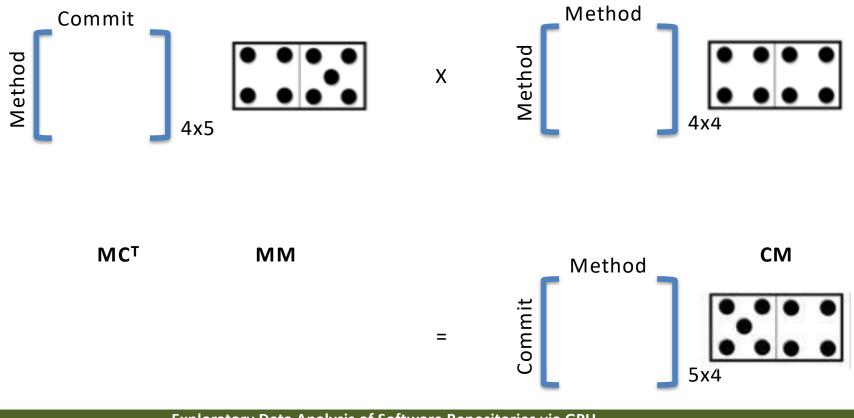
- Approach that enables interactive exploratory data analysis at varying levels of granularity using GPU
- Organizes data from software repositories into multiple matrices
 - Each matrix is treated as Dominoes tile
 - Tiles can be combined through operations to generate derived tiles
 - Transposition, multiplication, addition, ...

(

Dominoes

	Commit #	Developer	Description		
		Alice	Change type of function parameter to compute the radius (Circle) and how to render it (in Shape)		
Commit	C ₂	Carlos	Char ge the side of Cone and how to render it		
	C ₃	Alice	Char ge how a Shape is rendered		
	C ₄	Alice	Calc lation of how circumference and area are calculated using PI. Required modification on how o draw a Shape		
	C ₅	Bob	Mod fy-the-height calculation of a cylinder and how t is rendered		

Commit


	Commit #	Circle circumf(Cylinder area()	Cone area()	Shape draw()
pou	C1	1	1	0	1
Method	C_2	0	0	1	1
Σ	C ₃	0	4x5 ⁰	0	1
	$ C_4 $	1	1	1	1
_	C_5	0	1	0	1

Dominoes

 Dominoes' tiles resembles a Dominoes game, where the user can play with to build deeper relationships

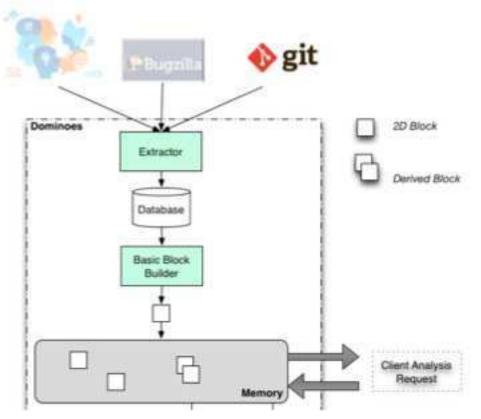
Dominoes Basic Building Tiles

- [class|method] (CIM): composition among class and method
- [commit|method] (CM): relationship between commits and methods
- [developer|commit] (DC): relationship between developers and their commits
- [bug|commit] (BC): relationship between commits and bugs

Dominoes Some Derived Building Tiles

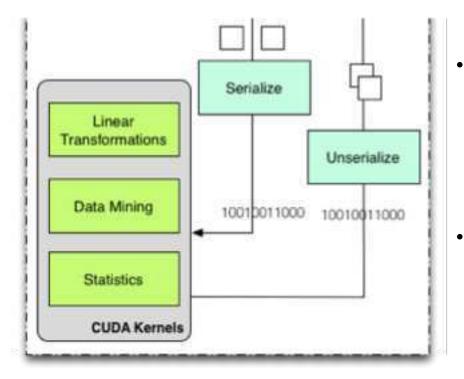
- [method|method] (MM = CM^T × CM): represents method dependencies
- [class|class] (CICI = CIM × MM × CIM^T): represents class dependencies
- Bug-Method (BM = BC × CM): represents the methods that were changed to fix each bug. This matrix could be used to identify which methods are "buggy"

Drawback


 Exploration of such relationships at fine-grain is more accurate, however requires huge amount of data to be processed

 Exploratory analysis operations are implemented over matrices using the GPU

Dominoes Architecture


• Extractor module gather information from repository and save to database

 Basic block builder is responsible to generate building blocks relationship from database

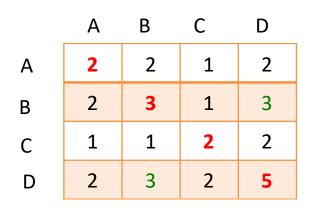
Dominoes Architecture

 Operations are performed in GPU using a Java Native Interface call

Derived and basic building block still in memory for future use

Dependencies

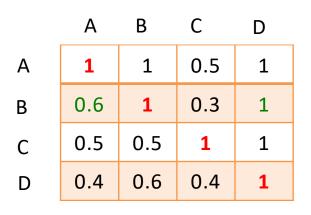
- Many questions depend upon finding dependencies against methods (MM (Method | Method tile) to be answered
- How to find methods dependencies?
 - Syntactic analysis
 - Semantic analysis


– Inference

Inference

- Based on how frequently files or methods were modified together
 - Support: proportion of transactions in the dataset that contains the item set

- Artifact **B** were modified with artifact **D** three times
- Transitive relationship
- $MM = CM^T \times CM$


Support

Inference

 Confidence: metric that defines how close a dataset should be modified together, given that a specific artifact is being modified.

Confidence

- Modifying artifact D implies modifying B with 100% of confidence
- However, modifying B implies modifying D with 60% of confidence

$$M^{conf}[i,j] = \frac{M^{sup}[i,j]}{M^{sup}[i,i]}$$

Results

- Using Apache Derby to evaluate Dominoes.
 - Repository data from 08/11/2004 to 01/23/2014
 - Evaluation regarding support imes confidence
 - Evaluation regarding time processing
 - Comprises:
 - 7,578 commits
 - 36 distinct developers
 - 34,335 file changes
 - 305,551 method changes

Support \times Confidence

- Top 5 logical dependencies in terms of support with biggest difference in confidence.
 - Interface/Implementation case

Artifact A	Artifact B	Support	Conf. (A- B)	Conf. (B-A)
DataDictionary.java	DataDictionaryImpl.java	79	88%	37%
DD_Version.java	DataDictionaryImpl.java	45	78%	21%
LanguageConnectionContex t.java	GenericLanguageConnect ionContext.java	44	86%	48%

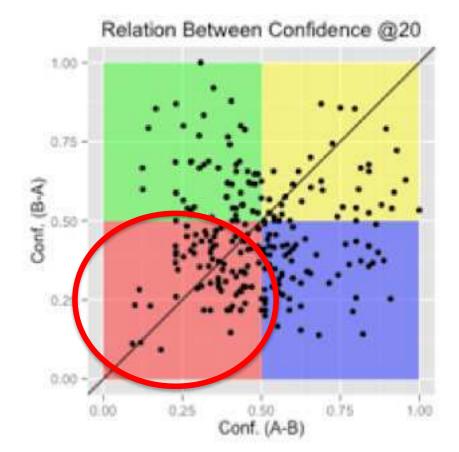
Support \times Confidence

• Top 5 logical dependencies in terms of support with biggest difference in confidence.

Composition case

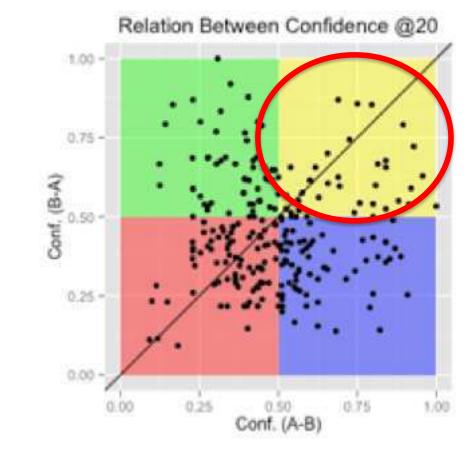
Artifact A	Artifact B	Support	Conf. (A-B)	Conf. (B-A)
DRDAConnThread.java	DRDAStatement.java	37	22%	68%

Support \times Confidence


- Top 5 logical dependencies in terms of support with biggest difference in confidence.
 - Class specialization case

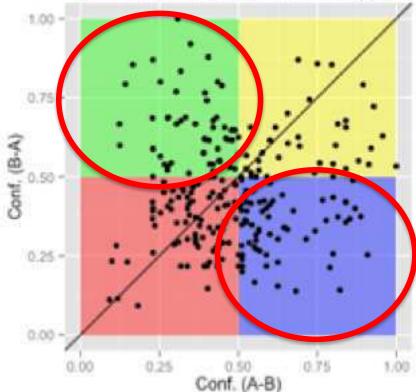
Artifact A	Artifact B	Support	Conf. (A-B)	Conf. (B-A)
ResultSetNode.java	SelectNode.java	36	54%	45%

Support X Confidence



Weak bidirectional dependencies (less than 0.5)

Support X Confidence


Strong bidirectional dependencies (above than 0.5)

Support X Confidence

Unidirectional dependencies with highest divergence among confidence

Time

- Evaluation time (support and confidence).
 - [file|commit] (34,335 x 7,578)
 - CPU: 696 minutes | GPU: 0.7 minutes
 - [method|commit] (305,551 x 7,578)
 - CPU: N/A | GPU: 5 minutes

NVidia GeForce GTX580. CPU Intel Core 2 Quad Q6600

Conclusions

- Dominoes is an exploratory tool that allows relationship manipulations
 - Basic and derived building block
- The use of support solely is not accurate
 - Need to identify the direction of relationships through confidence
- Using confidence for threshold is more natural as it represents normalized values

Conclusions

- Employment of GPU allows seamless relationship manipulations at interactive rates
 - Uses matrices underneath to represents building blocks
- Dominoes opens a new realm of exploratory software analysis, as endless combinations of Dominoes' pieces can be experimented in an exploratory fashion

Future Work

- Allow temporal analysis by considering time as third dimension (3D building tiles)
- Develop a GUI prototype
 - Provide real time visualizations for both basic and derived building tiles
- Apply Dominoes to answer different software engineering questions
 - Expertise depth imes breadth in a project

Exploratory Data Analysis of Software Repositories via GPU Processing

Jose Ricardo Esteban Clua Leonardo Murta

Anita Sarma

