
Discrete Applied Mathematics 141 (2004) 185–194
www.elsevier.com/locate/dam

Partitioning chordal graphs into independent sets
and cliques

Pavol Hella , Sulamita Kleinb;1 , Loana Tito Nogueirab , F-abio Prottic;2
aSchool of Computing Science, Simon Fraser University Burnaby, B.C., Canada, V5A1S6

bCOPPE-Sistemas, Universidade Federal do Rio de Janeiro Caixa Postal 68511, 21945-970, Rio de
Janeiro, RJ, Brazil

cIM and NCE, Universidade Federal do Rio de Janeiro, Caixa Postal 2324, 20001-970, Rio de Janeiro,
RJ, Brazil

Received 31 July 2001; received in revised form 17 January 2003; accepted 22 March 2003

Abstract

We consider the following generalization of split graphs: A graph is said to be a (k; ‘)-graph
if its vertex set can be partitioned into k independent sets and ‘ cliques. (Split graphs are
obtained by setting k = ‘ = 1.) Much of the appeal of split graphs is due to the fact that they
are chordal, a property not shared by (k; ‘)-graphs in general. (For instance, being a (k; 0)-graph
is equivalent to being k-colourable.) However, if we keep the assumption of chordality, nice
algorithms and characterization theorems are possible. Indeed, our main result is a forbidden
subgraph characterization of chordal (k; ‘)-graphs. We also give an O(n(m + n)) recognition
algorithm for chordal (k; ‘)-graphs. When k = 1, our algorithm runs in time O(m+ n).

In particular, we obtain a new simple and e?cient greedy algorithm for the recognition of
split graphs, from which it is easy to derive the well known forbidden subgraph characterization
of split graphs. The algorithm and the characterization extend, in a natural way, to the ‘list’
(or ‘pre-colouring extension’) version of the split partition problem—given a graph with some
vertices pre-assigned to the independent set, or to the clique, is there a split partition extending
this pre-assignment? Another way to think of our main result is the following min–max property
of chordal graphs: for each integer r¿ 1, the maximum number of independent Kr’s (i.e.,
of vertex disjoint subgraphs of G, each isomorphic to Kr , with no edges joining two of the
subgraphs) equals the minimum number of cliques of G that meet all the Kr’s of G.
? 2003 Elsevier B.V. All rights reserved.

1Partially supported by CNPq, MCT/FINEP PRONEX Project 319, CAPES/COFECUB Project 213/97
and FAPERJ. Complete a?liation: Instituto de Matem-atica and COPPE-Sistemas.
2Partially supported by CNPq, CAPES/COFECUB Project 213/97 and FAPERJ.
E-mail addresses: loana@cos.ufrj.br, sula@cos.ufrj.br (S. Klein), fabiop@nce.ufrj.br (F. Protti).

0166-218X/$ - see front matter ? 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0166-218X(03)00371-8

mailto:loana@cos.ufrj.br
mailto:sula@cos.ufrj.br
mailto:fabiop@nce.ufrj.br


186 P. Hell et al. / Discrete Applied Mathematics 141 (2004) 185–194

Keywords: Chordal graphs; Split graphs; Min–max theorems; Greedy algorithms; Pre-colouring extension;
List partitions

1. Introduction

A graph G is a (k; ‘)-graph [2] if its vertices can be partitioned into k indepen-
dent sets and ‘ cliques. (A clique is a complete subgraph, not necessarily maximal.)
Thus (k; ‘)-graphs are a natural generalization of split graphs [8], which are precisely
(1,1)-graphs. Since split graphs are chordal [8], many basic optimization problems
can be solved e?ciently for them; they can also be e?ciently recognized [8]. When
k or ‘ is greater than one, there are (k; ‘)-graphs which are not perfect (and hence
not chordal). Still, in [4], an O((n + m)2) recognition algorithm for (2; 1)-graphs and
an O((n + Qm)2) recognition algorithm for (1,2)-graphs are given, where Qm denotes
the number of edges in the complement. Polynomial algorithms for the recognition of
these two classes of graphs also follow from more general algorithms for ‘sparse-dense
partition problems’ of Feder et al. [6]. On the other hand, when k¿ 3 or ‘¿ 3, recog-
nizing (k; ‘)-graphs is easily seen to be an NP-complete problem [2,3]. (For instance,
the class of (k; 0)-graphs is precisely the class of k-colourable graphs.)
We focus on the case of chordal (k; ‘)-graphs, and give a forbidden subgraph char-

acterization, and a polynomial time recognition algorithm. SpeciRcally, we prove that
a chordal graph is a (k; ‘)-graph if and only if it does not have ‘ + 1 independent
copies of Kk+1. (A set of subgraphs is independent if they are vertex disjoint with no
edges joining two of the subgraphs.)
A special case of this result, for chordal (2,1)-graphs, was Rrst reported in [11]. An

extended abstract of the present paper has also appeared in [9].
An alternate view of our result states that, for each integer r¿ 1, the maximum

number of independent Kr’s in a chordal graph equals the minimum number of cliques
that meet all Kr’s. In other words, if we denote by f(G; r) the maximum number of
independent copies of Kr in G, and by g(G; r) the minimum number of cliques of
G which meet all Kr of G, then we show that for chordal graphs f(G; r) = g(G; r).
(Note that when r=1, f(G; r) is the independence number of G, and g(G; r) the clique
covering number of G.) Our O(n(m+n)) algorithm identiRes f(G; r) independent Kr’s
and the same number of cliques that meet all Kr’s.
Our recognition algorithm actually Rnds a minimum value of ‘ such that G is a

(k; ‘)-graph. The algorithm is more e?cient when k = 1, i.e., when we seek a parti-
tion into one independent set and a set of cliques. When both k and ‘ are one, we
specialize the algorithm to yield a new simple and e?cient recognition algorithm for
split graphs. (Note that in this case we need no restriction to chordal graphs.) The
value of the algorithm is underscored by the fact that it easily adapts to solve the list
version of the split partition problem — Rnding an extension of a given pre-assignment
of some vertices to the independent set, or clique. As a byproduct of the algorithm
we also obtain a forbidden subgraph characterization of when such an extension is
possible.



P. Hell et al. / Discrete Applied Mathematics 141 (2004) 185–194 187

Let G be a graph. If S, S ′ ⊆ V (G), we denote by NS(S ′) the neighbourhood of S ′

in S, i.e., the set of vertices of S which are either in S ′ or adjacent to a vertex of S ′.
Moreover, if NS(S ′) �= ∅, then we say that S and S ′ are adjacent.
We shall write NS(v) instead of NS({v}); note that this neighbourhood of v in S

contains v if v∈ S.

2. The theorems

In this section we present our characterization of chordal (k; ‘)-graphs in terms of
forbidden subgraphs. The following lemmas will be useful:

Lemma 1. Let C and C′ be two cliques in a chordal graph G. Then some vertex of
C′ is adjacent to all the vertices of NC(C′).

Proof. We shall prove that, in fact, the neighbourhoods of the vertices of C′ in C
are linearly ordered by inclusion. Suppose that two distinct vertices v1, v2 ∈C′ have
incomparable neighbourhoods in C, i.e., that neither of the sets NC(v1), NC(v2) contains
the other. Then there exist distinct vertices u1, u2 ∈C such that u1 is adjacent to v1 but
not to v2, and u2 is adjacent to v2 but not to v1. This is impossible, since u1, u2, v2,
v1 would induce a chordless four-cycle. The lemma follows by considering the vertex
v∈C′ with maximal NC(v).

Lemma 2. Let C and K be two disjoint cliques of a chordal graph G. Then there
exists a clique C′ with the following property: C′ intersects K , and it also intersects
all the cliques adjacent to K which are intersected by C.

Proof. Let L= NC(K). By Lemma 1 some vertex of K is adjacent to every vertex of
L, and hence can be added to L to obtain a clique that intersects K , as well as all the
cliques of G intersected by L. Consider now a clique K ′ of G which intersects C but is
disjoint from L. It follows from the deRnition of L that such a clique does not intersect
K . We need to consider such a K ′, if it contains a vertex a adjacent to K . Let A denote
the set of all such vertices a, i.e., vertices which are adjacent to K and belong to some
clique intersecting C but not L. We claim that each a∈A is adjacent to all vertices of
L. Indeed, if b∈L is not adjacent to a, then there exist vertices c∈C \ L, and s, t ∈K
(possibly s= t), such that b; c; a; s; t; b is a chordless cycle. Similarly, we claim that any
two a, a′ ∈A are adjacent in G. Otherwise, there exist vertices c, c′ ∈C \ L (possibly
c = c′), and s, s′ ∈K (possibly s = s′), such that a; c; c′; a′; s′; s; a is a chordless cycle
in G. Thus, the set L ∪ A induces a clique, and Lemma 1 guarantees that there is a
vertex u∈K adjacent to all vertices of L ∪ A. Now the clique induced by L ∪ A ∪ {u}
intersects K , and, by the deRnition of A, it also intersects all the cliques intersected by
C which are adjacent to K .

Note that Lemma 2 also holds when C and K are not disjoint (with C′ = C).



188 P. Hell et al. / Discrete Applied Mathematics 141 (2004) 185–194

Lemma 3. Let C1; C2; : : : ; Cp be a collection of pairwise adjacent cliques in a chordal
graph G. Then there exists a clique C in G which intersects each Ci, i = 1; 2; : : : ; p.

Proof. The result easily follows when p6 2. Assume now p¿ 2. By induction, there
exists a clique C that intersects Ci for every i∈{1; : : : ; p − 1}. If C intersects Cp,
nothing remains to prove. Otherwise, apply Lemma 2 to C and Cp.

The lemma above can also be seen as a consequence of Theorem 2 in [5] if M :=
C1 ∪ · · · ∪ Cp and r(v) := 1 for all v∈M .
A simple necessary condition for a graph G to be a (k; ‘)-graph is that it does not

contain ‘ + 1 independent Kk+1’s. Indeed, consider any partition of such a G into k
independent sets and ‘ cliques. Any Kk+1 in G would have to contain a vertex from one
of the cliques in the partition, and hence from amongst any (‘+1) such Kk+1’s some
two must intersect the same clique, and thus have an edge joining them. (This means
they were not independent.) It turns out that for chordal graphs the above condition is
also su?cient. (Note that the condition simply says that (‘+1)Kk+1 is not an induced
subgraph of G.) We shall derive this fact from the following result:

Theorem 4. Let G be a chordal graph, and let r¿ 1 be an integer. Then f(G; r) =
g(G; r).

It is clear that f(G; r)6 g(G; r), for any G and any r¿ 1. In order to prove the
equality for chordal graphs, we proceed as follows:
Let G be a graph. Let us deRne Kr(G) as the graph with a vertex corresponding

to each Kr in G, and two vertices adjacent in Kr(G) if and only if the corresponding
Kr’s are not independent in G.

Lemma 5. For any graph G, f(G; r) is the independence number of Kr(G). For a
chordal graph G, g(G; r) is the clique covering number of Kr(G).

Proof. The Rrst statement is obvious. The second statement follows from the obser-
vation that we can modify any clique cover C of Kr(G), to construct a collection of
(the same number of) cliques which meet all Kr’s of G, by applying Lemma 3 to each
clique in C.

Lemma 6. If G is chordal then Kr(G) is also chordal.

Proof. Assume that W1; W2; : : : ; Wq;W1 (q¿ 4) is a chordless cycle in Kr(G). This
means that Wi and Wj are consecutive in the cycle if and only if the corresponding Kr’s
in G are adjacent. Consider a sequence of vertices of G S = (u1; w1; u2; w2; : : : ; uq; wq)
such that ui, wi ∈Wi, ui is adjacent to the Kr corresponding to Wi−1, and wi is adjacent
to the Kr corresponding to Wi+1, for every i∈{1; : : : ; q} (indices are taken circularly
in the range 1 : : : q). It is clear that if i and j are non-consecutive indices, then the
subsets {ui; wi} and {uj; wj} are non-adjacent. Occasionally, it might occur that ui =
wi or wi = ui+1 for some i, but these equalities cannot hold simultaneously. This



P. Hell et al. / Discrete Applied Mathematics 141 (2004) 185–194 189

means that every vertex occurring in S appears at most twice, and two occurrences
of a same vertex necessarily use consecutive positions in S. These observations show
that we can construct a cycle C0 in G from S by removing repeated occurrences of
vertices. This construction ensures that at least one vertex from {ui; wi} is taken, for
every i∈{1; : : : ; q}. Thus, C0 contains at least four vertices. Moreover, C0 is clearly a
chordless cycle, a contradiction.

Theorem 4 follows naturally from Lemmas 5 and 6.

Proof of Theorem 4. By Lemma 6 Kr(G) is chordal, and therefore perfect. Thus the
independence number of Kr(G) is equal to its clique covering number. Lemma 5
completes the proof.

The characterization of chordal (k; ‘)-graphs by forbidden subgraphs follows as a
consequence of Theorem 4.

Theorem 7. A chordal graph is a (k; ‘)-graph if and only if it does not contain
(‘ + 1)Kk+1 as an induced subgraph.

Proof. We have shown that a chordal (k; ‘)-graph cannot contain ‘ + 1 independent
copies of Kk+1, i.e., cannot contain (‘+ 1)Kk+1 as an induced subgraph. On the other
hand, Theorem 4 implies that if a chordal graph G does not contain ‘+1 independent
copies of Kk+1, then g(G; k + 1)6 ‘. This means that G contains ‘ cliques whose
removal leaves a subgraph G′ without Kk+1. Since G is perfect, G′ is k-colourable,
whence G admits a partition into k independent sets and ‘ cliques.

3. The algorithms

Since k and ‘ are Rxed, there are only polynomially many subgraphs of G with
(‘ + 1)(k + 1) vertices, and so Theorem 7 gives a polynomial time recognition al-
gorithm for chordal (k; ‘)-graphs. There are, however, more e?cient algorithms. The
O(n(m + n)) algorithm we present below also provides us with a second proof of
Theorem 4.
We Rrst review the standard greedy colouring algorithm for chordal graphs. (Note

that testing for the existence of a k-colouring is equivalent to recognizing (k; 0)-graphs.)
Suppose the vertices of G are given in a perfect elimination ordering 1; 2; : : : ; n. A
perfect elimination ordering for a chordal graph can be found in linear time [8]. The
reverse greedy algorithm proceeds in the order n; n − 1; : : : ; 2; 1, assigning to each
vertex the least available colour. In other words, to colour G by the colours s1; s2; : : :,
we colour the vertex n by s1, and having coloured n; n−1; : : : ; i+1, we colour i by sd,
where d is the smallest subscript such that no neighbour of i amongst i+1; i+2; : : : ; n
has been coloured sd. Note that at this point i lies in a Kd, since it has a neighbour of
each of the colours s1; s2; : : : ; sd−1, which are mutually adjacent. (Any two neighbours
of i amongst i + 1; i + 2; : : : ; n are adjacent, since 1; 2; : : : ; n is a perfect elimination



190 P. Hell et al. / Discrete Applied Mathematics 141 (2004) 185–194

ordering.) It follows that the reverse greedy algorithm delivers, in time O(m+n), both
a minimum colouring and a maximum clique.
We are now ready to describe our algorithm. Let k ¿ 0 be an integer. The algorithm

Rnds the minimum value of ‘ (possibly ‘=0) for which G is a (k; ‘)-graph. We will
be colouring the vertices of the input chordal graph G by the colours s1; s2; : : : ; sk and
c1; c2; : : : ; c‘. Throughout the execution of the algorithm, the vertices coloured by each
sd will form an independent set, and the vertices coloured by each ca will form a
clique. We shall denote by Si the set consisting of i, together with all vertices amongst
1; 2; : : : ; i − 1 coloured s1; s2; : : : ; sk .
The following fact is easily obtained from these deRnitions, using the properties of

a perfect elimination ordering:

Lemma 8. If vertex i is adjacent to the @rst vertex j coloured by ca, and j¡ i, then
i is adjacent to all vertices x¡ i coloured by ca.

The lemma will allow us to easily test whether or not a vertex i can be added to
the clique formed by vertices coloured by ca.

Algorithm for the recognition of chordal (k; ‘)-graphs.
Assume G is a chordal graph with a perfect elimination ordering 1; 2; : : : ; n.

• Colour the vertex 1 by s1.
• Having coloured the vertices 1; 2; : : : ; i − 1 without using the colour c1:

◦ remove the colours from 1; 2; : : : ; i − 1 and colour 1; 2; : : : ; i by colours s1; s2;
: : : ; sk (using the reverse greedy algorithm), if possible, or else

◦ keep the colouring of 1; 2; : : : ; i − 1, and colour i by c1.
• Having coloured the vertices 1; 2; : : : ; i−1 and having used the colours c1; c2; : : : ; ca:

◦ colour i by cb, where b6 a is the least subscript such that i is adjacent to
the Rrst vertex coloured cb, if such subscripts exists, or else

◦ remove the colours from the vertices of Si \ i and colour Si by colours
s1; s2; : : : ; sk (using the reverse greedy algorithm), if possible, or else

◦ keep the colouring of 1; 2; : : : ; i − 1, and colour i by ca+1.

We set ‘ to be the largest value of a such that there is a vertex coloured ca, or ‘= 0
if all vertices are coloured with s1; s2; : : : ; sk .
Since the work of the algorithm is dominated by the at most n applications of the

reverse greedy algorithm, the time bound O(n(m + n)) follows. The correctness will
follow from the next proposition:

Proposition 9. If the algorithm uses colour cp, then G contains an induced pKk+1.

Proof. Let va be the Rrst vertex (in the perfect elimination ordering) using the colour
ca. The subgraph of G induced by Sva−1 is k-coloured, but our algorithm found it
impossible to add va so that Sva is still k-colourable. Thus there exists a subgraph
Xa isomorphic to Kk+1, containing va and some k vertices of Sva−1 . It only remains
to show that the subgraphs X1; X2; : : : Xp are independent. Suppose a vertex x from



P. Hell et al. / Discrete Applied Mathematics 141 (2004) 185–194 191

a subgraph Xa is adjacent or equal to a vertex x′ from a subgraph Xa′ .
Assume a¡a′.
If x′6 x, then from the fact that x′ is adjacent or equal to va′ , we conclude that x

is adjacent or equal to va′ . Now va and va′ must be adjacent, since x6 va and x6 va′ .
This means that va′ is adjacent to the Rrst vertex coloured by ca, contradicting the fact
that our algorithm could not colour va′ by ca.
If x′¿x, then x′ is seen to be adjacent or equal to va by a similar argument. If

x′6 va then va′ and va must be adjacent, and va′ should have been coloured by ca,
as in the previous case. On the other hand, if x′¿va, then x′ is adjacent to the Rrst
vertex coloured ca. Thus our algorithm should have coloured x′ by ca, contradicting
the fact that it was coloured by some sd (in case x′ is a member of Svd′−1 ) or by cd′
(in case x′ = vd′).

Corollary 10. The following statements are equivalent:

1. The algorithm partitions G into k independent sets and ‘ cliques,
2. the graph G is a (k; ‘)-graph,
3. the graph G does not contain an induced (‘ + 1)Kk+1.

Proof. The implications 1 implies 2, and 2 implies 3 are obvious, and Proposition 9
proves that 3 implies 1.

Note that the equivalence of 1 and 2 proves the correctness of the algorithm, while
the equivalence of 1 and 3 provides us with a second proof of Theorem 7.
We close this section by noting that the algorithm Rnds, for any k and chordal graph

G, the minimum value ‘ such that G is a (k; ‘)-graph.

4. The case of one independent set, emphasizing split graphs

When k = 1, we can somewhat simplify the algorithm, since we do not need the
reverse greedy algorithm to test whether a vertex can be added to an independent set,
maintaining independence.
Algorithm for the recognition of chordal (1; ‘)-graphs.
Assume G is a chordal graph with a perfect elimination ordering 1; 2; : : : ; n.

• Colour the vertex 1 by s1,
• and continue colouring vertices i = 2; 3; : : : by s1 as long as possible (i has no
edges to 1; 2; : : : ; i − 1),

• and then colour the Rrst j that cannot be so coloured by c1.
• Having coloured the vertices 1; 2; : : : ; i − 1 using colours s1; c1; c2; : : : ; ca,

◦ colour i by cb, where b6 a is the Rrst subscript such that i is adjacent to the
Rrst vertex coloured cb, if such subscripts exists, or

◦ colour i by s1 if it is nonadjacent to all vertices coloured s1, or else
◦ colour i by ca+1.



192 P. Hell et al. / Discrete Applied Mathematics 141 (2004) 185–194

It is clear that this algorithm can be implemented to run in time O(m+ n).
The situation is simplest when k=‘=1, and in this case we do not need to explicitly

assume chordality. (Split graphs are automatically chordal.) Since split graphs are of
some interest [8,7], we restate the algorithm once more, as it applies to the recognition
of split graphs.
Algorithm for the recognition of split graphs. Assume G is any graph.

• Find a perfect elimination ordering 1; 2; : : : ; n of G [8].
• Colour 1 by s, and continue colouring i = 2; 3; : : : by s as long as possible (i is
not adjacent to a previously coloured vertex), then introduce colour c for the next
vertex j.

• If all of 1; 2; : : : i−1 have been coloured, and both colours s and c have been used,
then colour i by c if it is adjacent to the Rrst vertex j coloured by c; otherwise,
colour i by s if it is nonadjacent to all vertices previously coloured by s.

If the algorithm fails because there is no perfect elimination ordering, then the al-
gorithm given in [8] exhibits an induced C4; C5, or Ck , k¿ 6. If it fails to colour all
vertices, then according to Proposition 9, G contains an induced 2K2. Here is a short
version of the proof, that will be used in a generalization below:
If a vertex i is reached which cannot be coloured by s or by c, then i is nonadjacent

to the Rrst vertex j coloured by c, and is adjacent to some vertex k that was previously
coloured by s. We claim that j and k cannot be adjacent. If k ¡ j, this follows from
the properties of a perfect elimination ordering. If k ¿ j, then if k were adjacent to j
the algorithm would have coloured it by c.
Vertex j was coloured by c because it was adjacent to a vertex ‘ previously coloured

by s. Since ‘¡j¡ i, and i; j are nonadjacent, ‘ must be nonadjacent to i. Additionally,
the two vertices k; ‘ are nonadjacent, as they are both coloured by s. Thus i; j; k; ‘ form
an induced 2K2 in G.

Since each Ck , k¿ 6 also contains an induced 2K2, we obtain the following well
known characterization of split graphs [8]:

Corollary 11. A graph G is a split graph if and only if it does not contain an induced
2K2, C4 or C5.

5. Pre-colouring extension

In [6] we introduced the notion of a list partition. In the context of split graphs,
it specializes to the following concept of a ‘pre-colouring extension’. (Pre-colouring
extensions for ordinary colourings have been much studied in the literature, cf. [1,10].)
A pre-coloured graph G is a graph with some vertices coloured by either s or c, so

that every two vertices coloured c are adjacent in G, but no two vertices coloured s
are adjacent in G. A split extension of a pre-coloured graph G is a partition of V (G)
into an independent set containing all vertices coloured by s, and a clique containing
all vertices coloured by c.



P. Hell et al. / Discrete Applied Mathematics 141 (2004) 185–194 193

Consider the pre-coloured graph A consisting of three vertices a; a′; a′′ and two edges
aa′; aa′′, with vertex a pre-coloured s. It is clear that A does not admit a split extension,
as the nonadjacent vertices a′ and a′′ would both have to be in the clique. Similarly,
the pre-coloured graph B with three vertices b; b′; b′′ and one edge b′b′′ in which b is
pre-coloured c, does not admit a split extension.

Theorem 12. A pre-coloured graph G admits a split extension if and only if it does
not contain an induced 2K2; C4; C5; A, or B.

Proof. The proof follows again from the following modiRcation of the above algo-
rithm:
Algorithm for split extension of pre-coloured graphs.

• Proceed as above, obtaining a perfect elimination ordering 1; 2; : : : ; n of G, then
colouring i = 1; 2; 3; : : : by s as long as possible. Let j be the Rrst vertex where
this is impossible. This may be because
◦ (as above) j is adjacent to a vertex previously coloured by s, but also because
◦ j is adjacent to a vertex (occuring later in the ordering) which was pre-
coloured by s, or also because

◦ j itself has been pre-coloured by c.

In all these cases, colour j by c.

• In the general step, if all of 1; 2; : : : i − 1 have been coloured, and colour c has
been used, then
◦ colour i by c if i is adjacent to j and is not pre-coloured by s, or if i is
pre-coloured by c, otherwise

◦ colour i by s if i is nonadjacent to all vertices coloured or pre-coloured by s
and is not pre-coloured by c, or if i is pre-coloured by s.

The modiRed algorithm is analyzed in the same way as the earlier algorithm. If it
fails to Rnd a perfect elimination ordering then G contains an induced C4; C5, or 2K2.
Otherwise, it only fails when a vertex i is reached which cannot be coloured by s or
by c. (Thus i is not pre-coloured.)
If i cannot be coloured by c because it is nonadjacent to the Rrst vertex j coloured

by c, and cannot be coloured by s because it is adjacent to some vertex k previously
coloured by s, then, as above, j and k must be nonadjacent.
If j was coloured by c because it was adjacent to a vertex ‘ previously coloured

by s, we conclude as above that i; j; k; ‘ form an induced 2K2 in G. If j was coloured
by c because it was adjacent to a vertex ‘ pre-coloured by s, then ‘ and k are still
nonadjacent. If ‘ is also nonadjacent to i, we have a 2K2 as before. Otherwise we have
an induced copy of A, with a= ‘, a′ = j, a′′ = i. Finally, if j was pre-coloured by c,
then we have an induced copy of B, with b= c, b′ = i, b′′ = k.
If i cannot be coloured by c because it is nonadjacent to the Rrst vertex j coloured

by c, but cannot be coloured by s because it is adjacent to some vertex k pre-coloured



194 P. Hell et al. / Discrete Applied Mathematics 141 (2004) 185–194

by s, then k; i; j form a copy of A if j is adjacent to k. Otherwise (j and k are
nonadjacent), we argue about ‘ as in the previous case.
On the other hand, if i cannot be coloured by s because it is adjacent to a vertex k

previously coloured by s, but cannot be coloured by c because it is nonadjacent to a
vertex j pre-coloured by c, then we may assume that j¿ i, otherwise the proof still
applies. In this case j; k must not be adjacent, and so j; i; k form a copy of B.
Finally, if i is adjacent to a vertex k pre-coloured by s and nonadjacent to a vertex

j pre-coloured by c, then we have an induced A if j; k are adjacent, or an induced B
if j; k are nonadjacent.

We have improved the algorithms for the recognition of chordal (k; ‘) -graphs and for
computing f(G; r) for chordal graphs to time O (m + n); these improved algorithms,
together with an extension of the min-max relation to weighted chordal graphs will
appear in our paper ‘Packing r-cliques in chordal graphs’. We have also extended our
focus to more general partition problems for the class of chordal graphs. These results,
joint with T. Feder, will appear in our paper ‘List matrix partitions of chordal graphs’.

References

[1] M.O. Albertson, E.H. Moore, Extending graph colorings, J. Combin. Theory B 77 (1999) 83–95.
[2] A. BrandstSadt, Partitions of graphs into one or two independent sets and cliques, Discrete Math. 152

(1996) 47–54.
[3] A. BrandstSadt, Corrigendum: Partitions of graphs into one or two independent sets and cliques, Discrete

Math. 186 (1998) 295–295.
[4] A. BrandstSadt, V.B. Le, T. Szymczak, The complexity of some problems related to graph 3-colorability,

Discrete Appl. Math. 89 (1998) 59–73.
[5] F.F. Dragan, A. BrandstSadt, r-dominating cliques in graphs with hypertree structure, Discrete Math. 162

(1996) 93–108.
[6] T. Feder, P. Hell, S. Klein, R. Motwani, Complexity of graph partition problems, in: F.W. Thatcher, R.E.

Miller (Eds.), Proceedings of the 31st Annual ACM Symposium on Theory of Computing-STOC’99,
Plenum Press, New York, 1999, pp. 464–472.

[7] S. Foldes, P. Hammer, Split graphs, Congr. Numer. 19 (1977) 311–315.
[8] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[9] P. Hell, S. Klein, L.T. Nogueira, F. Protti, On generalized split graphs, GRACO’2001, Electronic Notes

in Discrete Mathematics, Vol. 7, Elsevier, Amsterdam, 2001.
[10] J. Kratochv-il, A. SebSo, Coloring precolored perfect graphs, J. Graph Theory 25 (1997) 207–215.
[11] L.T. Nogueira, Grafos Split e Grafos Split Generalizados, Master Thesis, COPPE-Sistemas, Universidade

Federal do Rio de Janeiro, Brazil, 1999 (in Portuguese).


	Partitioning chordal graphs into independent sets and cliques
	Introduction
	The theorems
	The algorithms
	The case of one independent set, emphasizing split graphs
	Pre-colouring extension
	References


