Universidade Federal Fluminense / Instituto de Computação

Disciplina: Análise e Projeto de Algoritmos (Graduação) **Prof.** Carlos Martinhon

Desafios !!

- **01** (**Multiplicação de 2 complexos**) Mostre como multiplicar 2 números complexos utilizando apenas 3 multiplicações.
- **02** (**Limite inferior do MaxMin**) Considere uma lista S com n elementos inteiros. Mostre que serão necessárias pelo menos $\lceil 3n/2 \rceil 2$ comparações para determinação do maior e o menor elementos de S.
- 03 (Hanói Circular) Construa um algoritmo eficiente para o problema das torres de Hanói de maneira que os movimentos dos discos ocorram sempre na direção dos ponteiros de um relógio, ou seja, do pino A para o pino B, do pino B para o pino C ou do pino C para o pino A. Qual a complexidade deste algoritmo?

04 - (Viagem Espacial)

Um problema de engenharia deve ser resolvido por 3 equipes de pesquisadores. Cada uma das equipes utiliza um plano diferente na resolução deste problema. A probabilidade das equipes 1,2 e 3 fracassarem em cada uma das estratégias utilizadas é de 0,4; 0,6 e 0,8 respectivamente. Assim, a probabilidade das 3 equipes fracassarem é de (0,4)*(0,6)*(0,8)=0,192. Dois novos cientistas devem ser contratados e utilizados, cada um, em um dos 3 projetos de modo a minimizar a possibilidade de fracasso neste projeto. Na tabela abaixo estão presentes a probabilidade de fracasso de cada uma das equipes em função do número de cientistas utilizados:

Número de cientistas	Equipes		
	1	2	3
0	0,4	0,6	0,8
1	0,2	0,4	0,5
2	0,15	0,2	0,3

Resolva este problema utilizando programação dinâmica.

05 – Seja A= $\{a_1, a_2,...,a_n\}$ um conjunto de valores diferentes de moedas. Suponha que moedas de cada um destes valores estejam disponíveis em quantidade ilimitada. Escreva um algoritmo utilizando $Programação\ Dinâmica$ que, dado um valor x, determine o menor número de moedas que devem ser utilizadas para o troco exato de x. Discuta a complexidade deste algoritmo.

- **06 -** Seja A= $\{a_1, a_2,...,a_n\}$ um conjunto com n objetos distintos. Construa um algoritmo que leia um inteiro $k \le n$ e imprima todas as combinações de k elementos. Qual a complexidade deste algoritmo?
- **07 -** Considere um muro bastante alto estendendo-se indefinidademente em ambas direções e uma porta com posição desconhecida, ou seja, não se conhece nem a distância nem a direção correta desta porta em relação a um ponto de partida pré-estabelecido. Suponha que esteja bastante escuro e um garoto, que se encontra no ponto de partida, dispõe apenas de um vela acesa, para encontrar a porta atravessando-a para o outro lado. Devido à baixa luminosidade, o garoto identificará a porta apenas se estiver exatamente em sua frente. Encontre um algoritmo de complexidade O(n) para este problema, onde n representa o número total de passos a ser dado pelo garoto até que a porta seja encontrada. Qual a constante multiplicativa (na notação big-O) associada a seu algoritmo?
- $\mathbf{08}$ Seja S uma seqüência de n elementos inteiros e k um inteiro positivo entre 1 e n. Construa um algoritmo de complexidade O(n) que retorne o k-ésimo elemento desta seqüência.