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Abstract

It is well known that a clique with k + 1 vertices is the only minimal obstruction to k-colourability of chordal graphs. A similar
result is known for the existence of a cover by � cliques. Both of these problems are in fact partition problems, restricted to chordal
graphs. The first seeks partitions into k independent sets, and the second is equivalent to finding partitions into � cliques. In an
earlier paper we proved that a chordal graph can be partitioned into k independent sets and � cliques if and only if it does not contain
an induced disjoint union of � + 1 cliques of size k + 1. (A linear time algorithm for finding such partitions can be derived from
the proof.)

In this paper we expand our focus and consider more general partitions of chordal graphs. For each symmetric matrix M over
0, 1, ∗, the M-partition problem seeks a partition of the input graph into independent sets, cliques, or arbitrary sets, with certain pairs
of sets being required to have no edges, or to have all edges joining them, as encoded in the matrix M . Moreover, the vertices of the
input chordal graph can be equipped with lists, restricting the parts to which a vertex can be placed. Such (list) partitions generalize
(list) colourings and (list) homomorphisms, and arise frequently in the theory of graph perfection. We show that many M-partition
problems that are NP-complete in general become solvable in polynomial time for chordal graphs, even in the presence of lists. On
the other hand, we show that there are M-partition problems (without lists) that remain NP-complete for chordal graphs. It is not
known whether or not each list M-partition problem is NP-complete or polynomial, but it has been shown that each is NP-complete
or quasi-polynomial (nO(log n)). For chordal graphs even this ‘quasi-dichotomy’ is not known, but we do identify large families of
matrices M for which dichotomy, or at least quasi-dichotomy, holds.

We also discuss forbidden subgraph characterizations of graphs admitting an M-partition. Such characterizations have recently
been investigated for partitions of perfect graphs, and we focus on highlighting the improvements one can obtain for the class of
chordal, rather than just perfect, graphs.
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1. Introduction

The M-partition problem was introduced in [13,14]. Let M be a fixed symmetric m × m matrix with entries
M(i, j) ∈ {0, 1, ∗}. An M-partition of an input graph G is a partition of vertices in G into m parts, corresponding to
the rows (and columns) of the matrix M , such that for distinct vertices x and y of the graph G, placed in parts i and j

(possibly with i = j ), respectively, we have the following:
• if M(i, j) = 0, then xy is not an edge of G;
• if M(i, j) = 1, then xy is an edge of G.
(If M(i, j) = ∗, then xy may or may not be an edge in G.)

Note that the diagonal entries of M describe the parts of an M-partition (M(i, i) = 0 means the ith part is independent,
M(i, i) = 1 means the ith part is a clique, and M(i, i) = ∗ means there is no restriction on the ith part), while the
off-diagonal entries of M describe the connections between the parts (M(i, j) = 0 means there are no edges between
the ith and j th parts, M(i, j) = 1 means there are all edges between them, and M(i, j) = ∗ means there is no
restriction).

The list M-partition problem assumes that the input graph G is equipped with a collection of lists L(x), x ∈ V (G),

each list being a set of parts. A list M-partition of such input graph G with lists L(x), x ∈ V (G), is an M-partition of
G, such that each vertex x of G is placed in a part i ∈ L(x).

The complementary matrix to a matrix M is the matrix M ′ obtained from M by replacing all 0’s by 1’s and
conversely. The M-partition and M ′-partition problems are equivalent, since a graph G is M-partitionable if and only

if its complement G is M ′-partitionable, and similarly for the list M-partition and list M ′-partition problems. (We
note, however, that chordal graphs are not closed under complementation, so the chordal restrictions of these problems,
introduced below, are not equivalent.)

Suppose H is a graph with m vertices and M is obtained from the adjacency matrix of H by replacing each
1 by ∗. Then each homomorphism (edge-preserving vertex mapping) f of G to H corresponds to an M-partition
of G, where the parts are f −1(h), h ∈ V (H). In particular, when H = Km, the matrix M is the matrix with all
diagonal entries 0 and all off-diagonal entries ∗, and an M-partition of G is simply an m-colouring of G. Thus
M-partitions generalize colourings and homomorphisms, and list M-partitions generalize list-colourings and list-
homomorphisms [12,22].

With this in mind, we may define a trigraph H to consists of a set of vertices, any two of which may either form
a non-edge, a weak edge, or a strong edge. The adjacency matrix of a trigraph H with m vertices is the symmetric
m × m matrix M , with rows (and columns) indexed by the vertices of H , which has M(i, j) = 0 if ij is a non-edge,
M(i, j) = ∗ if ij is a weak edge, and M(i, j) = 1 if ij is a strong edge. A homomorphism of a graph G to a trigraph H

is a mapping f of the vertices of G to the vertices of H such that the partition formed by parts f −1(h), over all vertices
h of H , is an M-partition of G. This point of view is further explored in [18,22].

List matrix partitions are also useful in unifying many partition problems arising in the study of perfect graphs.
Often these problems are not stated in terms of partitions, but are in fact equivalent to partition problems. For instance,
it is evident that G is a split graph (admits a partition into a stable set and a clique [19]), if and only if it admits an
M-partition where M is the matrix(

0 ∗
∗ 1

)
.

Less obviously, a graph G has a clique cutset [25,27], if it admits an M-partition, into non-empty parts, where M is the
matrix⎛

⎜⎝
1 ∗ ∗
∗ ∗ 0

∗ 0 ∗

⎞
⎟⎠ .

A similar approach allows us to model by M-partitions problems such as having an independent cutset [26], a skew
cutset [6,7], a homogeneous set [23], or being a join of various kinds [5]. These connections are explored in more
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detail in [14,22], where it is in particular explained how to model restrictions on the size of the parts (for instance
requiring parts to be non-empty) by introducing lists. Lists are especially useful because they allow recursing to smaller
subproblems; thus the introduction of lists resulted in the solution of certain M-partition problems that were previously
open [4,6,7], cf. [22].

In [13,14] the authors have given polynomial time algorithms for many list M-partition problems, and quasi-
polynomial (nO(log n)) time algorithms for certain others. In [9] the authors have shown that all list M-partition problems
are solvable in quasi-polynomial time, or are NP-complete. We call such a result a quasi-dichotomy. Many of our quasi-
polynomial time algorithms from [14] were improved to polynomial time algorithms in [4,7], but it is not known
whether all list M-partition problems are polynomial time solvable or NP-complete, even for matrices of size four
[4,17]. This is known as the Dichotomy Problem for list M-partitions [9,22].

Recall that a graph is called chordal if it does not have an induced cycle of length greater than three. Equivalently
[19], a graph is chordal if and only if its vertices can be enumerated as v, v2, . . . , vn so that any two neighbours vj , vk

of a vi with i < j, i < k are adjacent; such an enumeration is called a perfect elimination ordering. A graph G is called
perfect if G and all its induced subgraphs have chromatic number equal to their maximum clique size. It is known that
each chordal graph is perfect [19].

In this paper, we consider the restrictions of both the M-partition and the list M-partition problems to chordal input
graphs G. We call these restricted problems the chordal M-partition and chordal list M-partition problems. (Clearly,
the chordal M-partition problem is a restriction of the chordal list M-partition problem.) A preliminary version with
some of these results has appeared in [15].

There are several classical examples to suggest that M-partitions of chordal graphs can be found in polynomial time.
For instance, k-colourability of chordal graphs (M is the k × k matrix with 0 on the diagonal and ∗ everywhere else)
can be decided in time O(m + n) using a perfect elimination ordering [19]; in fact, the algorithm either produces a
k-colouring of the input graph or produces the unique forbidden subgraph Kk+1. A similar result is known about clique
covering (M is the � × � matrix with 1 on the diagonal and ∗ elsewhere). In [20,21] we have given, more generally, a
linear time recognition algorithm, and a forbidden subgraph characterization, of chordal graphs that can be partitioned
into k independent sets and � cliques (M has k zeros and � ones on the diagonal, ∗ everywhere else). Partionability
into k independent sets and � cliques has first been studied by [2], and is a natural generalization of the problem of
recognizing split graphs (cf. also [3]). This partition problem is NP-complete for graphs in general, unless k�2 and
��2, and polynomial time solvable in these cases [2,13,14]. (Split graphs have k = � = 1.)

We now expand our attention to the general M-partition and list M-partition problems for chordal graphs. We
find many classes of matrices M for which these problems can be solved in polynomial time for chordal graphs.
However, we also find M-partition problems that remain NP-complete for chordal graphs, even in the absence of
lists. Certain dichotomy and quasi-dichotomy results will also be proved. Finally, we will discuss forbidden subgraph
characterizations of M-partitionability.

We focus on a particular kind of matrices M . For the most part, they will be matrices without ∗ on the diagonal. Note
that the M-partition problem without lists is trivial if M contains a diagonal ∗, as all vertices of the input graph G can
be placed to the corresponding (unrestricted) part. If M is a matrix without diagonal ∗, we may simultaneously permute
its rows and columns so the diagonal has first k zeros and then � ones (with k + � = m). Thus M consists of a k × k

diagonal matrix A with zero diagonal, and an � × � diagonal matrix B with a diagonal of ones, and an off-diagonal
k × � matrix C (and its � × k transpose). In this case, we say that M is an (A, B, C)-block matrix. In one exceptional
case, we shall also admit the diagonal to contain ∗’s, both in the diagonal block A, and the diagonal block B. We will
indicate this by calling the matrix M an (A, B, C)-block matrix with diagonal ∗’s allowed. (Of course any M can be
put in the form of an (A, B, C)-block matrix with diagonal ∗’s allowed, by simultaneous row/column permutations; but
we will still find this terminology useful.) In the last section, we shall consider a further restriction. Let E(A) denote
the set of entries (0, 1, or ∗) which appear in the off-diagonal positions of A, let E(B) be the set of all entries which
appear in the off-diagonal positions of B, and let E(C) be the set of all entries which appear in C. We shall say that a
subset of {0, 1, ∗} is normal if it does not contain both an ∗ and another element. Thus every normal set is either {∗}
or a subset of {0, 1}. We shall say that a matrix M is normal if all of E(A), E(B), E(C) are normal sets. Note that a
matrix in which E(A), E(B), E(C) are all singletons, say {a}, {b}, {c}, respectively, is always normal. Such a matrix
will be called an (a, b, c)-block matrix.

A final bit of general notation: If S, T are sets of parts for an m by m matrix M (i.e., subsets of {1, 2, . . . , m}),
we denote by M(S, T ) the set of all entries (0, 1, ∗) which occur as M(s, t), s ∈ S, t ∈ T .
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2. Algorithms for chordal list matrix partitions

Consider first the case when M is a k × k matrix with zero diagonal, i.e., when M is an (A, B, C)-block matrix with
� = 0.

Theorem 2.1. If all diagonal entries of M are zero, then the chordal list M-partition problem can be solved in time
O(nk(2k)k), linear in n.

Proof. A chordal graph G which admits an M-partition with such a matrix M cannot have a clique with k +1 vertices;
hence it must have treewidth at most k − 1. We can test whether G has treewidth at most k − 1 in polynomial time,
since k is fixed. For graphs of bounded treewidth, the existence of a list M-partition can be tested by standard dynamic
programming techniques [1,8,24]. Recall that a tree decomposition of a graph G is a pair (X, U) where U is a tree and
X = (Xi)i∈V (U) is a collection of subsets of V (G) whose union equals V (G), such that each edge xy of G is included
in some Xi , and such that for each vertex x of G, the set of all Xi containing x forms a subtree of U . The treewidth
of a decomposition is the maximum value of |Xi | − 1, and the treewidth of a graph is the minimum treewidth of a
decomposition.

A tree decomposition in which U has a fixed root r is called nice [1] if each node of the rooted tree U has at most two
children, and the following conditions are satisfied: If i has two children (a join node), say j and h, then Xi = Xj = Xh;
if i has one child j then Xi is obtained from Xj by adding (an introduce node) or deleting (a forget node) a single
vertex of G, and if |Xi | = 1 for each leaf (start node) i of U . It is known that, for a chordal graph of treewidth k − 1,
a nice tree decomposition, also of treewidth k − 1, can be obtained in linear time [1].

Given a nice tree decomposition (X, U) of G with root r , we denote by Gi the subgraph of G induced by the union
of Xi and all Xj where j is a descendant of i. Let F(i) be the set of all pairs (�, S), where � is an assignment of the
vertices in Xi to parts, obtained by restricting a list M-partition � of Gi , and S is the set of those parts in the partition
� which contain vertices of Gi − Xi . Note that each F(i) has at most kk2k elements.

We can compute the set F(i) for any node, once all its descendants j have had their values F(j) calculated. This
is not hard to see, considered separately the start, introduce, forget, and join nodes. For instance, suppose i is a forget
node, with the unique child j , and Xi = Xj − x. For each (�, S) ∈ F(j) we add to F(i) the pair (�′, S′), where
�′ is � restricted to Xi and S′ equals either S, if the part a that x was assigned in � was already present in S, or
equals S ∪ a. On the other hand, if i is an introduce node, with the unique child j and Xj = Xi − x, then for each
(�, S) ∈ F(j) we consider all possible values x can take with the current assignment �, because of the adjacencies
of x in Xj , and also because of the non-adjacencies of x in Gi − Xi ; it is for this purpose that we keep track of the
set S.

The above proof yields in fact an algorithm for the list M-partition problem for graphs of treewidth at most k − 1,
of complexity O(nk(2k)k). (The complexity analysis is easily adapted from that of [8].) Recall that M , and hence k, is
fixed, so this is a linear time algorithm. (A similar remark applies to the other algorithms in this paper.) �

We next consider the case when M is an � × � matrix with all diagonal entries 1, i.e., an (A, B, C)-block matrix
with k = 0. Let G be a chordal graph with lists L(x), x ∈ V (G). A rectangle in G is a collection of sublists
Lx ⊆ L(x), x ∈ V (G), such that any choice of parts from Lx for each x constitutes a list M-partition of G. Note that
a rectangle can be the empty set.

Theorem 2.2. Let M be an (A, B, C)-block matrix with k = 0, and G a chordal graph with lists L(x), x ∈ V (G). The
set of all list M-partitions of G is the union of n2� rectangles, and can be found in time O(n2�+d), for some constant
d. Thus the chordal list M-partition problem can be solved in polynomial time.

Proof. Consider a perfect elimination ordering � of the graph G, and a particular list M-partition of G. Let the ith part
be non-empty, and let xi, yi denote the first and last vertices, in the ordering �, which belong to the ith part. (Note that
xi = yi is possible, if the i-part consist of a single vertex.) Thus for each i we can choose the i-part to be empty, or to
have just one vertex, or to have the first vertex xi and the last vertex yi ; altogether 1 + n + (

n
2

)
choices. We simplify

this to 1 + n
(
n
2

)
�n2, since we may take n > 1. We shall show that each such choice, for i = 1, . . . , �, corresponds to

a rectangle of M-partitions.
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For all empty parts i, we remove i from the lists of all vertices. For all other parts i, we have pairs xi, yi (possibly
equal): we remove part i from the list of any vertex that occurs either before xi or after yi in the ordering �. We also
remove from the list of each vertex z those parts j which are forbidden by the adjacency or non-adjacency of z to the
vertices xi, yi . That is, we remove from L(z) the part j if there is an edge zxi or an edge zyi in G and M(i, j) = 0,
or if there is no edge zxi or no edge zyi in G and M(i, j) = 1. We denote the remaining sublists of L(x) by Lx and
claim they form a rectangle, i.e., that any assignment of parts from the lists Lx consitutes an M-partition of G. Indeed,
suppose that adjacent vertices z, t were assigned parts i, j , respectively, but M(i, j) = 0. Say z occurs before t in the
perfect elimination ordering. Then z is adjacent to yi , since M(i, i) = 1. Thus yi and t are both neighbours of z, and
both occur after z, so yi is adjacent to t by the definition of a perfect elimination ordering. Since M(i, j) = 0, part j

would have been removed from the list of t , a contradiction. On the other hand, suppose non-adjacent vertices z, t were
assigned parts i, j , respectively, but M(i, j) = 1. Say z occurs before t . Then xi is adjacent to z since M(i, i) = 1.
Also xi is adjacent to t since M(i, j) = 1. Thus xi is adjacent to both zi and zj , and both occur after xi , so z is adjacent
to t by the definition of a perfect elimination ordering, a contradiction. �

Feder et al. [13,14] introduced the following technique. Let A and B be two classes of graphs that are closed under
taking induced subgraphs, and for which membership can be tested in polynomial time. Suppose further that there
exists a constant c such that any graph both in A and in B has at most c vertices. Consider the problem of partitioning
the vertices of a graph G into two induced subgraphs GA and GB so that GA is in A and GB is in B. It is shown in
[13,14] that there are at most n2c such partitions, and that all such partitions can be found in polynomial time.

We shall apply this technique to chordal list M-partition problems for certain (A, B, C)-block matrices M . Consider
first the case when all entries of the block C are ∗’s. Let A denote the class of chordal graphs that admit an A-partition,
and let B denote the class of chordal graphs that admit a B-partition. Clearly, both these classes are closed under taking
induced subgraphs. Furthermore, the membership problems for A, B, i.e., the chordal A-partition and B-partition
problems are polynomial time solvable by Theorems 2.1 and 2.2, respectively. Finally, we note that a graph in A is
k-colourable, and a graph in B can be covered by � cliques. Thus a graph in both A and B can be covered by � cliques,
each of size at most k, and hence has at most c = k� vertices. Since C has all entries ∗, a chordal graph G admits an
M-partition if and only if it can be partitioned into induced subgraphs GA and GB where GA is in A (i.e., GA admits
an A-partition), and GB is in B (i.e., GB admits a B-partition). The above result from [13,14] assures that the chordal
list M-partition problem can be solved in polynomial time, in this case.

More generally, using the same technique, we shall solve the chordal list M-partition problem for (A, B, C)-block
matrices, in which C has the following special form: Call a matrix C crossed if each non-∗ entry belongs to a row or a
column of non-∗ entries. (We remark that this notion of a crossed matrix generalizes that given in [15], and hence our
Theorem 2.3 is significantly more general than the result in [15].)

Theorem 2.3. Suppose M is an (A, B, C)-block matrix.
If C is crossed, then the chordal list M-partition can be solved in time polynomial in n.

Proof. Recall that c = k�. For each of the at most n2c choices for a partition of G into induced subgraphs GA, GB

where GA admits an A-partition and GB admits a B-partition, we choose at most one vertex of GA for each part in A

(a representative of the part), and at most one vertex of GB for each part in B. This choice of representatives involves
at most (n + 1)k+� additional possibilities (some parts may be left empty), still a number of choices polynomial in n.
Now we modify the lists of vertices in G as follows: Vertices of GA have all parts from B removed from their lists, and
similarly vertices of GB have all parts from A removed from their lists. If a part i was chosen empty, we remove i from
all the lists. On the other hand, suppose a vertex x was chosen to represent part i. We remove all elements different
from i from the list of x; we also remove from the list of any vertex non-adjacent to x all parts j such that M(i, j) = 0,
and remove from the list of any vertex non-adjacent to x all j such that M(i, j) = 1. If furthermore all entries in row i

of the matrix C are non-∗’s, we let J0 denote the set of parts j in B such that C(i, j) = 0, and let J1 denote the set of
parts j in B such that C(i, j) = 1. All vertices of GB adjacent to x have all parts in J0 removed from their lists, and
all vertices of GB nonadjacent to x have all parts from J1 removed from their lists. (At this point each list is contained
in J0 or J1.) Moreover, we remove i from the list of any vertex in GA for which either some neighbour in GB has its
list contained in J0, or some non-neighbour has its list contained in J1. We proceed similarly if all entries in column j

of C are non-∗’s, reversing the roles of A and B, and rows and columns. Since C is crossed, we have now reflected all
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constraints between parts GA and GB in the lists, i.e., there exists a list M-partition of G (with the modified lists) if
and only if there is a list M∗-partition of G (with the same modified lists), where M∗ is obtained from M by replacing
all entries of C by ∗. This is the problem solved above the theorem. �

In the special case when C has all rows the same, the complexity can be improved to n2�+O(1)(2k)k . We proceed
as in the proof of Theorem 2.2, fixing a perfect elimination ordering of G, choosing � pairs xi, yi for the parts i, and
removing parts from lists of vertices they cannot be placed in, as explained there. Exactly as in that proof, it follows
that any assignment of vertices to remaining parts of B on their lists, is a list B-partition. Each vertex x for which the
remaining list Lx only contains parts of A, will be assigned to GA (which concrete part it will be assigned to will be
decided later). We then remove from the list of each neighbour of x in GB all parts j such that the j th column of C

consists of 0’s, and remove from the list of each non-neighbour of x in GB all parts j such that the j th column of C

consists of 1’s. (Note that the columns of C are constant, since all the rows of C are the same.) At this point, we may
have created more vertices x with lists containing only parts of A, and we repeat the process, as long as possible. Since
each iteration decides to place at least one vertex in GA, we only repeat this process at most n times, and the procedure
takes only polynomial time. At the end, we solve the list A-partition problem for GA, in time O(nk(2k)k).

More generally, we have the following result:

Theorem 2.4. Suppose M is an (A, B, C)-block matrix in which A and B themselves consist of diagonal blocks Ai

and Bj , respectively, with C being partitioned correspondingly into blocks Ci,j .
If all entries of A outside of the diagonal blocks Ai are 1, all entries of B outside of the diagonal blocks are zero,

and all block matrices Ci,j are crossed, then the chordal list M-partition problem can be solved in time polynomial
in n.

Proof. Since GB does not have an independent set of size � + 1, it follows that GB has at most � components. Each
component must be placed in a single Bi . If there are q diagonal blocks Bi , then there are at most �q ways of choosing
which component is placed in which GBi

. Similarly, the complement GA does not have an independent set of size
k + 1, so GA has at most k components, each of which is placed to a single Ai . If there are p blocks Ai , then there
are at most kp ways of choosing which component is placed in which GAi

. The problem is thus reduced, after �qkp

choices, to a problem involving just a single Ai , a single Bj , and Cij , which is solved as in the previous theorem. �

3. Dichotomies for list matrix partitions

In the previous section we have seen general classes of matrices M for which the chordal list M-partition problems
are polynomial time solvable. In this section we examine some cases of NP-complete chordal list M-partition problems.
(There are even NP-complete chordal M-partition problems without lists, as we show in the next section.)

It is not known whether or not every chordal list M-partition problem is polynomial time solvable or NP-complete.
Such dichotomy is not known for general list M-partition problems either, even for matrices of size four [4], and is
referred to as the Dichotomy Problem for list M-partitions. In [12] (see [14]), dichotomy is shown for matrices M

which have no 1’s, or have no 0’s, or have no ∗’s. In [9], the authors prove a quasi-dichotomy of all list M-partition
problems, i.e., prove that for each matrix M the list M-partition problem is solvable in quasi-polynomial time (time
nO(log n)) or is NP-complete.

More generally, we have the following theorem [9]. Suppose M is a fixed m by m matrix, and we also fix a set � of
subsets of {1, 2, . . . , m} which is closed under taking subsets (i.e., if L ∈ �, L′ ⊆ L, then L′ ∈ �). The �-restricted
list M-partition problem is a restriction of the list M-partition problem to instances which are graphs G with lists that
are elements of �. We further say that a matrix M is �-compatible if the sets M(L, L′) for L, L′ in � never contain
both 0 and 1.

Theorem 3.1 (Feder and Hell [9]). Each �-restricted list M-partition problem is NP-complete or solvable in quasi-
polynomial time.

Moreover, if M is �-compatible, then the �-restricted list M-partition problem is NP-complete or solvable in
polynomial time.
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We first explain how to obtain an NP-complete chordal list M-partition problem. Let H be a fixed graph, and let
M be obtained from the adjacency matrix of H by replacing all 1’s with ∗’s. Recall from the Introduction that list
homomorphisms of G to H can be viewed as list M-partitions of G. A list homomorphism of G to H is also called a
list H -colouring of G. The list H -colouring problem asks whether or not a given G has a list H -colouring. Thus the
list H -colouring problem is equivalent to the list M-partition problem.

When H is bipartite, we may assume that the input G is also bipartite, and that white vertices of G have lists consisting
of white vertices of H , and similarly for black vertices. The matrix M obtained as above is an block matrix, with a
zero diagonal block matrix X corresponding to the white vertices of H , a zero diagonal block matrix Y corresponding
to the black vertices of H , and the off-diagonal matrix Z, whose rows correspond to the white vertices and columns to
the black vertices of H . The (i, j)th entry of Z is ∗ if the white vertex i and the black vertex j are adjacent in H , and
is 0 otherwise. We call this matrix Z the matrix corresponding to H .

For bipartite graphs H , Feder et al. [11] showed that the list H -colouring problem is polynomial time solvable if H

is the complement of a circular arc graph (we shall say that in this case H is a a cocircular graph), and is NP-complete
otherwise. Based on this result, it will be possible to find NP-complete chordal list M-partition problems.

Theorem 3.2. Let M be an (A, B, C)-block matrix, with diagonal ∗’s allowed. Let H be a bipartite graph that is not
cocircular, and let Z be the matrix corresponding to H .

If A does not contain any 1’s, B does not contain any 0’s, and C is the matrix Z or its complementary matrix, then
the chordal list M-partition problem is NP-complete.

Proof. We reduce the list H -colouring problem to the chordal list M-partition problem. We may assume that C is the
matrix Z, otherwise we replace the input G by its bipartite complement (exchanging edges and non-edges between the
white and black vertices). Given input G, obtain the graph G′ by adding all edges between pairs of black vertices. (The
lists of G′ remain the same as in G.) It is easy to see that G has a list H -colouring if and only if G′ has a list M-partition.
Since G′ is a split graph (it can be partitioned into a clique and an independent set), it is also chordal [19]. �

The proof implies that the list M-partition problems obtained from bipartite graphs H that are not cocircular are
NP-complete even when restricted to split graphs.

If we further restrict the matrices A and B to be the all-zero and all-one matrices, we can actually prove
dichotomy.

Theorem 3.3. Let M be an (A, B, C)-block matrix, where A is the all-zero matrix, B is the all-one matrix, and C or
its complement corresponds to a bipartite graph H .

The chordal list M-partition problem is polynomial if H is a cocircular graph and is NP-complete otherwise.

Proof. By complementation, we may again assume that C is the matrix corresponding to H . If H is not a cocircular
graph, the result follows from Theorem 3.2. Suppose now that H is a cocircular graph. Given a chordal graph G with
lists, if G is not a split graph then it does not have any M-partition. Otherwise, we can generate all O(n2) split partitions
of G (a clique and an independent set have at most one vertex in common, so the technique from [14] discussed above
applies). For each such partition of the vertices of G into white vertices (forming an independent set) and black vertices
(forming a clique), we can remove the edges joining the black vertices, obtaining a bipartite instance G′ of the list
H -colouring problem, which can be solved in polynomial time by [11]. �

When A and B are as above, the all-zero and all-one matrices, we obtain quasi-dichotomy even in the case when C

is any matrix.

Theorem 3.4. Let M be an (A, B, C)-block matrix, where A is the all-zero matrix and B is the all-one matrix.
Then the chordal list M-partition problem is quasi-polynomial or NP-complete.

Proof. Theorem 3.1 claims that every list M-partition problem is quasi-polynomial or NP-complete. Those list M-
partition problems that are quasi-polynomial for general graphs, remain (at most) quasi-polynomial for chordal graphs.
It is easy to see that those list M-partition problems that are NP-complete for general graphs remain NP-complete for
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chordal graphs, since inputs that are not chordal are not split, and hence do not have an M-partition. (Testing whether
a graph is split is polynomial, as noted above, or see [19].) �

We have not proved quasi-dichotomy for all chordal list M-partition problems. Some general classes for which we
have quasi-dichotomy are discussed below.

We begin by observing that the previous two theorems extend to matrices B which have ∗’s off the diagonal. Suppose
M is an (A, B, C)-block matrix where A is the all-zero matrix and B has no 0’s off the diagonal, and M ′ is obtained
from M by changing all entries of B to be 1. Then the chordal list M- and M ′-partition problems are polynomial time
equivalent. Indeed, given an instance G for M , we may consider each choice of possible GA and GB . For each GB , we
may consider each of the possible rectangles from Theorem 2.2. With these restricted lists, we may replace GB with
a complete graph, yielding a split (and hence chordal) instance G′ for M ′. Conversely, given an instance G′ for M ′,
we may consider each choice of possible GA and GB as an independent set and a clique, and then treat the resulting
problem as an instance for M . We have proved the following extension.

Corollary 3.5. The dichotomy in Theorem 3.3 and the quasi-dichotomy in Theorem 3.4 hold even if the requirement
on B is weakened to allow ∗’s off the diagonal.

In other words, A is assumed to be the all-zero matrix and B is assumed to have no 0’s and to have a diagonal of 1’s.
Of course, we could similarly keep B as an all-one matrix and correspondingly weaken the assumption on A.

Our broadest dichotomy and quasi-dichotomy result deals with the situation where A (or, similarly, B) has no ∗’s.

Theorem 3.6. Let M be an (A, B, C)-block matrix, where A has no ∗’s.
Then the chordal list M-partition problem is quasi-polynomial or NP-complete.
If, additionally, C has no 1’s, or no 0’s, then the chordal list M-partition problem is polynomial or NP-complete.

Proof. The proof proceeds by repeatedly reducing the problem to polynomial sized families of subproblems. (The
original problem has a solution, if and only if all subproblems have a solution.) Since the reductions are polynomial,
the existence of quasi-polynomial algorithms for all these subproblems will imply a quasi-polynomial time algorithm
for the whole problem. On the other hand, if even one of the subproblems is NP-complete, then the whole problem is
also NP-complete. At the end of the process, we will obtain problems for which the chordality of the input graph G is
necessary, i.e., matrices M such that graphs that are not chordal do not admit an M-partition. Consider each such list
M-partition problem, in both the general version and the chordal restriction. If the general list M-partition problem is
quasi-polynomial, then so is the chordal restriction. Otherwise, by Theorem 3.1, the general list M-partition problem is
NP-complete, and we can polynomially reduce it to the chordal list M-partition problem as follows. Given an instance
G with lists, we first test whether G is chordal. (This can be done in linear time [19].) If G is not chordal, we associate
it with some fixed chordal graph G0 (with lists) which does not admit an M-partition. (Such a G0 must exist, see
below; this assures that we obtain a negative answer about the existence of a list M-partition.) If G is chordal, we
simply associate it with G (and the same lists). It now follows that G (with the lists) has an M-partition if and only
if the associated chordal graph (with lists) has an M-partition. Thus also the chordal list M-partition problem is NP-
complete. Hence we obtain quasi-dichotomy (and dichotomy) of the corresponding chordal list M-partition problems,
by Theorem 3.1.

To see that such a chordal graph G0 with lists exits, suppose that the list M-partition problem is NP-complete but
every chordal graph G with lists admits a list M-partition. Recall that we also assume that nonchordal graphs with lists
do not admit M-partitions. Thus we can test whether or not a given graph G with lists admits an M-partition by testing
whether or not G is chordal, which is polynomial [19]. Thus the general list M-partition problem is quasi-polynomial,
and treated earlier.

We illustrate this idea to reduce the original problem to problems in which the matrix A has only zero entries. This
will be useful at several points in the present proof (especially at the end), and will allow us to introduce the technique
in a simple context.

For i �= j , if A(i, j) = 1, then at most one vertex can be placed in part i or at most one vertex is placed in part j ,
otherwise we would have a chordless four-cycle in G, contrary to chordality. We can thus choose zero or one vertices
x to be placed in i or in j in every possible way. This defines 2(n + 1) subproblems with the above properties. In each
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subproblem, we remove i (or j ) from all other lists, remove all parts i′ with M(i, i′) = 0 from all neighbours of x and
all parts i′ with M(i, i′) = 1 from all non-neighbours of x, and delete x from the input graph. This removes part i from
the consideration. We then do the same step for another entry 1 in the new matrix A, if any. At the end of this process
we will have a polynomial family of subproblems in which the resulting diagonal matrices A will contain only zeros.
Thus in the following we assume that A is the all-zero matrix.

We will again use the technique from [14], with A being the class of A-partitionable chordal graphs, and B the class of
B-partitionable chordal graphs. Note that, since A = 0, the A-partitionable graphs are precisely graphs without edges.
As before, the membership problems for these graph classes can be solved in polynomial time. Moreover, a graph that
is both in A and B has at most c = � vertices. Therefore, there are only O(n�) partitions of the input chordal graph G

into two subgraphs GA and GB with GA in A and GB in B, and the problem is reduced to solving this polynomial
sized family of subproblems. Moreover, for each such partition of G, there are at most n2� rectangles describing all the
possible B-partitions of GB , as stated in Theorem 2.2, and the problem with this partition is reduced to the family of
subproblems with the lists as given in the rectangle. Thus it suffices to focus on a particular rectangle. It is described
by lists Lx, x ∈ V (GB), where any assignment of vertices x ∈ V (GB) to members of their lists Lx is a list B-partition
of GB .

Note that two vertices x, y of GB with lists Lx = S, Ly = T , are either adjacent, and then M(S, T ) does not contain
0, or non-adjacent, in which case M(S, T ) does not contain 1. Thus M(S, T ) never contains both 0 and 1 for sets of
parts S, T which occur as lists of some vertices, and in particular, M(S, S) never contains 0 if S occurs as a list, since
B has a diagonal of 1’s.

We shall modify the matrix B by replicating rows and columns. To replicate a row and column i means to replace it
with a set of identical rows and columns; specifically, each replacing part i′ has M(i′, j) = M(j ′, i) = M(i, j) for all
j , including j = i. (In particular, M(i′, i) = M(i, i′) = M(i′, i′) = M(i, i) = 1.) Each list Lx, x ∈ V (G), is a set S

of parts, corresponding to a set of rows (and columns) of B. If a part i belongs to fi such sets S, we shall replicate the
row and column i by fi rows and columns. This way we can ensure that the lists are either equal or disjoint. Note that
fi < 2m where m is the (fixed) size of M .

We may assume that all parts of B are actually used in the lists Lx (since we may always simplify the matrix M

by eliminating rows and columns corresponding to parts which do not occur lists). The parts in B are now partitioned
into subsets each of which is the list Lx of at least one vertex x of the input graph G. This gives the matrix B a
block structure—we may assume that its rows and columns are partitioned into sets T1, T2, . . . , Tp where each block
determined by a pair of these sets has B(Ta, Tb) subset of {0, ∗} or of {1, ∗}.

Suppose Ta, Tb are such that no pair of adjacent vertices x, y have Lx = Ta, Ly = Tb. (This must happen, in
particular, if B(Ta, Tb) contains 0.) Then we can replace all entries in the block corresponding to the pair Ta, Tb by
zeros. Now the non-zero blocks do not contain any zeros. We may define a graph H whose vertices are the parts of
B and in which parts i, j are adjacent just if B(i, j) contains no 0’s. We note for future reference that the graph H is
chordal. (Any chordless cycle in H induces a chordless cycle in G.) By symmetry, we may assume that each block of
B is constant, B(Ta, Tb) is {0}, {1}, or {∗}.

If B(Ta, Tb) = {0}, we claim that there is at most one vertex u in GA adjacent to a vertex x in GB with list Lx = Ta

and a vertex y in GB with list Ly = Tb. Indeed, if u1 ∈ GA has such neighbours x1, y1 ∈ GB and u2 ∈ GA has
such neighbours x2, y2 ∈ GB , then y1u1x1x2u2y2y1 induce a chordless cycle of length between four and six (since
x1 may coincide with x2 and y1 may coincide with y2), contrary to chordality. If such a vertex u exists, we assign it
in every possible way to the members of its list, and remove it from the graph, after having reflected its assignment,
in the usual way, in the lists of its neighbours and non-neighbours. Since there are at most �2 blocks in B, we can
do that for each block with B(Ta, Tb) = {0}, and reduce to O(n�2

) subproblems. Therefore, we may assume that if
B(Ta, Tb) = {0} then there is no vertex of GA adjacent to some x in GB with Lx = Ta and some y in GB with
Ly = Tb.

For each vertex x in GA, we now consider the set f (x) consisting of all Ta which occur as lists Ly of neighbours y

of x in GB . We now define sets S1, S2, . . . , Sq of parts of A, where each subscript r = 1, 2, . . . , q is a possible value
of f (x), i.e., a set of Ta’s. We place i ∈ Sr just if i occurs in some list L(x) of a vertex x with f (x) = r . Thus each
list of a vertex in GA is included in some Sr . We note that there are only 2p � 2� possible values f (x). We may thus
replicate rows and columns of A to ensure that f (x) �= f (y) implies that the lists L(x) and L(y) belong to different
sets Sr . (This is similar to the replication we did in B.) Therefore S1, S2, . . . , Sq is a partition of the parts of A. Now
A also has a block structure, each block of A corresponding to a pair of sets Sr, St .
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Since both A and B have a block structure, we also obtain a block structure on C—each pair Sr, Ta defines a block
of C. We now make a modification of the matrix C. Suppose Ta is not in the set r: If C(Sr, Ta) contains a 1 in some
position C(i, j), then we cannot have both the part i and part j non-empty. We thus replace the current problem with
the two subproblems obtained by removing part i and by removing part j from M . On the other hand (still supposing
Ta is not in the set r), if C(Sr, Ta) contains an ∗, we may simply replace it by 0. Thus we may assume that all blocks
with Ta not in the set r have C(Sr, Ta) = {0}.

Finally, we shall modify both the matrix M and the graph G, so that the modified G is chordal and has a modified list
M-partition if and only if the original G has an original list M-partition.We replace each block of B with B(Ta, Tb) = {∗}
by an all-one block, and add to G all edges xy (if not present) with Lx = Ta and Ly = Tb. It is easy to deduce, from
the fact that H is chordal, that the new graph G is also chordal.

Now we have a matrix M in which B has a 0, 1 block structure, corresponding to a chordal graph H , A is an all-zero
matrix, and for each part i of A the parts j of B with C(i, j) �= 0 form a clique in H (because of our assumption on the
vertices of GA and blocks of B with B(Ta, Tb) = {0}). It is now easy to check that any graph G with an M-partition
must be chordal. We have completed the promised reduction to a polynomial family of subproblems in which chordality
is necessary; this proves the quasi-dichotomy.

For the dichotomy, we only need to observe that at the end of the reductions we have a �-restricted M-partition
problem, where � consists of the sets Sr and Ta , and all their subsets. If C has no 1’s, or no 0’s, the matrix M is
�-compatible; thus the dichotomy follows from Theorem 3.1. �

4. NP-complete matrix partition problems

We now focus on constructing NP-complete M-partition problems (without lists). Let H again be a bipartite graph.
The H -retraction problem is the restriction of the list H -colouring problem to instances G containing H as a subgraph,
and with lists either L(g) = g, if g ∈ V (H), or L(g) = V (H), otherwise. A list H -colouring of G is called an
H -retraction of G, in this situation. Many bipartite graphs H are known to yield NP-complete H -retraction problems,
although a complete classification of complexity is not known, and dichotomy has not been proved, for H -retractions.
In particular, it is known that if H is an even cycle of length greater than four, the H -retraction problem is NP-
complete [11].

Theorem 4.1. For every bipartite graph H such that the H -retraction problem is NP-complete, there exists a matrix
MH such that the chordal MH -partition problem (without lists) is also NP-complete.

Proof. Let H be a bipartite graph such that the H -retraction problem is NP-complete. We first extend the graph H to
a larger bipartite graph H ′, by attaching to each white vertex of H a path of length five and to each black vertex of H

a path of length four. Note that all the leaves (vertices of degree one) of H ′ are black.
We now introduce an auxiliary problem, which we shall call the weak H ′-retraction problem. Suppose that the

bipartite graph H ′ has k black vertices, forming the set VB , and let L denote the set of all black leaves of H ′. An
instance of the weak H -retraction problem is a bipartite graph G with a specified set X of k black vertices, such
that each vertex of G not in X has at most one neighbour in X. A solution to the instance is an edge-preserving and
colour-preserving mapping of the vertices of G to the vertices of H such that X is mapped bijectively to VB . We now
show that the H -retraction problem reduces to the weak H ′-retraction problem.

Suppose G is an instance of the H -retraction problem, i.e., a bipartite graph containing H . We transform G to an
instance G′ (with a set X) of the weak H ′-retraction problem as follows: Let X be another copy of the set VB , disjoint
from G. Consider the union of G and X, and identify each vertex of L in X with the corresponding vertex of L in G.
Finally, add internally disjoint paths of length four joining all pairs of vertices of X which correspond to vertices in VB

of distance two or four in H ′. Call the resulting graph G′. We now argue that G admits an H -retraction if and only if
G′ admits a weak H ′-retraction.

On the one hand, suppose f is an H -retraction of G. Then f , extended by taking each vertex of X − L to the
corresponding vertex of VB , is a weak H ′-retraction of G′. For the other direction, we note that any bijection between
X and VB has to map vertices of L to vertices of L, since leaves in H ′ have exactly two vertices in H ′ at distance two or
four, while black vertices of H ′ that are not leaves have at least three vertices in H ′ at distance two or four. Therefore,
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any weak H ′-retraction of G′ which maps the vertices of X bijectively to the vertices of VB must map the copy of H ′
in G′ isomorphically to H ′. It follows that G admits an H ′-retraction, which can easily be modified to an H -retraction
by mapping all the added paths of H ′ into H .

Next, we define a matrix MH such that the chordal MH -partition problem (without lists) is NP-complete, as claimed
in the theorem. The matrix MH will be an (A, B, C)-block matrix in which the diagonal matrix A is an all zero matrix;
the diagonal matrix B has all diagonal entries 1 and all other entries ∗; and finally, the matrix C will be the matrix
corresponding to the bipartite graph H ′.

We now reduce the weak H ′-retraction problem to the MH -partition problem. Given an instance G′ for the weak
H ′-retraction problem, we construct an instance G′′ of the MH -partition problem as follows. We replace each white
vertex a of G′ by a set I (a) of k + 1 independent vertices (where k = |VB |), and each black vertex b of G′ by a clique
K(b) of two vertices. Whenever a and b are adjacent in G′, all vertices of Ia are adjacent to all vertices of Kb in G′′.
Finally, we add all edges between Kb and Kb′ unless both b and b′ are in X. Note that each vertex every I (a) is adjacent
to at most one K(b) with b ∈ X.

We claim that G′ admits a weak H ′-retraction if and only if G′′ admits an MH -partition. Indeed, if f is a weak
H ′-retraction of G′, all vertices of a set I (a) can be placed in the part f (a) and all vertices of a set K(b) can be placed
in the part f (b). Conversely, each MH -partition of G′′ must place at least one of the two vertices in any K(b) to a part
in B, since A is an all-zero matrix. Also, if b, b′ are both in X, these vertices must be placed in distinct parts of B. By
a similar argument, at least one vertex of each I (a) must be placed in a part in A, since the vertices placed to parts in
B are covered by k cliques. This way we deduce an H ′-retraction of G′.

It remains to argue that the instance G′′ is a chordal graph. We first note that each vertex of every I (a) is only adjacent
to vertices in K(b) with b /∈ X except possibly in one K(b) with b∈X. According to the definition of G′′, these vertices
are all mutually adjacent, i.e., a clique. Thus we can repeatedly remove simplicial vertices (vertices whose neighbours
form a clique) from the sets I (a), until G′′ is reduced to the union of the K(b), which is clearly chordal. �

Note that the matrices MH constructed in the proof have E(A) = {0}, E(B) = {∗}, and E(C) = {0, ∗}, and hence
are not normal.

5. Forbidden subgraphs in matrix partition

In this section, we discuss forbidden induced subgraph characterizations ofM-partitionable chordal graphs.We phrase
our results in terms of minimal obstructions. Given a matrix M , a graph G is a minimal obstruction for M-partitionability,
if G has no M-partition, but each induced subgraph of G has an M-partition. Clearly, for a matrix M , the size of chordal
minimal obstructions is bounded if and only if M-partitionability of chordal graphs can be characterized by a finite set
of forbidden induced subgraphs.

It should be clear that a bound on the size of chordal minimal obstructions implies a polynomial time algorithm for
the corresponding partition problem. (In fact, frequently the algorithms can be made linear time [10].) Thus we cannot
expect such a bound for the matrices M discussed in the last section. In fact, as remarked in [10], there are polynomial
time solvable (list) M-partition problems which still admit infinitely many minimal obstructions.

In [10], we have studied minimal obstructions that are perfect graphs, and have proved that the size of such obstructions
is bounded whenever the matrix M is normal. Since chordal graphs are perfect, this is also the case for chordal minimal
obstructions. It follows from these results that if M has no ∗’s at all, or if E(C) is {0} or {1}, the size of chordal minimal
obstructions is bounded by (k +1)(�+1). The same bound applies to the matrices with E(A) = E(B) = E(C) = {∗},
by the result of [20,21]. Most of the other bounds for the size of minimal obstructions to M-partitionability given
in [10] for perfect graphs, can be improved for chordal graphs (with a similar improvement in the complexity of the
corresponding algorithms). In particular,
• the bound of 2(� + 1)2k�+1 for normal matrices with E(C) = {∗} can be improved to 2(6�+3)k+1kk when A does not

contain ∗, and to 2(k + 1)(4k+2)�+2 when E(A) = {∗}.
• For the first bound, we obtain a further improvement when E(A) = {1} and E(B) is {∗} or {0}. The bound becomes

2(2� + 2)k for (1, ∗, ∗)-block matrices, and 2(8�2 + 25� + 5)k for (1, 0, ∗)- block matrices.
• For the second bound, we obtain a further improvement when E(B) = {0}. The bound becomes 2(k + 1)(k+2)�+1,

for these (∗, 0, ∗)-block matrices.
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(We assume k�� in these bounds.) We will prove these bounds in a separate note [16]. In this paper we focus on a case
where an exponential bound for perfect graphs, can be improved to a polynomial bound for chordal graphs. This is the
case of (a, 0, ∗)-block matrices with k = 1. (Note that the value of a is irrelevant.) For perfect graphs we only have the
exponential upper bound of 2(�+1)2k�+1 mentioned above. In [10], we have shown that there are minimal obstructions
to M-partitionability (for (a, 0, ∗)-block matrices M) that are trees (hence chordal) and have (�/3)2 vertices. Here we
give an O(�2) upper bound on the size of chordal minimal obstructions, for these matrices M .

Note that we are discussing partitions of input graphs G into one independent set A and � independent cliques
B1, B2, . . . , B� (i.e., the cliques B1, B2, . . . , B� have no edges joining them).

We first give a simple structural property of instances that have such an M-partition, regardless of the parameter �.

Lemma 5.1. Let M be an (a, 0, ∗)-block matrix with k = 1.
If G has an M-partition, then each biconnected component of G is a split graph. If a chordal graph G has some

biconnected component that is not a split graph, then this can be witnessed with an induced subgraph R of G with at
most 6� + 2 vertices.

Proof. Suppose a biconnected component involves at least two of the � cliques. Then a shortest cycle in G going
through vertices in both cliques has at least four vertices, contrary to chordality. Thus every biconnected component
involves only one of the � cliques and the independent set, and is therefore a split graph.

A biconnected component of the chordal graph G is not a split graph if and only if it contains two edges xy and zt
such that no edge joins either of x, y to either of z, t . By biconnectivity, there exist two paths starting at x, y and ending
at z, t . Say one path P goes from x to z, and a disjoint path Q goes from y to t . Assume P and Q are shortest paths,
of respective lengths lP , lQ. It follows that P contains �lP /3� independent edges, and thus it contains an obstruction
for ���lP /3� − 1 involving only � + 1 edges. Assume thus that ���lP /3�, �lQ/3�. Then the obstruction consisting
of the subgraph induced by the two paths P and Q has at most lP + lQ + 2�6� + 2 vertices. �

We now bound the size of a minimal obstruction that has an M-partition for some �′ > �.

Lemma 5.2. Let M and M ′ be (a, 0, ∗)-block matrices with k = 1, and �, respectively, �′ diagonal 1’s. Let R be a
minimal chordal obstruction to M-partition, and suppose R has an M ′-partition. (Thus �′ > �.)

Then R has at most 8�2 + 25� + 5 vertices.

Proof. By Lemma 5.1, all blocks of R are split graphs. Consider an M ′-partition of R as it looks in the block-cutpoint
forest of R. If we shrink each of the �′ cliques of the M ′-partition into a single vertex, we obtain a forest F . We
claim F has O(�) internal nodes and O(�2) leaves. We may hang each tree T in F with r vertices from a leaf as root.
Suppose an M-partition for the connected component of R corresponding to T has s cliques. Then starting from the
root of T and going down to the leafs, we may charge each vertex in the independent set encountered to the clique at
a child, so there are at most s internal nodes in the independent set, and at most 2s clique nodes, for a total of at most
3s internal nodes. Therefore, the forest has no more than 3� + 1 internal nodes, or else the obstruction would not be
minimal.

The number of cliques that are not single vertices is at most �, otherwise R has �+1 independent edges that constitute
an obstruction. For every clique K with r vertices in the M ′-partition, at least r − 1 of these vertices must occur in
a clique in every M-partition, omitting at most one vertex x of K from the clique. Putting x in the independent set
may only reduce the value �′ if this affects the solution for some neighbour y of x that is currently in the independent
set with y an internal vertex of the forest. If y has at least two neighbours and two non-neighbours in K , then y must
necessarily remain in the independent set. If y has exactly one neighbour in K , and K has at least three vertices, then
the solution for y is only affected if the only neighbour of y in K is x. In that case we may charge x to the edge xy,
and there are at most (3� + 1) + � = 4� + 1 such edges xy joining internal vertices of the forest to cliques. If y has
exactly r − 1 neighbours in K , and K has at least three vertices, then the solution for y is only affected if the only
non-neighbour of y in K is x. Again we charge x to the edge xy. The remaining vertices x in K do not affect the value
of the solution and may be removed, provided that this does not cause a vertex y to end up with exactly one or r − 1
neighbours in K , so in that case xy is charged at most twice if K has at least five vertices. This leaves only the 2(4�+1)

charged vertices in cliques of size at least five, and 4� vertices in the at most � cliques of size between two and four.
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Combining this with the 3� + 1 internal nodes of the forest gives 15� + 3 vertices plus the number of vertices that are
single vertex leaves.

Suppose a clique K has some single vertex leaf neighbours z. If z has at least two neighbours x in K , then it prevents
x from being removed from the independent set if this affects some y, and may be charged to xy. If z has only one
neighbour x in K , then removing x from the independent set so that some y may be included in the clique causes z

to form a clique, so we may assume that at most � + 1 such z are only adjacent to such x, and they may be charged
to the 4� + 1 edges xy, for a total charge of (� + 1)(4� + 1). If a single vertex leaf x is a chosen clique adjacent to y

in the independent set, then we may assume there are at most � + 1 such x adjacent to the internal vertex y, and there
are at most 2(� + 1) such internal vertices, giving an additional charge of (� + 1)(4� + 1). The total bound is thus
2(� + 1)(4� + 1) + 15� + 3 = 8�2 + 25� + 5. �

We finally bound the size of a chordal minimal obstruction that does not have an M ′-partition for any �′ > �.

Lemma 5.3. Let M, M ′ be as above. Let R be a chordal minimal obstruction to M-partition, and suppose R does not
have an M ′-partition for any �′. Then R has at most 17� + 1 vertices.

Proof. The biconnected components of R may be assumed to be split graphs by Lemma 5.1. We bound the size of
each of these biconnected components B. In general, B consists of a clique K and an independent set I such that K

contains a clique K ′ that has neighbours in I . Let K ′′ be the vertices in K not in K ′. If K ′′ contains a single vertex v,
let I ′ be the set of vertices in I ∪ {v} that have the same neighbourhood as v, and let I ′′ = I \ I ′.

There are then three cases:
1. If K ′′ has no vertices, then the vertices in K must be in the chosen clique, and the vertices in I must not be in the

chosen clique;
2. if K ′′ has at least two vertices, then the vertices in K ′ must be in the chosen clique, the vertices in I must not be in

the chosen clique, and at most one vertex in K ′′ may not be in the chosen clique;
3. if K ′′ has exactly one vertex, then the vertices in K ′ must be in the chosen clique, the vertices in I ′′ may not be in

the chosen clique, and at most one vertex in I ′ may be in the chosen clique.
If B has a vertex x that must not be in the chosen clique that is attached to other vertices, then we may assume that B

is attached just at x. This holds because the component attached at x must not have a solution with x in the independent
set, else this component could be removed. We may thus remove the graph attached to the remaining vertices of x.
Furthermore, at most one component attached at x may be present, since just one such component is needed to show
that there is no solution with x independent. In all three cases above, there must exist either a clique on four vertices
y, z, t, u such that x is adjacent to y, z but not to t, u, or a clique on three vertices y, z, t such that x is adjacent y, z

but not to t , and some vertex u is adjacent to z, t but not to x, and possibly to y. In both cases, the clique chosen must
contain y, z, t and therefore not x, and the five vertices x, y, z, t, u suffice to witness this. We may thus assume B has
at most five vertices in this case.

If B has a vertex x that must be in the chosen clique that is attached to other vertices, then we may assume again
that B is attached at x, and furthermore, at most one component attached at x may be present. In all three cases
above, there must exist three vertices y, z, t with edges yz, zt, yx, xt, xz, and the clique chosen must contain x, y,

in particular x, so four vertices x, y, z, t suffice to witness this. We may thus assume B has at most four vertices in
this case.

If B is attached only at a set of vertices S contained in K ′′, then S forms a clique and at most one vertex in S may
not be chosen for a clique. If the components attached at x in S forbid both that x be chosen and that x not be chosen,
then we may assume B is attached only at x and a triangle with three vertices x, y, z suffices to witness the fact that x

may not belong to another clique outside of B. We may thus assume B has at most three vertices in this case, that B is
attached only at x and to at most two other components through x. The other possibility is that there are two vertices
x, y in S such that a single component attached at x forbids that x be chosen, and a single component attached at y

forbids that y be chosen, so we may again assume B has at most three vertices in a triangle x, y, z.
If B is attached only at vertices in I ′ of which at most one may be chosen for a clique, then again in one case two

components attached at x in S forbid both that x be chosen and that x not be chosen, in which case a triangle with
three vertices x, y, z gives B only three vertices, with B attached only at x and to at most two components. The other
possibility is that there are two vertices x, y in S such that a single component attached at x requires that x be chosen,
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and a single component attached at y requires that y be chosen, in which case two adjacent vertices z, t both attached
to x, y suffice to witness this, so we may assume B has at most four vertices.

If R has s biconnected components, then the fact that each one is connected to at most two other components shows
that at least 	s/3
 such components are independent, and thus obtain that many independent edges. By minimality of
the obstacle, it follows that 	s/3
��, and so s�3�. Since each biconnected component B has at most 5 vertices, this
shows that there are at most 15� vertices in biconnected components.

A vertex x in R may not have just a single neighbour, since in that case removing it would maintain the fact that
there is no M ′-partition for R with any �′. The vertices of R not belonging to biconnected components are thus internal
vertices of trees. After removing a single vertex, the resulting R′ will have an M-partition, and so we may use the
argument in Lemma 5.2 to show that the number of internal independent vertices is at most �. The number of new
leaves adjacent to the removed vertex is at most �, since � + 1 such leaves produce � + 1 independent edges forming a
chordal minimal obstruction. Combining this with the at most 15� vertices in biconnected components and the single
vertex removed gives a total of 15� + 1 + � + l = 17� + 1 vertices and completes the proof of the lemma and the
theorem. �

Theorem 5.4. Consider all (a, 0, ∗)-block matrices M = M� with k = 1.
Any chordal minimal obstruction to M�-partitionability has at most 8�2 + 25� + 5 vertices.
There is an algorithm that finds, for a chordal graph G with n vertices and m edges, the smallest integer � such that

G has an M�-partition, or shows that there is no such M�-partition for any �. The algorithm is time O(m + n).
For a given �, the algorithm finds an M�-partition or an obstruction of size at most 8�2+25�+5, in time O((m+n)�2).

Proof. The approach is to first find the biconnected components, which can be done in time O(m + n) with standard
techniques. Then verify that every biconnected component is a split graph (in time O(m + n), again by standard
techniques, cf. e.g., [20]), otherwise there is no M-partition. Once every biconnected component is a split graph, the
block-cutpoint tree gives rise to a tree with vertices corresponding to the cliques of the M-partition, as explained above.
Hang the tree by a leaf as root, and then proceed from the other leafs towards the root, maintaining information about
partial solutions found, namely for every connection vertex x joining two biconnected components, whether there are
solutions for the subgraph Gx from x towards the leaves (1) with x in the independent set, (2) with x in a clique
containing no other vertex in Gx , or (3) with x in a clique containing another vertex with x in the clique, and for each
case the minimum number of cliques used for Gx in a solution. This information gets combined at each vertex of the
tree, which is a clique K in time O(m+n), since all but at most one of the vertices in K must be in a chosen clique and
new information is passed on to the parent. This completes the algorithm for finding the smallest feasible � or showing
that no � is feasible.

The algorithm for testing whether a graph is a split graph [20] produces the two independent edges if the graph is
not a split graph. Finding two disjoint paths joining two independent edges in a biconnected graph can be done in time
O(m+n) by a flow algorithm that sends two units of flow, thus producing the obstruction of Lemma 5.1 if a biconnected
component is not a split graph. Given an �, the algorithm can determine for each x as above with corresponding Gx ,
each �′ ��, and each of the above three situations (1), (2), (3), or the situation (4), if x is removed from the graph, the
following information: the number of vertices in Gx , and the maximum number of vertices that can be removed from
Gx to obtain G′

x not be able to achieve the chosen situation out of the four situations using at most �′ cliques in G′
x .

This information gets combined at a clique K , where combining the information for two connected components of
the subgraph of Gx joined at x, or combining the information for a vertex x in a clique K with the information of the
clique of vertices preceding x in an ordering of the vertices of K , takes time O(�2), since each pair of values �′ �� is
considered. The information for different connected components of the graph can be combined similarly in O(�2) time
per connected component. Thus finding the maximum number of vertices that can be removed and obtain an obstruction
takes is obtained as a combined answer for the whole graph for the case �′ = �, in time O((m + n)�2). �
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