
On Paths and Trails in Edge-Colored Graphs and
Digraphs

A thesis presented

by

Adria Ramos de Lyra

to the

Programa de Pós-graduação em Computação

in partial fulfillment of the requirements

for the degree of

Doctor in Computing

in the subject of

Combinatorial Optimization and Artificial Intelligence

Universidade Federal Fluminense
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On Paths and Trails in Edge-Colored Graphs and Digraphs

Abstract

We deal with different algorithmic questions regarding properly edge-colored s-t

paths/trails in edge-colored graphs and digraphs. Given a c-edge-colored graph Gc

with no properly edge-colored closed trails, we present a polynomial time procedure

for the determination of properly edge-colored s-t trails visiting all vertices of Gc a

predefined number of times. As an immediate consequence, we polynomially solve the

Hamiltonian path (resp., Eulerian trail) problem for this particular class of graphs.

In addition, we prove that to check whether Gc contains 2 properly edge-colored s-t

paths/trails with length at most L > 0 is NP-complete in the strong sense. Besides,

we also show that if Gc is a general c-edge-colored graph, to find 2 monochromatic

vertex disjoint s-t paths with different colors is NP-complete.

Regarding c-edge-colored digraphs, we show that the determination of a directed

properly edge-colored s-t path is NP-complete in digraphs with c = Ω(n2) colors. If

the digraph is a c-edge-colored tournament, we show that deciding whether it contains

a properly edge-colored circuit passing through a given vertex v (resp., directed s-

t Hamiltonian path) is NP-complete. As a consequence, we solve a weak version

of an open problem posed in [30]. In addition, we show that several problems are

polynomial if we deal with directed properly edge-colored s-t trails instead of directed

properly edge-colored s-t paths.

iii
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We also consider s-t paths, trails and walks with reload costs over c-edge-colored

graphs. Each time a vertex is crossed by a walk there is an associated non-negative

reload cost ri,j, where i and j denote, respectively, the colors of successive edges in this

walk. The goal is to find a route whose total reload cost is minimized. Polynomial

algorithms and proofs of NP-hardness are given for particular cases: when the triangle

inequality is satisfied or not, when reload costs are symmetric (i.e., ri,j = rj,i) or

asymmetric. We also investigate bounded degree graphs and planar graphs.

Keywords: Edge-colored graphs and digraphs; properly edge-colored paths/trails;

monochromatic paths; edge-colored tournaments; reload optimization;
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Sobre caminhos e trilhas em grafos e digrafos com cores nas arestas

Resumo

Neste trabalho, estuda-se diferentes questões sobre s-t caminhos e trilhas pro-

priamente coloridos em grafos e digrafos com cores nas aretas. Dado Gc um grafo

com c cores nas aretas sem trilhas fechadas propriamente coloridas, apresenta-se um

procedimento polinomial para determinação de s-t trilhas propriamente coloridas que

visitam todos os vértices de Gc um determinado número de vezes. Como consequência

imediata, resolve-se polinomialmente o problema do caminho Hamiltoniano e Eule-

riano para esta classe particular de grafos. Além disso, prova-se que encontrar dois

caminhos propriamente coloridos disjuntos por vértices ou arestas em Gc contendo

no máximo L > 0 arestas é NP-completo forte. Também, mostra-se que achar dois

caminhos monocromáticos disjuntos por vértices, com cores diferentes, em um grafo

Gc qualquer é NP-completo.

Considerando digrafos com cores nas arestas, mostra-se que determinar um s-t

caminho direcionado propriamente colorido é NP-completo mesmo para c = Ω(n2).

Se o digrafo for um torneio com cores nas arestas, mostra-se que decidir se este

contém um circuito propriamente colorido passando por um vértice v (ou um cam-

inho Hamiltoniano direcionado) é NP-completo. Como consequência, resolve-se uma

versão mais fraca de um problema proposto em [30]. Além disso, considerando-se

trilhas ao invés de caminhos, mostra-se que alguns problemas são polinomiais para

s-t trilhas direcionadas propriamente coloridas.

Considera-se também s-t caminhos, trilhas e passeios em grafos coloridos com

custos de conexão entre as aretas. Sempre que se muda de uma cor para outra em
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um passeio tem-se um custo de conexão ri,j associado, onde i e j são as cores das

sucessivas arestas do passeio. O objetivo é encontrar uma rota cujo custo total de

conexão seja minimizado. Algoritmos polinomiais e provas de NP-dificuldade são

apresentados para casos particulares: quando a desigualdade triangular é satifeita ou

não, quando os custos de conexões são simétricos (i.e., ri,j = rj,i) ou assimétricos.

Também são investigados instâncias com grau máximo limitado e grafos planares.

Palavras-chave: Grafos e digrafos com cores nas arestas; caminhos e trilhas

monocromáticos e propriamente coloridos; Torneios com cores nas arestas; Otimização

em grafos com custo de conexão entre as cores;
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Chapter 1

Introduction

In the last few years a great number of applications have been modelled as prob-

lems in edge-colored graphs and digraphs. To solve them, we can explore some in-

teresting connections between edge-colored graphs and the theory of cycles, paths

and trails in directed and undirected graphs, matching theory, and other branches of

graph theory [5]. For instance, problems in molecular biology correspond to extracting

Hamiltonian or Eulerian paths or cycles colored in specified pattern [14, 15, 34, 35],

transportation and connectivity problems where reload costs are associated with pair

of colors at adjacent edges [19, 28, 41], social sciences [12], among others. Despite

of their large application, a great number of works are restricted to 2-edge-colored

graphs and digraphs, or other particular cases such as c-edge-colored complete graphs

(for c ≥ 2) [6, 9, 12, 13, 8] and c-edge-colored tournaments [30].

1
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1.1 Notation and terminology

Let Ic = {1, 2, . . . , c} be a given set of colors with c ≥ 2. In this work, Gc denotes a

simple, i.e., loopless and with no parallel edges, connected, non-oriented edge-colored

graph containing two particular vertices s and t, where each edge has a color of Ic.

In such case Gc is said to be a c-edge-colored graph.

We recall here some standard graph terminology: the vertex and edge sets of Gc

are denoted by V (Gc) and E(Gc), respectively. The order of Gc is the number n of its

vertices and the size of Gc is the number m of its edges. For c-edge-colored complete

graphs of size n we write Kc
n instead of Gc. For a given color i, Ei(Gc) denotes the

set of edges of Gc colored by i. We denote by NGc(x) the set of all neighbors of x

in Gc, and by N i
Gc(x), the set of vertices of Gc, linked to x with edges colored by i.

The degree of x in Gc is dGc(x) = |NGc(x)| and the maximum degree of Gc, denoted

by ∆(Gc), is ∆(Gc) = max{dGc(x) : x ∈ V (Gc)}. A non-oriented edge between two

vertices x and y is denoted by xy while its color is denoted by c(xy).

Similarly, given a c-edge-colored digraph Dc and two vertices u, v ∈ V (Dc), we

denote by ~uv an oriented edge or arc of E(Dc) and its color by c( ~xy). In addition,

we define N+
Dc(x) = {y ∈ V (Dc) : ~xy ∈ E(Dc)} the out-neighborhood of x in Dc

(d+
Dc(x) = |N+

Dc(x)| is the out-degree of x in Dc), N−
Dc(x) = {y ∈ V (Dc) : ~yx ∈ E(Dc)}

the in-neighborhood of x in Dc (d−
Dc(x) = |N−

Dc(x)| is the in-degree of x in Dc) and

NDc(x) = N+
Dc(x) ∪ N−

Dc(x) the neighborhood of x ∈ V (Dc). We say that, T c
n defines

a c-edge-colored tournament with n vertices if it is obtained from Kc
n by choosing a

direction for each colored edge.

Given a (non necessarily edge-colored) graph G = (V, E), a walk ρ from s to t in G
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(called s-t walk) is a sequence ρ = (v0, e0, v1, e1, . . . , ek, vk+1) where v0 = s, vk+1 = t

and ei = vivi+1 for i = 0, . . . , k. A trail from s to t in G (called s-t trail) is a walk

ρ = (v0, e0, v1, e1, . . . , ek, vk+1) from s to t where ei 6= ej for i 6= j. A path from s

to t in G (called s-t path) is a trail ρ = (v0, e0, v1, e1, . . . , ek, vk+1) from s to t where

vi 6= vj for i 6= j.

We will also recall the concept of contraction for non-oriented graphs. Given an

induced subgraph Q of a non-colored graph G, a contraction of Q in G consists in

replacing Q by a new vertex, say zQ, so that each vertex x in G−Q is connected to

zQ by an edge, if and only if, there exists an edge xy in G for some vertex y in Q.

Consider a c × c matrix R = [ri,j] (for i, j ∈ Ic) whose entries define reload costs

(or connection costs) when going from an edge colored i to another edge colored j.

It is assumed that each entry ri,j of R is a non-negative integer (i.e., ri,j ∈ N). Here,

we will both consider symmetric and asymmetric matrices. We say that a matrix R

satisfies the triangle inequality, if and only if, for all edges ei, ej , ek ∈ E(Gc) which are

adjacent to a common vertex, we have rc(ei),c(ej) ≤ rc(ei),c(ek) + rc(ek),c(ej) (see [19, 41]).

Given a path/trail/walk ρ = (v0, e0, v1, e1, . . . , ek, vk+1) between vertices s and t, we

define the reload cost of ρ as:

r(ρ) =

k−1
∑

j=0

rc(ej),c(ej+1) (1.1)

The length of the path, trail or walk ρ in Gc (resp., Dc), denoted by |ρ|, is the

number of its edges (resp., arcs).

An instance of the minimum reload s-t path/trail/walk problem consists of a simple

connected c-edge-colored graph Gc, a pair s, t ∈ V (Gc) and a c × c matrix R =
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color l

color j(a)
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Figure 1.1: (a) 3-colored graph. (b) A pec path and (c) a pec trail associated.

[ri,j] associating a non-negative cost to each pair of colors. The objective is to find

a path/trail/walk ρ from s to t with minimum reload cost. For instance, in the

Minimum Toll Cost s-t Path problem, ri,j = rj for i, j ∈ Ic with i 6= j and ri,i = 0.

Where the edges represent roads and every rj is a non-negative integer that represents

a cost that must be paid each time we change from a road to another. The objective

is to find a path minimizing the cost of going from a source to a destination. Finally,

notice that if c = 1 (i.e., there is only one color in Gc), these problems are equivalent

to finding an s-t path of minimum length in Gc. Thus, we will assume c ≥ 2.

From now on, we write pec instead of properly edge-colored. A pec path (resp.,

pec trail) is a path (resp., trail) such that any two consecutive edges have different

colors, see Figure1.1. A pec path or trail in Gc is closed if its end-vertices coincide

and its first and last edges differ in color. They are also referred, respectively, as pec

cycles and pec closed trails. However, if we deal with edge-colored digraphs, they are

denoted, respectively, by pec circuits and directed pec closed trails. In the same way,

a monochromatic path/trail is the path/trail whose all edges have the same color. We

say that two or more s-t paths/trails are pairwise vertex (resp., edges) disjoint if they

do not have a vertex (resp., edge) in common.
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1.1.1 The gap reduction technique

We will also deal with some inapproximability results for the reload problems

presented here. For that, we use the gap reduction technique. The idea is to use

a problem φ and its gap version φg(n) to prove that if φg(n) is NP-hard, then it is

NP-hard to obtain a worst-case approximation ratio for the optimization problem φ.

Without loss of generality, suppose that φ is a minimization problem. The following

definition can be made for maximization problems, as well. Formally:

For a (minimization) problem φ its gap version problem φg(n) and some function

h(n), we have:

• The YES instances are instances I of φ such that OPT (I) ≤ h(n) and

• The NO instances are instances I of φ such that OPT (I) ≥ g(n)h(n)

The function g(n) ≥ 1 is called gap. Now, suppose there is a polynomial time

reduction from a NP-complete decision problem φ′ to φg(n) such that the YES (resp.

NO) instances of φ′ are mapped to YES (resp. NO) instances of φg(n). Then g(n)-

approximation algorithm for φ, if exists, can be used to decide the NP-complete

decision problem φ′ in polynomial time. It follows that it is NP-hard to approximate

φ within a factor g(n). This is typical way of proving inapproximability results.

As an example, to illustrate the previous definition, there is a very simple ap-

plication of the gap technique. In the polynomial reduction from an instance G of

the Hamiltonian Cycle problem (HC) to an instance G′ of the Travelling Salesman

Problem (TSP), one can set all the edges of G with weights 1, and the missing edges

with weights 2 to construct G′. Observe that G′ is a complete weighted graph with
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costs 1 and 2. Any valid Hamiltonian cycle for G in G′ has cost n. An invalid tour

will have at least a cost n+1. So it is NP-complete to distinguish between OPT = n

and OPT = n + 1. In the same way, one can increase the size of the gap by replacing

the distances of 2 by some exponential, e.g., n2n. Then, tours that do not come from

a valid HC in the graph G have cost at least n2n + n− 1 for the TSP in G′. So there

is no polynomial time algorithm with a worst-case approximation ratio of 2n.

1.2 Some related work

The determination of pec s-t paths was polynomially solved for general graphs

by Edmonds for two colors (see Lemma 1.1 in [32]) and then extended by Szeider[38]

to include any number of colors. In Abouelaoualim et al.[1], the authors also deal

with pec trails and present polynomial time procedures for several versions of the

s-t path/trail problem, such as the shortest pec s-t path/trail on general c-edge-

colored graphs and the longest pec s-t path (resp., trail) for graphs with no pec

cycles (resp., closed trails). A characterization of c-edge-colored graphs containing

pec cycles was first presented by Yeo [42] and generalized in [1] for pec closed trails.

In addition, Abouelaoualim et al. in [1] prove that deciding whether there exist k

pairwise vertex/edge disjoint pec s-t paths/trails in a c-edge-colored graph Gc is NP-

complete even for k = 2 and c = Ω(n2) (for c ≥ 2). Moreover, they prove that these

problems remain NP-complete for c-edge-colored graphs containing no pec closed

trails and c = Ω(n). They describe a greedy procedure for the Maximum Properly

Edge Disjoint s-t Trail - MPEDT (resp., Maximum Properly Vertex Disjoint s-t Path

- MPVDP) problem, whose objective is to maximize the number of edge disjoint
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(resp., vertex disjoint) pec trails (resp., paths) between s and t. They prove a O( 1√
m

)

(resp., O( 1√
n
)) performance ratio for the MPEDT problem (resp., MPVDP problem).

Finally, they show how to polynomially solve the MPEDT problem (resp., MPVDP

problem) over c-edge-colored graphs with no pec closed trails or almost pec closed

trails (resp., pec cycles or almost pec cycles) 1 through s or t. We say that a closed

trail (resp., cycle) with vertices cx = xa1...ajx and with x 6= ai for i = 1, ..., j is an

almost pec closed trail (resp. cycle) through x to in Gc, if and only if, c(xa1) = c(xaj)

and both trails (resp., paths) from x to a1 and x to aj are pec .

In Abouelaoualim et al. [2], the authors give sufficient degree conditions for the

existence of pec cycle and paths in edge-colored graphs, multigraphs and random

graphs. In particular, they prove that an edge-colored multigraph of order n with

at least 3 colors and with minimum color degree greater or equal to ⌈n+1
2
⌉ has pec

cycles of all possible lengths, including Hamiltonian cycles.

Concerning monochromatic results, they were exploited in c-edge-colored digraphs

or bipartite tournaments. In [21], Sánchez and Monroy proved that if Dc is an c-

colored bipartite tournament such that every directed cycle of length 4 is monochro-

matic, then Dc has a kernel by monochromatic paths. Besides, in [22], they present

a method to construct a large variety of c-colored digraphs Dc with (resp. without a

kernel) kernel by monochromatic paths; starting with a given c-colored digraph Dc
0.

A set N ⊆ V (Dc) is said to be a kernel by monochromatic paths if it satisfies the

following two conditions:

1. For every pair of different vertices u, v ∈ N there is no monochromatic directed

1We say that we have an almost pec closed trail (resp., almost pec cycle) through a vertex x if
both edges adjacent to x in this closed trail (resp., cycle) have the same color.
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color i

color j

v

w

Figure 1.2: Vertex v and w are cut-vertices separating colors.

path between them.

2. For every vertex x ∈ (V (Dc)\N) there is a vertex y ∈ N such that there is an

x-y monochromatic directed path.

From our knowledge, most of the studies deal with kernel by monochromatic paths,

see [33, 21, 22, 20].

The following results from the literature concerning c-edge-colored graphs will be

used in this work. Firstly, by using the concept of cut-vertex separating colors we

have the following result of Yeo [42] that allows us to decide whether a undirected

c-edge-colored graph contains or not a pec cycle. We say that a vertex v of Gc is a

cut-vertex separating colors, if and only if, no component of Gc − v is joined to v by

at least two edges in different colors (See Figure 1.2). This theorem was generalized

by Abouelaoualim et al.[1] to deal with the existence and search of pec closed trails.

Theorem 1. (Yeo, 1997) Let Gc be a c-edge-colored graph, c ≥ 2, such that every

vertex of Gc is incident with at least two edges colored differently. Then either Gc has

a pec cycle or Gc has a cut-vertex separating colors.
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color i

color j

Figure 1.3: The graph Gc above does not contain a pec cycle, however it contains a
pec closed trail.

Theorem 2. (Abouelaoualim et al., 2008) Let Gc be a c-edge-colored graph, such that

every vertex of Gc is incident with at least two edges colored differently. Then either

Gc has a bridge or Gc has a pec closed trail.

As an immediate consequence of the Theorem 1 (resp., 2), the existence of a pec

cycle (resp., closed trail) in Gc may be checked in polynomial time. To see that it

suffices to delete all cut-vertex separating colors (resp., bridges and vertices incident

to edges of the same color in Gc). If the resulting set of edges is non-empty, then Gc

contains a pec cycle (resp., pec closed trail). Recall that a bridge is an edge whose

deletion increases the number of connected components of the original graph (See the

example of Figure 1.3). Note that all such edges and vertices may be deleted without

destroying any pec cycle (resp., closed trail).

We will also use the following theorem from Szeider [38] for determining a pec s-t

path in Gc (if any).

Theorem 3. (Szeider, 2003) Let s and t be two vertices in a c-edge-colored graph

Gc, c ≥ 2. Then, either we can find a pec s-t path or else decide that such a path
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color i

color l

color j

t

u

qp

s

v
e0

e1

e2

Figure 1.4: A 3-edge-colored graph we used as example for Szeider’s Algorithm.

does not exist in Gc in linear time on the size of the graph.

Prior to explain this algorithm, let us first consider the following definitions. Given

a graph G = (V, E), a matching M in G is a set of pairwise non-adjacent edges, so

that, no two edges share a common vertex. We say that M is perfect, when it matches

all vertices of the graph. A maximum matching is a matching that contains the largest

possible number of edges.

Essentially, the idea in the Szeider’s algorithm is to reduce the pec s-t path

problem in Gc to a matching problem in a non-colored graph G defined as follows.

Given Gc, s, t ∈ V (Gc), set W = V (Gc) \ {s, t}. For every x ∈ W define a subgraph

Gx, where,

V (Gx) =
⋃

i∈Ic
{xi, x

′
i | N

i
Gc(x) 6= ∅} ∪ {x′′

a, x
′′
b} and

E(Gx) = {x′′
ax

′′
b} ∪ (

⋃

{i∈Ic|x′

i∈V (Gx)}({xix
′
i} ∪ (

⋃

j=a,b{x
′
ix

′′
j}))).

The former graph will be called Edmonds-Szeider graph as in [1] and is constructed

as follows:

V (G) = {s′, t′} ∪ (
⋃

x∈W V (Gx))

E(G) = {
⋃

i∈Ic
{s′xi | sx ∈ Ei(Gc)}∪{xit

′ | xt ∈ Ei(Gc)}∪{xiyi | xy ∈ Ei(Gc)}}∪

{
⋃

x∈W E(Gx)}.
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Figure 1.5: A non-colored graph G associated with the graph of Figure 1.4
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Figure 1.6: A perfect matching M in G
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See Figure 1.5 for the non-colored graph associated with the edge-colored graph of

Figure 1.4. In Figure 1.6 the bold edges correspond to the edges of a perfect matching

M . The path ρ in Gc associated with M is ρ = (s, e0, v, e1, u, e2, t) (See Figure 1.4).

Note, for instance, that for all vertices x ∈ V (Gc) not belonging to the pec path ρ,

we have x′′
ax

′′
b ∈M and reciprocally, whenever x′′

ax
′′
b /∈M at some gadget Gx in G, we

have x belonging to the edge-colored path ρ in Gc. Further, for every uv ∈ Ei(Gc) in

a edge-colored path ρ, we have uivi ∈M in E(G).

Given a perfect matching M in G−{s′, t′} a pec s-t path exists in Gc, if and only

if, there is an augmenting path P associated with M between s′ and t′ in G. Note

that a path P is augmenting with respect to a given matching M if for any pair of

adjacent edges in P , exactly one of them is in M , with the further condition that

the first and the last edges of P are not in M . Observe that augmenting paths in G

can be found in O(|E(G)|) linear time, see Tarjan’s book [39]. The path ρ in Gc was

obtained after contracting all subgraphs Gx in G, for every x ∈W .

We will also deal with an important definition introduced in Abouelaoualim et

al. [1]. Given an edge-colored graph Gc and an integer p ≥ 2, a new edge-colored

graph denoted by p−Hc (called trail-path graph) is obtained from Gc as follows. Each

vertex x of Gc will be replaced by p new vertices x1, x2, ..., xp. Moreover, for any edge

xy of Gc colored by j, for instance, add two new vertices vxy and uxy, add the edges

xivxy, uxyyi, for i = 1, 2, ..., p all of them colored by j, and finally add the edge vxyuxy

in a new unused color j′ ∈ {1, 2, ..., c} with j′ 6= j. The edge-colored subgraph of

p − Hc induced by the vertices xi, vxy, uxy, yi is associated with the edge xy of Gc

and is denoted by Hc
xy. If p = 2, the subgraph p −Hc is represented simply by Hc,
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Figure 1.7: Edge xy ∈ Ei(Gc) (a). Subgraph Hc
xy associated with xy ∈ Ei(Gc) (b).
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Figure 1.8: Transformation of the s-t trail problem into the s-t path problem.

see Figure 1.7.

Using the concept of trail-path graph, the authors in [1] extend Szeider’s Algorithm

to deal with s-t trails in Gc. The authors show that finding pec s-t paths in p-Hc

(for some p) is equivalent to find pec s− t trails in Gc.

See Figures 1.8.(a) and (b) for an example of a 2-colored graph Gc which contains

a unique s-t trail and its associated trail-path graph Hc. Note that s-t trails in Gc

are associated with s′-t′ paths in Hc and vice verse. In order to use the Szeider’s

Algorithm to find a pec trail in Gc, Abouelaoualim et al [1] first construct the as-
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sociated trail-path graph p-Hc for p = ⌊ (n−1)
2
⌋ (maximum possible number of visits

at x ∈ V (Gc)\{s, t} at an arbitrary s-t trail). Now by using p-Hc, they construct

its associated non-colored Edmonds-Szeider graph G and find a perfect matching M

in G (if any). Thus, the problem of finding a pec s-t trail in Gc (provided that one

exists) can be solved in polynomial time. In [1], if we are looking for a shortest pec

s-t trail, it suffices to fix p = 2.

Concerning reload cost optimization, to the best of our knowledge, it has been

mainly studied in the context of spanning trees [19, 23, 24, 41], but also very re-

cently for some variants of paths, tours and flow problems [3]. In [41], the authors

consider the problem of finding a spanning tree of minimum diameter with respect

to the reload costs and they propose inapproximability results for graphs of maxi-

mum degree 5 and polynomial results for graphs of maximum degree 3. In [19], the

author discusses inapproximability results for the same problem when restricted to

graphs with maximum degree 4. In [23, 24], the authors give several formulations

with computational results to solve the reload cost spanning tree problem.

Despite the importance in telecommunications and transportation industry, reload

costs have not been extensively studied in the literature. In [41, 19], each color is

viewed as a subnetwork and is used to model a cargo transportation network which

uses different means of transportation or data transmission costs arising in large com-

munication networks. In all these models, the transportation or communication costs

between the subnetworks usually dominate the costs within individual subnetworks.

Some applications in satellite networks are also discussed in [23] where the various

subnetworks may represent different products offered by the commercial satellite ser-
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vice providers. In [23], terrestrial satellite dishes are required to first capture the

radio signals and then special electric-to-fiber converters are required to transform

the electric signals from the satellite dishes to optical pulses that can be sent over

optical fibers. These interface costs are referred to as reload costs and depend on

the technologies being connected. As another example, imagine a road network with

many tolls. A fee (reload cost) must be paid each time we change from one road to

another. One may be interested in paying as little as possible to travel from a source

to a destination. We call this problem the minimum toll cost s-t path problem.

Amaldi et al [3] consider several models for paths, tours and flow problems with

reload costs. As discussed above, consider a scenario in which a transportation net-

work is divided in subnetworks, such that transportation costs are negligible within

each subnetwork, but are significant when moving from one subnetwork to another.

This scenario fits networks which use different means of transportation, like overlay

networks, i.e., networks where there is a change of technology used, or peer-to-peer

telecommunication networks, and in general complex telecommunication networks.

For instance, in overlay networks the costs may be related to the change of tech-

nology, in a cargo transportation network to unloading and reloading goods at dif-

ferent junctions, in large communication networks to data conversion at interchange

points, etc. In this scenario the costs at the interchange points between the sub-

networks usually dominate the costs within individual subnetworks. In particular,

Amaldi et al [3] study the following model: given a directed edge-colored graph

Dc = (V,
−→
E ) where each arc (or edge) e ∈

−→
E has a non-negative cost w(e) and

a color c(e) ∈ Ic, and given a non-negative integer reload cost matrix R = [ri,j] for
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i, j ∈ Ic, they want to find an oriented s-t trail ρ = (s, e1, v1, e2, . . . , ek, t) of Dc mini-

mizing
∑k

i=1 w(ei) +
∑k−1

i=1 rc(ei),c(ei+1). In [3], they prove that this problem, called the

minimum reload+weight directed s-t trail problem, is solvable in polynomial time.

The minimum reload s-t path (resp., trail) problem is also related to the problem

of deciding whether a simple connected edge-colored graph Gc has a pec s-t path

(resp., s-t trail) or a monochromatic s-t path. For instance, if we set for the reload

cost ri,i = 1 and ri,j = 0 for i, j ∈ Ic with i 6= j, then there exists an s-t path (resp.,

s-t trail) with reload cost 0 in Gc, if and only if, Gc has a pec s-t path (resp., trail).

Analogously, if we are looking for monochromatic s-t paths in Gc, it suffices to set

ri,i = 0 and ri,j = 1 for i, j ∈ Ic with i 6= j.

1.3 Our Contributions

In Chapter 2 we study c-edge-colored graphs Gc with no pec closed trails. We

prove that checking whether Gc (with no pec closed trails) contains two vertex/edge

disjoint pec s-t paths, each having at most L > 0 edges, is NP-complete in the strong

sense. We conclude the section by presenting a polynomial time procedure for the

determination of a pec s-t trail (if one exists) visiting all vertices of Gc a predefined

number of times. Using this result, we polynomially solve the pec Hamiltonian path

and pec Eulerian trail problems for this particular class of graphs. Recall that, given

a graph G = (V, E), a Hamiltonian (resp., Eulerian) path is a path which visits each

vertex of V (resp., edge of E) exactly once [11]. We conclude the chapter by studying

polynomial and NP-completeness results regarding s-t paths and trails c-edge-colored

graphs with no pec cycles (note in this case that pec closed trails are allowed)
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In Chapter 3, we deal with monochromatic s-t paths in edge-colored graphs. We

show that the problem of finding 2 vertex disjoint monochromatic paths with differ-

ent colors between s and t is NP-complete. The NP-completeness of the directed

monochromatic case follows as an immediate consequence.

In Chapter 4, we deal with c-edge-colored digraphs. We show that determining a

directed pec s-t path is NP-complete even if Dc is a planar c-edge-colored digraph

with no pec circuits or if Dc defines a 2-edge-colored tournament. We also prove

that deciding whether a c-edge-colored tournament has a directed pec Hamiltonian

s-t path is NP-complete. Notice that there is no reduction between deciding whether

a c-edge-colored tournament possesses a directed pec s-t path and a directed pec

Hamiltonian s-t path, although finding a directed pec s-t path seems to be an easier

task than finding a directed pec Hamiltonian path. As a consequence, we also show

that deciding whether a 2-edge-colored tournament contains a pec circuit passing

through a given vertex v is NP-complete (this solves a weak version of an open

problem initially posed by Gutin, Sudakov and Yeo [30]), which can be formulated as

follows: does there exist a polynomial algorithm to check whether a 2-edge-colored

tournament has a pec cycle? In addition, we prove that the problem of maximizing

the number of directed edge disjoint pec s-t trails can be solved within polynomial

time.

In Chapter 5, we present Reload Cost Problems. This chapter is organized as

follows. In Section 5.1, we discuss the case of finding a minimum reload s-t walk,

either with symmetric or asymmetric reload cost matrix. In Section 5.2 we deal

with paths and trails when reload costs are symmetric. We prove that the minimum
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reload s-t trail problem can be solved in polynomial time for every c ≥ 2. In addition,

we show that the minimum reload s-t path problem is polynomially solvable either

if c = 2 and the triangle inequality holds (here R is not necessarily a symmetric

matrix) or if Gc has a maximum degree 3. However it is NP-hard when c ≥ 3,

even for graphs of maximum degree 4 and reload cost matrix satisfying the triangle

inequality. We conclude by showing that, if c ≥ 4 and the triangle inequality is

satisfied, the minimum symmetric reload s-t path problem remains NP-hard even for

planar graphs with maximum degree 4. In Subsection 5.2.1, we investigate a version

of the traveling salesman problem with reload costs. In particular we show that the

problem is NP-hard and no non-trivial approximation is likely to exist. Note that,

given a graph G = (V, E), with distances associated with the edges of E the goal of

the Traveling Salesman Problem is to find the shortest tour that visits all the vertices

of V exactly once [4]. Recall that a tour is a path that starts and ends with the

same vertex. Finally, in Section 5.3 we deal with asymmetric reload costs. For a

reload cost matrix satisfying the triangle inequality, we construct a polynomial time

procedure for the minimum reload s-t trail problem and we prove that the minimum

asymmetric reload s-t trail problem is NP-hard even for graphs with 3 colors and

maximum degree equal to 3.

At the end of each chapter, we present some related open problems. Finally, some

concluding remarks and future directions are given in Chapter 6.

Until now, this work generated the following publications: results presented in

Chapters 2 and 3 were accepted for presentation at LAGOS 2009 [29]. This work was

a joint collaboration with Professors Jérôme Monnot, Laurent Gourvès and Fabio
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Protti. The results of Chapter 4, regarding c-edge-colored digraphs were published

in a technical report [27] and is yet to be submitted for publication in some inter-

national journal. Chapter 5 were presented at SOFSEM 2009 [28] and submitted

for publication in Discrete Applied Mathematics. These previous works were a joint

collaboration with Professors Jérôme Monnot and Laurent Gourvès.



Chapter 2

Paths and trails in edge-colored

graphs with no PEC closed trails

In this chapter, we deal with several questions regarding c-edge-colored (undi-

rected) graphs Gc with no pec closed trails and c ≥ 2. Initially, we show that

deciding whether or not Gc contains two vertex/edge disjoint pec s-t paths with

bounded length is NP-complete in the strong sense. In addition, when restricted

to this particular class of graphs, we show that the determination of a pec s-t trail

visiting vertices a predefined number of times can be solved in polynomial time. We

also deal with s-t paths and trails in graphs with no pec cycles (note in this case that

pec closed trails are allowed). We conclude the chapter by proposing some related

open problems and future directions.

21
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2.1 Finding two vertex/edge disjoint PEC s-t paths

with bounded length in graphs with no PEC

closed trails

It is proved in Abouelaoualim et al. [1] that deciding whether an arbitrary c-

edge-colored graph on n vertices (even with Ω(n2) colors) contains two vertex/edge

disjoint pec s-t paths is NP-complete. However the complexity of this problem for

graphs with no pec closed trails is an open problem raised in this same work. Here,

we propose and solve a weaker version of this problem. Given a graph Gc (c ≥ 2)

with no pec closed trails and a constant L > 0, we prove that deciding whether

Gc contains two vertex/edge disjoint pec s-t paths, each having at most L edges is

NP-complete.

This problem is interesting because it models a problem of telecommunication

networks. As discussed in Itai et al. [31], bounding the length of a longest path

ensures that the noise interference is under control. They show that the weighted 2

edge disjoint directed s-t paths problem is (weakly) NP-complete [31] (actually, their

proof can be easily modified to handle directed acyclic graphs). However, as pointed

out by Tragoudas and Varol [40], the authors in [31] consider a more general graph

instance where the edge lengths are not polynomially bounded in the input size. In

Tragoudas and Varol [40], they show how to solve this problem and present a proof

(for the undirected case) where the edges weights are polynomially bounded in the

input size.

We studied the result presented in Theorem 4 and show that the problem we deal



Chapter 2: Paths and trails in edge-colored graphs with no PEC closed trails 23

with in this section is strong NP-complete. Thus, we have the following result:

Theorem 4. Let Gc be a 2-edge-colored graph with no pec closed trails and a constant

L > 0. The problem of finding 2 vertex/edge disjoint pec s-t paths, each having at

most L edges in Gc is NP-complete, even for graphs with maximum vertex degree

equal to 4.

Proof: Suppose that Ic = {1, 2}. The vertex-disjoint case follows immediately

from the edge-disjoint case so its proof is omitted. We prove that (3, B2)-sat, called

the 2-balanced 3-sat, can be polynomially reduced to our problem. An instance I of

(3, B2)-sat consists of n variables X = {x1, . . . , xn} and m clauses C = {c1, . . . , cm}.

Each clause has exactly three literals. Each variable appears four times, twice negated

and twice unnegated. Deciding whether I is satisfiable is NP-complete [10].

We say that cj is the h-th clause of xi, if and only if, xi appears in cj and xi

appears in exactly h − 1 other clauses cj′ with j′ < j. We say that xi is the ℓ-th

variable of cj , if and only if, xi and exactly ℓ−1 other variables xi′ with i′ < i appear

in cj.

Let us show how to build a 2-edge-colored graph Gc with no pec closed trail upon

I. For each xi ∈ X (resp., cj ∈ C) we build a gadget Gxi
(resp., Gcj

) as depicted on

the left (resp. right) of Figure 2.1. The gadget of a variable xi has 18 vertices. It

consists of a right part (vertices tkia , t
k
ib

for k = 0, . . . , 3 and edges t0ibt
1
ia

, t1ibt
2
ia

, t2ibt
3
ia

) a

left part (vertices fk
ia
, fk

ib
for k = 0, . . . , 3 and edges f 0

ib
f 1

ia
, f 1

ib
f 2

ia
, f 2

ib
f 3

ia
), an entrance

ai, an exit bi and edges ait
0
ia

, aif
0
ia

, t3ibbi, f 3
ib
bi. The left (resp., right) part of this gadget

corresponds to the case where xi is set to false (resp., true). Note that each edge of

Gxi
has color 2 (see Figure 2.1(a)). The gadget of a clause cj consists of an entrance



Chapter 2: Paths and trails in edge-colored graphs with no PEC closed trails 24

u1
j

v1
j

u2
j

v2
j v3

j

u3
j

qj

wj

bi

(a) (b)

f 0
ia

f 0
ib

f 1
ia

f 1
ib

f 2
ia

f 2
ib

f 3
ia

f 3
ib

t0
ia

t0
ib

t2
ia

t1
ib

t1
ia

t2
ib

t3
ia

t3
ib

ai

color 2

color 1

Figure 2.1: Gadgets for a variable xi (left) and a clause cj (right).

qj , an exit wj and three edges u1
jv

1
j , u2

jv
2
j , and u3

jv
3
j (all with color 2) corresponding

to the first, second and third variables of cj, respectively. Finally, we have 6 edges

qju
k
j for k = 1, 2, 3 and vk

j wj for k = 1, 2, 3, all with color 1 (see Figure 2.1(b)).

We add four vertices s, t, sa and ta and we link the gadgets as follows (see Figure

2.2(Left)):

• sa1, b1a2, b2a3, . . . , bn−1an and bnta, all of them with color 1 (thin);

• saq1, w1q2, w2q3, . . . , wm−1qm, wmt, all of them with color 2 (bold);

• ssa and tat with colors 1 and 2, respectively.

For each pair xi, cj such that xi is the ℓ-th variable of cj and cj is the h-th clause

of xi we proceed as follows. If xi appears negated in cj then add edges th−1
ia

vℓ
j , th−1

ib
uℓ

j
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q1

w1

q2

w2

qm

wm

C2

C4

C3

C1

(a)

s

a1 a2 an

b1 b2 bn

sa

t

ta

(b)

a2

b2

color 2

color 1

Figure 2.2: (Left) Linking gadgets Gxi
and Gcj

, respectively. (Right) x2 appears
in the clauses c1 = (x2 ∨ x̄3 ∨ x5), c2 = (x̄2 ∨ x3 ∨ x6), c3 = (x̄1 ∨ x2 ∨ x4) and
c4 = (x1 ∨ x̄2 ∨ x5).

and fh−1
ia

fh−1
ib

, all colored 1 (thin). If xi appears unnegated in cj then add fh−1
ia

vℓ
j ,

fh−1
ib

uℓ
j and th−1

ia
th−1
ib

, all colored 1 (thin). See the example of Figure 2.2.

Each vertex’s degree is at most 4 and every edge incident to vertices ai and bi

(resp., qj and wj), in Gxi
(resp., Gcj

) has color 2 (resp., color 1). In addition, every

edge incident to s (resp., t) has color 1 (resp., color 2). In this way, it is easy to see

that Gc contains no pec closed trails.

In order to simplify the proof, we deal with the version where the edges have an

odd and polynomially bounded length. Then, we can replace each edge e of length

ℓ(e) by a pec path ρe made of ℓ(e) edges (initial and terminal edges of ρe have color

c(e)). We complete the construction of Gc by assigning a length Lc = 14n− 1 to the

edges w1q2, w2q3, . . . , wm−1qm, wmt, and a length Lv = 14mn + 2m− 14n + 1 to sa1.

The remaining edges of Gc have length 1 (see Figure 2.2(Left)).

The graph contains 18n + 8m + 4 vertices: 18 per variable gadget, 8 per clause

gadget, s, sa, ta and t. Its construction is clearly done within polynomial time. An
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instance I ′ of our problem is to find two edge disjoint pec s-t paths of total length

at most L = 14nm + 2m + 2. We claim that a truth assignment for I, instance of

(3, B2)-sat, corresponds to two edge disjoint pec s-t paths in I ′, each of total length

L = 14mn + 2m + 2 and vice-verse.

An s-t path with first edge sa1 and last edge tat is called a variable path and it is

denoted by Pv. An s-t path with first edge ssa and last edge wmt is called a clause

path and it is denoted by Pc.

Suppose that we have two paths Pv and Pc, solution to I ′. If Pv uses an edge of

length Lc then its total length exceeds L. Therefore it never passes through a vertex

qj or wj (1 ≤ j ≤ m). Since Pv is an s-t path, it must visit each variable gadget Gxi
.

Thus, each vertex ai is visited by Pv. Since Pv and Pc are edge-disjoint, Pc cannot go

through ai, i = 1, . . . , n. Then, Pc must visit each clause gadget Gcj
to reach t. We

can deduce a truth assignment for I: if Pv uses the left (resp. right) part of Gxi
then

xi = false (resp. xi = true). When Pc passes through the edge uk
jv

k
j , it means that

the k-th literal of cj is true and cj is satisfied. Since Gcj
reaches t, each clause has

(at least) one true literal.

Suppose that we have a truth assignment, solution to I. To build a variable path

Pv, we take the right (resp., left) part, if and only if, xi is true (resp., false) (see

Figure 2.2(Right)). Then the total length of Pv is Lv + 14n + 1 = L. Each clause cj

is satisfied so there is an edge uk
jv

k
j of Gcj

not used by Pv. The clause path can use

it to reach t. In this case Pc has total length m(Lc + 3) + 2 = L.

Observe in Figure 2.3 a complete example of the reduction used above and in

Figure 2.4 the solution associated. One possible satisfying assignment to the instance
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q2

w2

q3

w3w1

q4

w4

q1

a2

b2

a3

b3

sa

t

s

ta

a1

b1

Lv

Lc Lc Lc

Lc

color 2

color 1

Figure 2.3: An example of the c-edge-colored graph Gc associated with the instance
I = {(x1∨x2∨x3)∧ (x1∨ x̄2∨ x̄3)∧ (x̄1∨ x̄2∨x3)∧ (x̄1∨x2∨ x̄3)} of the (3, B2)-sat.
With Lc = 41, Lv = 80 and L = 122.
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w3w1

q4

w4

q1

a2

b2

a3

b3
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t

s

ta

a1

b1

Lc Lc
Lc Lc

Lv color 2

color 1

Figure 2.4: A subgraph of Figure 2.3 corresponding to the solution of the problem of
finding 2 vertex disjoint PEC s-t paths with bounded length.

I = {(x1∨x2 ∨x3)∧ (x1∨ x̄2 ∨ x̄3)∧ (x̄1∨ x̄2 ∨x3)∧ (x̄1∨x2∨ x̄3)} of the (3, B2)-sat

problem is the one that sets all the variables to true. Associated with the instance I

with have the graph Gc of the Figure 2.3. In this case, where all the variables are set

to true, the variable path Pv will use only the edges on the right part of Gxi
.

�

Observe in the proof of Theorem 4 that we can reduce the maximum vertex degree

from 4 to 3 if we change the gadget presented in Figure 2.1.(b) by the one in Figure

2.5.

As a final comment, we can prove Theorem 4 above in another way (if we remove

the maximum vertex degree constraint) by using the 2 vertex/edge disjoint path with

bounded length problem over directed acyclic graphs with arbitrary non-negative arc
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color 2

color 1

Figure 2.5: Clause Gadget used to reduce the maximum vertex degree in Theorem 4

weights (see [31, 40] ). To see that, it suffices to change arcs ~xy with cost w( ~xy) by

edges xz, zy with colors 1 and 2, resp., and assign edge costs w( ~xz) = w( ~zy) = w( ~xy)
2

.

However, the arc weights are not polynomially bounded, which only give us a NP-

completeness result in the normal sense.

2.2 The determination of PEC s-t trails visiting

vertices a predefined number of times

In the work of Das and Rao [13], they characterize those 2-edge-colored complete

graphs Kc
n which contain a pec closed trail visiting each vertex x of V (Kc

n) exactly

f(x) > 0 times. Generalizing this theorem Bang-Jensen and Gutin [6] solved the

problem of determining the length of a longest closed pec trail visiting each vertex

x in 2-edge-colored complete multigraphs at most f(x) > 0 times.

If Gc is a c-edge-colored graph containing no pec closed trails, we propose a more
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Figure 2.6: Construction of the modified trail-path graph p̄-Hc.

general version of these problems and we show how to polynomially find, provided

that one exists, a pec s-t trail visiting all vertices of Gc a predefined number of times

(defined by an interval associated with each vertex). Formally, given two integer non-

negative functions fmin and fmax from V (Gc) to N such that 0 ≤ fmin(x) ≤ fmax(x) ≤

⌊
dGc(x)

2
⌋, we show how to construct, if any, a pec trail between vertices s and t, and

visiting all vertices of W = V (Gc)\{s, t} exactly f(x) times, for x ∈ W and some

f(x) ∈ {fmin(x), ..., fmax(x)}. Recall by the Theorem 2 that deciding whether or not

Gc contains a pec closed trail can be solved in polynomial time.

Thus, using both concepts of trail-path graph [1] and Edmonds-Szeider graph [38]

(see Chapter 1), we can prove the following result:

Theorem 5. Let Gc be a c-edge-colored graph with no pec closed trails and s, t ∈

V (Gc). Then we can find within polynomial time, if one exists, a pec s-t trail visiting

all vertices x ∈W exactly f(x) times with fmin(x) ≤ f(x) ≤ fmax(x).

Proof: Basically, the idea is to construct both trail-path graph and Edmonds-

Szeider graph in a modified manner in order to reduce pec s-t trails (satisfying the

constraints above) into perfect matchings over non-colored graphs.

Let Gc = (V, E) be a c-edge-colored graph with no pec closed trails and s, t ∈ V .
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Without loss of generality, assume that dGc(s) = dGc(t) = 1 and then fmax(x) =

fmin(x) = 1 for x ∈ {s, t}. Actually, by adding two dummy vertices s′, t′ and edges

s′s and t′t with a new color in Gc, there is a pec s′-t′ trail, if and only if, there is

a pec s-t trail. Initially, construct a modified trail-path graph associated with Gc,

denoted here by p̄-Hc, by replacing each vertex x by a subset Sx = {x1, . . . , xαx
}

of vertices with αx = fmax(x). To simplify our notation consider x ∈ V (Gc) and

fmax(x) = fmin(x) = 1, for x = s, t. Therefore, s1 and t1 are source and destination

in p̄-Hc. Thus, for any edge xy of Gc colored, say by k, we add two new vertices vxy

and uxy and add edges xivxy, uxyyj, for i = 1, . . . , αx and j = 1, . . . , αy, all of them

colored by k. Finally, we add edge vxyuxy with a new unused color k′ ∈ {1, . . . , c}

with k′ 6= k. Denote by V̄ = {vxy, uxy|xy ∈ E(Gc)} this new set of auxiliary vertices.

(See Figure 2.6)

Now define, randomly, a subset S ′
x = {xi1 , . . . , xiρx

} of Sx with ρx = fmin(x).

Thus, given p̄-Hc as above, we construct the (non-colored) Edmonds-Szeider graph,

say H , associated with p̄-Hc (see Subsection 1.2 ). Note that for every y ∈ W̄ for

W̄ = V (p̄-Hc) \ ({s1, t1} ∪ V̄ ), we obtain an associated (non-colored) subgraph Hy

of H . Now, for every Hy associated with y ∈ S ′
x, delete edges y′′

ay
′′
b (see Figure 2.7)

and relabel by H ′
y all these subgraphs. The resulting non-colored graph obtained in

this way, denoted by Hm, will be called modified Edmonds-Szeider graph. The idea,

provided that one pec s-t trail in Gc exists (and satisfying both fmax(x) and fmin(x),

∀x ∈ W ), is to find an associated pec s1-t1 path in p̄-Hc in order to force the visit

(exactly once) of all vertices y ∈ S ′
x (the remaining vertices y ∈ W̄ \(∪x∈W S ′

x) may be

visited or not in this path). This may be accomplished by solving a perfect matching
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y
y′i

yl

y′i

Figure 2.7: (a) Vertex y ∈ W̄ ; (b) Subgraph H ′
y associated with y ∈ S ′(x); (c)

Subgraph Hy associated with y ∈ S(x).

problem in Hm.

Thus, compute a perfect matching M in the modified Edmonds-Szeider graph

Hm, if one exists. Given M , to determine the associated pec s-t trail in Gc we first

construct a non-colored graph H̄ ′ by contracting subgraphs Hy and H ′
y into a single

vertex y and by contracting edges vxyuxy ∈ E(V̄ ) into vertices Pxy. Let M ′ be the

resulting non-contracted edges of M obtained in this way. It is easy to see that H̄ ′

will contain a (non-colored) s1-t1 path (represented by P ), cycles and isolated vertices

associated, respectively, to a pec s-t trail (represented by T ), pec closed trails and

isolated vertices in Gc. However, by hypothesis, Gc does not contain pec closed trails.

Therefore, each pair of edges in M ′ will be associated with an edge in the path P and

vice-verse. In this way, non-colored s1-t1 paths in H̄ ′ will be associated with a pec

s-t trails in Gc.

Finally, by construction of p̄−Hc and the (non-colored) modified Edmonds-Szeider

graph Hm, notice that every vertex y is visited exactly once in p̄-Hc if y ∈ S ′
x,

and at most once for the remaining vertices of Sx \ S ′
x. Since |S ′

x| = fmin(x) and

|Sx| = fmax(x), vertex x ∈ W is visited exactly f(x) times in Gc for some f(x) ∈
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{fmin(x), . . . , fmax(x)}. �

Corollary 1. Consider Gc an edge-colored graph with no pec closed trails and two

vertices s, t ∈ V (Gc). Then, we can find in polynomial time (if any) a properly

edge-colored Hamiltonian s-t path.

Proof: It suffices to set fmin(x) = fmax(x) = 1, for every vertex x ∈ W in

Theorem5. �

Corollary 2. Let Gc be a c-edge-colored graph with no pec closed trails. Then, we

can find within polynomial time, a shortest (resp., a longest) pec s-t trail visiting

vertices x of V (Gc) at least fmin(x) times (resp., at most fmax(x) times).

Proof: After the construction of the modified Edmonds-Szeider graph Hm (see

the proof of Theorem 5), it suffices to assign costs cost(pq) = 0 for all edges pq of

E(Hy) and E(H ′
y) respectively, for every y ∈ W̄ . For the remaining edges of Hm we

assign cost(pq) = 1. Now, to find a shortest (resp., a longest) pec s-t trail visiting

vertices x of Gc at least fmin(x) times (resp., a most fmax(x) times), compute, if

possible, a minimum perfect matching (resp., maximum perfect matching) M in Hm.

Note that a pec s-t path P of p − Hc with cost cost(P ) will be associated with a

pec s-t trail, say T , in Gc with cost cost(T ) = cost(P )
3

. In addition, in the case of the

maximum perfect matching (if one exists), we always obtain a longest pec s-t trail

since Gc has no pec closed trails. �

Now, we extend Theorem 5 by forcing the visit of a subset E ′ of edges.

Theorem 6. Let Gc be a c-edge-colored graph with no pec closed trails and let E ′ ⊆

E(Gc). Then we can find within polynomial time, provided that one exists, a pec s-t

trail visiting all edges of E ′.
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Figure 2.8: (a) Forcing the visit of edge xy ∈ E ′; (b) Subgraph Hxy of p−Hc associated
with xy; (c) Non-colored subgraph of the Edmonds-Szeider graph H , associated with
Hxy.

Proof: In order to force the presence of an edge e = xy ∈ E ′ (colored, say i) at

some pec s-t trail of Gc, we first construct the trail-path graph p−Hc and then the

associated non-colored Edmonds-Szeider graph H in this order.

Note by the construction of p − Hc and H , that we have two vertices vxy, uxy

associated with edge xy ∈ Ei(Gc). Now, for every pair vxy, uxy of H and with

xy ∈ E ′, we add two vertices axy, bxy and change edge vxyuxy by three new edges:

vxyaxy, axybxy and axyuxy respectively (as illustrated in the Figure 2.8). Let H ′ be

this new non-colored graph.

Now, by using the same arguments as in the proof of Theorem 5, we can show

that a perfect matching M of H ′, if one exists, will be associated with a pec s-t trail

of Gc visiting all edges of E ′, and vice-verse. �

Note that Theorem 6 also allows to find a pec Eulerian s-t trail in c-edge-colored

graph with no pec closed trails. Formally:

Corollary 3. Let Gc be an edge-colored graph with no pec closed trails and s, t ∈

V (Gc). Then we can find in polynomial time, a properly edge-colored Eulerian trail

or else decide it doesn’t exist.
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Proof: By the Theorem 6 one can find an s-t trail, if any, by visiting all the edges

of Gc, i.e., we just set E ′ = E(Gc). �

The result presented in Corollary 3 is not very interesting since we recall that a

polynomial algorithm is already known for finding pec Eulerian trail (if one exists)

in general c-edge-colored graphs [9].

Now, we have the following result regarding c-edge-colored graphs Gc with no pec

cycles. Note that pec closed trails are allowed in this case.

Corollary 4. Let Gc be a c-edge-colored graph with no pec cycles, s, t ∈ V (Gc) and

a subset A = {v1, ..., vk} of V (Gc)\{s, t}. Then, the problem of finding a pec s-t path

visiting all vertices of A can be solved in polynomial time.

Proof: Given Gc , we construct the associated Edmonds-Szeider graph, except

that for the vertices vi ∈ A, for i = 1, ..., k we remove edge v′′
ia

v′′
ib

(see Figure 2.7.(b))

in order to force the visit of all vertices of A. �

In Theorem 7, we are interested in finding a pec s-t trail passing by a given vertex

v in Gc with no pec cycles. Again, pec closed trails are allowed. Surprisingly, we

show that this problem is NP-complete if we are restricted to this particular class of

graphs.

Theorem 7. Let Gc be a c-edge-colored graph with no pec cycles, vertices s, t, v ∈

V (Gc). Then, the problem of finding a pec s-t trail passing by v is NP-complete.

Proof: Clearly, our problem belongs to NP. To prove that it is NP-complete,

we use a reduction from the Path-Finding Problem (PFP), whose the objective is

to find a s-t path through a vertex v in a (non-colored) digraph D [17]. Without



Chapter 2: Paths and trails in edge-colored graphs with no PEC closed trails 36

color i

color j

(a) (b)

vevb v̄va
zvu uav

vc vd

u

Gv

e = ~vu

Ge

Figure 2.9: (a) Arc ~vu ∈ V (D). (b) Gadget Gv associated with vertex v and gadget
Ge associated with edge e.

loss of generality, there is no incoming arcs at s and no outgoing arcs at t. Given a

(non-colored) digraph D = (V, A), instance of the PFP, we will show how to construct

in polynomial time a 2-edge-colored graph Gc with no pec cycles. For each vertex

v ∈ D, create the following gadget Gv, with vertices V (Gv) = {va, vb, vc, vd, ve, v̄} and

edges vavb, vbv̄, vcvd all colored with color j and edges vbvc, vbvd, v̄ve with color i.

All arcs e = ~vu in D are changed by edges vezvu and zvuua (gadget Ge) colored with

i and j, respectively. See the example of Figure 2.9.

Observe that this transformation does not lead to a graph Gc with pec cycle. So,

if there is a directed s-t path a through a vertex v in D, there will be a pec s-t trail

through a vertex v̄ in Gc. Conversely, if there is a pec s-t trail through a vertex v̄ in

Gc, then we can easily find a directed s-t path a through a vertex v in D. �

Note in the Theorem 7 above that the set of all graphs containing no pec closed

trails is a subset of all graphs containing no pec cycles.

Next, we present some open problems and future directions regarding c-edge-

colored graphs with no pec closed trails (or cycles).

Open Problem 1. Consider a non-oriented c-edge-colored graph Gc with no pec
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closed trails, an integer k and a sequence p = (v1, . . . , vk) of vertices in V (Gc). Is

it possible to find in polynomial time a pec s-t path/trail visiting all vertices of p in

this order?

Open Problem 2. Consider Gc a non-oriented c-edge-colored graph, an integer k

and a sequence C = (c1, . . . , ck) of colors. Find a pec s-t path/trail (if any) only

visiting the sequence of C in this order. Is this problem polynomial for graphs with

no pec cycles?

Open Problem 3. Let L be the size of a minimum shortest pec s-t path. Consider

the problem of deciding whether a graph Gc (with no pec closed trails) has k or more,

edge disjoint pec paths between nodes s and t, each having at most L + 1 edges. Is

this problem NP-complete?

In Tragoudas and Varol [40], the authors show that Problem 3 above is NP-

complete for arbitrary non-colored graphs. We conclude the chapter by recalling an

open problem posed by Abouelaoualim et al. [1]:

Open Problem 4. Given a 2-edge-colored graph Gc with no pec cycles, two vertices

s, t ∈ V (Gc) and a fixed constant k ≥ 2. Does Gc contains k pec vertex/edge disjoint

paths between s and t? Is this problem NP-complete?



Chapter 3

Monochromatic s-t paths in

edge-colored graphs

Here, we deal with monochromatic s-t paths in c-edge-colored graphs Gc. We

show that finding k vertex disjoint monochromatic s-t paths with different colors is

NP-complete even if Gc has maximun vertex degree 4 and k = 2. As an immediate

consequence, we show that the same problem over c-edge-colored digraphs is also

NP-complete. We emphasize the fact that the paths have different colors because

finding paths with the same color can be easily solved in polynomial time (it suffices

to choose a color, one at a time, and remove all the other edges with different colors).

In the monochromatic resultant graph find two paths as if the graph wasn’t colored.

This can be done in polynomial time [37]. Formally, we have the following result:

Theorem 8. Let Gc be a c-edge-colored graph with s, t ∈ V (Gc) with c ≥ 2 and max-

imum vertex degree equal to 4. The problem of finding two vertex disjoint monochro-

matic s-t paths with different colors in Gc is NP-complete.

38
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Figure 3.1: Gadgets for a variable xi (left) and a clause cj (right).

q1

w1

q2

w2

qm

wm

t

s

ana1

b1 b2 bn

a2

color 1

color 2

Figure 3.2: Linking components Gxi
and Gcj

, respectively.
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Figure 3.3: Variable x2 appears in the clauses c1 = (x2 ∨ x̄3 ∨ x5), c2 = (x̄1 ∨ x̄2 ∨ x6),
c3 = (x̄1 ∨ x2 ∨ x4) and c4 = (x̄2 ∨ x3 ∨ x6).

Proof: This proof uses a similar idea of Theorem 4, i.e., we reduce an instance

I of the (3, B2)-sat to the existence of 2 monochromatic s − t paths with different

colors in Gc for c = 2. We use the same notation and only describe how Gc is built

upon I.

The graph Gc will be composed by clause components Gcj
(for j = 1, . . . , m) and

variable components Gxi
(for i = 1, . . . , n). For each xi ∈ X we build a gadget as

depicted on the left of Figure 3.1. Similarly to Theorem 4, the right (resp., left)

part of this gadget corresponds to the case where xi is set to true (resp., false). The

gadget of a clause cj consists of an entrance qj , an exit wj and 3 vertices u1
j , u2

j , and u3
j

corresponding to the first, second and third variables of cj , respectively. We conclude

the construction of Gcj
by adding 6 edges qju

k
j for k = 1, 2, 3 and uk

jwj for k = 1, 2, 3,

all of them with color 1 (thin). See Figure 3.1 for an example of the construction of

the clause component and the variable component.
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Now, we add vertices s, t and link all gadgets Gxi
(resp., Gcj

) by adding the

following edges as described in the Figure 3.2:

• sa1, b1a2, b2a3, . . . , bn−1an and bnt, all of them with color 2 (bold);

• sq1, w1q2, w2q3, . . . , wm−1qm, wmt, all of them with color 1 (thin).

For each pair xi, cj such that xi is the ℓ-th variable of cj and cj is the h-th clause

of xi we proceed as follows. If xi appears negated in cj then add edges th−1
ia

uℓ
j, th−1

ib
uℓ

j

and fh−1
ia

fh−1
ib

, all colored 2 (bold). If xi appears unnegated in cj then add fh−1
ia

uℓ
j,

fh−1
ib

uℓ
j and th−1

ia
th−1
ib

, all colored 2 (bold). Clearly, the construction of Gc can be done

in polynomial time in the size of X and C. Further, note that Gc has maximum vertex

degree equal to 4.

Now, observe that truth assignments for an instance I of the (3, B2)-sat problem

are associated with 2 vertex disjoint monochromatic s-t paths of colors 1 and 2,

respectively. To construct the path with color 2 (bold), whenever a variable xi is true

(resp., false), we take the sub-path between vertices ai and bi by using the right (resp.,

left) side of Gxi
(see the example of Figure 3.3). The unvisited vertices uℓ

j of cj can be

used at random, to construct the path colored 1 (thin) between s and t. Conversely,

if we have 2 vertex disjoint monochromatic s-t paths of colors 1 and 2 then we have

a truth assignment for I. For instance, if a vertex uℓ
j of the component Gcj

is visited

by some path colored 1 and variable xi (appearing in the ℓ-th position of cj) is in the

negated form (resp., unnegated form) then variable xi must be false (resp., true) and

clause cj will be true in the assignment. Therefore, by using both monochromatic s-t

paths with colors 1 and 2 we can uniquely determine a truth assignment for I, which

completes the proof for c = 2.
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The generalization of our proof for graphs containing c ≥ 3 colors is identical to

Theorem 4 above and will be omitted here. �

Theorem 8 above can be easily generalized for c-edge-colored digraphs:

Corollary 5. Let Dc be a c-edge-colored digraph with maximum in- and out-degree

equal to 3 and s, t ∈ V (Dc). Then, the problem of finding two directed monochromatic

s-t paths with different colors in Dc is NP-complete.

Proof: In the non-oriented c-edge-colored graph Gc with maximum vertex degree

4 (see Theorem 8), whenever we have a path ρ with all edges colored k (for k = 1, 2)

from s to t and passing by some edge xy, colored k, and y not belonging to the

subpath from s to x in ρ, we change xy by ~xy. Note that the maximum in-degree

and out-degree in the resulting digraph Dc is 3. �

Finally, we conclude by noting that finding 2 monochromatic edge disjoint s-t

paths in Gc can be easily done in polynomial time (it suffices to take all combinations

of graphs with 2 colors).

Now, we conclude with the following related open problems:

Open Problem 5. Is the problem of finding 2 monochromatic (vertex disjoint) s-t

paths with different colors in planar c-edge-colored graphs NP-complete?



Chapter 4

Paths, trails and circuits in

edge-colored digraphs

Finding pec paths, pec trails, pec cycles or pec closed trails in undirected c-

edge-colored graphs is polynomial [1, 38]. However finding directed pec paths or pec

circuits in c-edge-colored digraphs seems harder. For example, Gutin, Sudakov and

Yeo in [30] proved that deciding whether a 2-edge-colored digraph contains a pec

circuit is NP-complete. Nevertheless, this problem remains open if we are restricted

to 2-edge-colored tournaments [30].

Here, we show that the problem of maximizing the number of edge disjoint pec s-t

trails can be solved in polynomial time on arbitrary edge-colored graphs. Surprisingly,

we prove that the determination of one pec s-t path is NP-complete. In addition,

we show that finding a directed pec closed trail in general c-edge-colored digraphs is

polynomial time solvable (recall that finding pec circuits is NP-complete [30]). We

also prove that if the digraph is an edge-colored tournament deciding if it contains

43
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a pec circuit passing through a given vertex v is NP-complete. As a consequence,

we solve a weaker version of the open problem cited in [30] (i.e. whether or not a

2-edge-colored tournament contains a pec circuit).

We conclude this chapter by proving that it is NP-complete to decide whether a

2-edge-colored tournament T c
n contains a Hamiltonian and a directed pec s-t path.

4.1 General c-edge-colored digraphs

Prior to deal with general c-edge-colored digraphs Dc we begin by the following

simple case: when Dc has no circuits at all.

Lemma 1. If Dc is a c-edge-colored acyclic digraph and s, t are two vertices of Dc

then finding a directed pec path from s to t is polynomial time solvable.

Proof: We use an algorithm (see Algorithm 1) which maintains a set of labels

L(v) for each vertex v (indicating the color of the last arc of each directed pec path

from s to v). At the beginning of the algorithm, L(v) = ∅ for all v. The level of

a vertex v, denoted by ℓ(v), is the length (i.e., number of arcs) of the longest path

between s and v. Therefore ℓ(s) = 0, ℓ(v) ≤ n− 1 for all v and ℓ(u) < ℓ(v) for all arc

~uv. For acyclic (non-colored) digraphs, a longest path can be found in time O(n+m)

[7].

A label in L(v) indicates the color of the last arc of each directed pec path from

s to v. Thus, it is easy to see that Dc admits a directed pec s-t path, if and only if,

L(t) 6= ∅.

�



Chapter 4: Paths, trails and circuits in edge-colored digraphs 45

Algorithm 1 Polynomial algorithm for finding a pec s-t path in c-edge-colored

acyclic digraphs.

1: for all vertex v do

2: L(v)← ∅

3: end for

4: for j = 1 to n− 1 do

5: for i = 0 to j − 1 do

6: for all arc ~uv such that ℓ(u) = i and ℓ(v) = j do

7: if u = s or L(u) \ {c( ~uv)} 6= ∅ then

8: L(v)← L(v) ∪ {c( ~uv)};

9: end if

10: end for

11: end for

12: end for
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In Theorem 9, we discuss the same question for c-edge-colored digraphs with no

pec circuits. Note that consecutive arcs in the circuits may have the same color in

this case.

Theorem 9. Deciding whether or not a 2-edge-colored digraph Dc with no pec cir-

cuits contains a directed pec path from s to t is NP-complete.

Proof: We use a reduction from the Path with Forbidden Pairs Problem (pfpp,

in short). In pfpp, we are given a (non-colored) digraph D = (V, A), two vertices

v, w ∈ V and a collection C = {(a1, b1), . . . , (aq, bq)} of pairs of vertices (with ai 6= bi)

from V \ {v, w}. The objective is to determine whether there exists a directed path

connecting v to w and passing through at most one vertex from each pair of C. The

pfpp was shown NP-complete [18] even if D is acyclic and all pairs of C are required

to be disjoint (see problem [GT54] page 203 in [25]).

Let D = (V, A) be an acyclic digraph containing v, w ∈ V and a subset C of

disjoint pairs of vertices. Without loss of generality, assume that d−
D(v) = d+

D(w) =

0. The construction of Dc is done in two steps. We first build a (non-colored)

digraph D′ and then we build Dc from D′. The digraph D′ = (V ′, A′) is such

that V ′ = V ∪ {s}, A′ = A ∪ A′
1 ∪ A′

2 with A′
1 := { ~sa1, ~sb1, ~aqu, ~bqu} and A′

2 :=

{ ~aiai+1, ~aibi+1, ~biai+1, ~bibi+1 : i = 1, . . . , q − 1} and vertices v and w are replaced by

u and t, respectively. For the moment, two arcs connecting the same pair of vertices

may exist.

We build Dc as follows: for arcs in A′
1, ~sa1 and ~sb1 are colored blue (color 2), while

arcs ~aqu and ~bqu are colored red (color 1). Next, we apply the following transformation:

each arc e = ~xy of A∪A′
2 is replaced by a directed path of length two, that is ~xve, ~vey,
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Figure 4.1: Reduction from the pfpp with C = {{1, 2}, {3, 4}} to the directed pec

s-t path problem. Color 1 (resp., 2) corresponds to red (resp., blue).

except for arcs incident to t. If e = ~xy ∈ A, then ~xve is colored in blue and ~vey is

colored in red (if e = ~xt, then e is colored in blue). By extension, arcs ~xve, ~vey are in

A. If e = ~xy ∈ A′
2 then ~xve is colored in red and ~vey is colored in blue. By extension,

arcs ~xve, ~vey are in this case in A′
2. The construction of Dc is completed (an example

is given in Figure 4.1). This construction is clearly done within polynomial time and

Dc is a 2-edge-colored digraph.

Now we give an intermediate property that will help us in the proof:

Property 1. Any directed pec path of Dc cannot use two consecutive arcs ~xy and

~yz such that ~xy ∈ A (resp., ~xy ∈ A′
1 ∪ A′

2) and ~yz ∈ A′
1 ∪ A′

2 (resp., ~yz ∈ A) except

if y = u.

Proof: By inspection. If ~xy ∈ A (resp., ~xy ∈ A′
2) then ~ve1y ∈ V (Dc) is red

(resp., blue) and if ~yz ∈ A′
2 (resp., ~yz ∈ A) then ~yve2 ∈ V (Dc) is red (resp., blue).

Thus, move from A (resp., A′
2) to A′

2 (resp. A) is not possible. Consider y 6= u, for
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~xy ∈ A′
1, the arcs ~xy = ~sa1 or ~xy = ~sb1 in V (Dc) are colored blue and if ~yz ∈ A

the arc ~yve2 ∈ V (Dc) also have the color blue, or if ~xy ∈ A (consider the arcs

~ve1aq, ~ve2bq ∈ V (Dc) colored red) and ~yz ∈ A′
1 then for ~yz = ~aqu or ~yz = ~bqu in

V (Dc) also have color red. Then, going from A (resp., A′
1) to A′

1 (resp. A) is not

possible either. Now, consider y = u, if ~xy ∈ A′
1 then the arcs ~aqu, ~bqu ∈ V (Dc) have

color red and if ~yz ∈ A then the arcs ~uve1, ~uve2 ∈ V (Dc) have color blue. So, if y = u

it is possible to move from A (resp., A′
1) to A′

1 (resp. A). •

From Property 1, we deduce that any directed pec path of Dc from s to t first

uses some arcs in A′
1 ∪A′

2 and after it uses some arcs in A (after passing through u).

Let us show that Dc contains no pec circuit. Since (V ′, A) (by hypothesis) and

(V ′, A′
1 ∪ A′

2) (by construction) have no circuits, if Dc has, it must contain two con-

secutive arcs such that the first arc is in A (resp., A′
1 ∪ A′

2) and the second arc is in

A′
1 ∪A′

2 (resp., A). Using Property 1, the circuit is not pec.

Finally, using Property 1, we claim that we have a directed path from v to w in D

and visiting at most one vertex from each pair of C, if and only if, we have a directed

pec path from s to t in Dc. To see that, let K with |K| ≤ q be the subset of vertices

belonging to C in the solution of the pfpp. As a consequence of that, we have a

directed pec path from u to t in Dc, say α, and visiting the same set K of vertices.

Therefore, we can construct a pec path from s to t in Dc by concatenating a pec

path from s to u containing no vertices of K (which always exist in this case) with

the path α from u to t. Notice that, if we have a path from v to w in D visiting both

vertices of an arbitrary pair of C, we do not have a pec path from s to t in Dc.

Conversely, consider a pec path from s to t in Dc. Note by construction of Dc,
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that we have a path from s to u containing exactly one vertex from each pair of C.

As a consequence of that, the pec path from u to t in Dc contains at most one vertex

from each pair of C. Thus, if we repeat the same steps in the construction of Dc in

the reverse order (i.e., from Dc to D), we can easily construct a path from v to w

in the associated (non-colored) acyclic digraph D and visiting each vertex of C at

most once. Hence, the determination of one directed pec s-t path in Dc with no pec

circuits is NP-complete. �

Now, we show in Corollary 6 that the previous theorem holds even if the number

of colors c of Dc is very large. Intuitively, this problem becomes easier when 3 colors

or more are considered (an extreme case is when all arcs of Dc have different colors).

As a consequence, an interesting question is to study the NP-completeness of these

problems for digraphs with many colors. Thus, we have the following result:

Corollary 6. Deciding if a c-edge-colored digraph with no pec circuits Dc contains

a directed pec s-t path is NP-complete, even if c = Ω(|V (Dc)|2).

Proof: We extend Theorem 9 to construct digraphs with 2n vertices, c = Ω(n2)

colors and with no pec circuits. To do so, we first construct a 2-edge-colored digraph

Dc′

ϕ with no pec circuits, c′ = 2 and with n vertices as done in Theorem 9. Next,

we build a tournament T c
n with n vertices and containing no circuits with colors

Ic ⊇ Ic′. To do that, given a non-colored complete graph Kn, it suffices to choose

arbitrary vertices of Kn and change all adjacent (non-oriented) edges by incoming arcs

with arbitrary colors of Ic. Next, we choose two arbitrary vertices v1 ∈ V (Dc′

ϕ ) and

v2 ∈ V (T c
n) and add arc ~v1v2 with an arbitrary color of Ic. The resulting digraph Dc

has 2n vertices and at most n(n−1)
2

different colors (the colors inside T c
n). Therefore,
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directed pec s-t paths in 2-edge-colored digraphs (with no pec circuits) correspond

to directed pec s-t paths in digraphs with c = Ω(n2) colors (with no pec circuits)

and vice verse. �

Now, we have the following result regarding planar edge-colored digraphs:

Corollary 7. Let Dc be a planar c-edge-colored digraph containing no pec circuits,

two vertices s, t ∈ V (Dc) and c = Ω(n2). Then, the problem of finding a directed pec

path between s and t in Dc is NP-complete.

Proof: Basically, given Dc containing no pec circuits, the idea is to conveniently

change all intersections by new vertices in order to make it planar. Note that the

number of intersections is polynomially bounded on the size of Dc.

Thus, whenever we have an intersection between 2 arcs ~ab and ~cd, say colored

blue, we add 3 new vertices f1, f2 and f3 and replace arcs {~ab, ~cd} by 2 sets of arcs

{ ~af1, ~cf2, ~f2b, ~f3d} and { ~f1f2, ~f2f3}, respectively colored blue and red (see Figure 4.2).

However, if ~ab and ~cd have different colors (say red and blue), we add the vertices

f1, f2, f3 and change ~ab and ~cd by arcs { ~cf2, ~f2f1, ~f3d} all colored blue, and arcs

{ ~af2, ~f2f3, ~f1b} all colored red (see Figure 4.3). Obviously, the resulting digraph,

denoted by Dc
P , is a planar c-edge-colored digraph and contains no pec circuits.

Therefore, if we have some path passing by ~ab (resp., ~cd) in Dc, we have a path

passing vertices a and b (resp., c and d) in Dc
P . �

It is natural to raise the same question asked in Theorem 9 for trails instead of for

paths. Unfortunately, we cannot use the same arguments as in the proof of Theorem

9 (directed paths from v to w in D and visiting both vertices of an arbitrary pair of C

may correspond to directed pec s-t trails in Dc). Therefore it is interesting to study



Chapter 4: Paths, trails and circuits in edge-colored digraphs 51

color i

color j

c

da

b

a

b

d

c

f1 f3

f2
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Figure 4.3: (a)Intersection of directed edges with different colors. (b)Making it planar.
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the complexity of finding a directed pec s-t trail in Dc. The problem turns out to be

polynomial when using the notion of reload cost s-t trails [3, 28] (see Subsection 1.1

for the definition of reload costs).

Theorem 10. Given an arbitrary c-edge-colored digraph Dc, finding a directed pec

s-t trail can be solved within polynomial time.

Proof: A more general version of this problem was polynomially solved in [3].

Given reload costs ri,j associated with each pair of colors i, j ∈ Ic (see Subsection 1.1

for the definition of reload costs), and costs w(e) associated with each arc e = ~xy,

the objective is minimize

f(ρ) =
k

∑

i=1

w(ei) +
k−1
∑

j=1

rc(ej),c(ej+1)

where ρ = (v1, e1, . . . , ek, vk+1) with v1 = s, vk+1 = t and ei 6= ej for i 6= j, is a

sequence of arcs in a directed s-t trail (here, let us call this problem the Minimum

Reload+Weight Directed s-t Trail problem). Basically, as described in [3], the idea is

to apply a splitting procedure to all vertices v of V (Dc) \ {s, t} (with k1(v) incoming

arcs and k2(v) outgoing arcs) and construct a non-colored digraph H(v) with unitary

arc capacities as illustrated in the Figure 4.4. After repeating this process for each

v ∈ V (Dc) \ {s, t} we obtain a new uncolored digraph H .

Original arcs of Dc maintain their arc costs and unitary arc capacities in H and

arcs ~xy of the complete bipartite digraphs of H(v) (for each v) receive unitary arc

capacities and appropriate reload costs ri,j where i and j are the colors of 2 arcs

entering and leaving vertex v in Dc. Therefore, by applying a polynomial minimum

cost flow algorithm to H to send one unit of flow between s and t we can polynomially

solve the Minimum Reload+Weight Directed s-t Trail problem in Dc.
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(b)(a)

1

2

1

2

H(v)

k2(v)

k1(v)

v
k1(v) k2(v)

v ∈ V (Dc)

Figure 4.4: Splitting at vertex v ∈ V (Dc) with k1(v) incoming arcs and k2(v) outgoing
arcs.

Hence, in order to find a pec s-t trail in Dc, it suffices to assume unitary arc

capacities, to set w(e) = 0 for every arc e = ~xy of Dc and assign reload costs ri,i = 1

and ri,j = rj,i = 0 for i, j ∈ Ic with i 6= j. Thus, there exists a reload+weight

directed s-t trail ρ with total cost f(ρ) = 0, if and only if, Dc has a directed pec s-t

trail. Therefore, we can find a directed pec s-t trail within polynomial time (if one

exists). �

In the work of Gutin, Sudakov and Yeo [30], they show that the determination

of pec circuits is NP-complete on arbitrary digraphs Dc for c = 2. However, as an

immediate consequence of the Theorem 10, we can show that the determination of

directed pec closed trails can be done in polynomial time, provided that one exists.

Formally:

Corollary 8. Let Dc be a c-edge-colored digraph with c ≥ 2. Then, the problem of

finding a directed pec closed trail in Dc (if any) can be solved in polynomial time.

Proof: Our construction is done in two steps. Initially, for each vertex x ∈ V (Dc)
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(one at a time), we apply the following procedure: we build a new graph, say Dc
x, by

replacing x by two new vertices x1, x2 with N+
Dc

x
(x1) = N+

Dc(x) and N−
Dc

x
(x2) = N−

Dc(x)

(all incoming and outgoing arcs are colored alike) and find, if one exists, a pec trail

from x1 to x2 in the new digraph Dc
x. Note that after finding a pec trail between

x1 and x2 in Dc
x the associated closed trail passing by x in Dc, say τ , may not be

pec (since both arcs of τ passing by x may have the same color). To avoid that we

conclude with the following second step: for each color i with N i
Dc(x) 6= ∅, delete all

outgoing arcs of x1, defined by N+
Dc

x
(x1) with color j 6= i and delete all incoming arcs

of x2 colored i, defined by N−
Dc

x
(x2). Now, try to find a directed pec trail from x1 to

x2. Obviously, both steps are polynomially bounded. Thus, after finding a directed

pec x1-x2 trail in Dc
x, if any, we obtain in polynomial time a directed pec closed trail

passing by x in Dc. �

Now, we can generalize Theorem 10 above to obtain the following stronger result:

Theorem 11. Let Dc be a c-edge-colored digraph. The problem of maximizing the

number of directed pec s-t trails in Dc is polynomial time solvable.

Proof: We construct a digraph H (associated with Dc) with the same reload

costs, arc capacities and arc costs as in Theorem 10. Then it suffices to solve a

sequence of minimum cost flow problems from s to t in H . The algorithm proceeds

as follows: (1) Set θ ← n − 2; (2) Solve the minimum cost flow problem between s

and t in H by sending θ units of flow and obtain ρ (if one exists); (3) If H contains a

feasible flow ρ with f(ρ) = 0 then we are done (return ρ, θ and stop). Otherwise, set

θ ← θ− 1 and go to step 2. We clearly get a polynomial time procedure to maximize

the number of directed pec trails from s to t since the minimum cost flow problem
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is polynomial time solvable. �

4.2 Tournaments

A tournament is a digraph which corresponds to a complete asymmetric binary

relation. As indicated previously, one can build a tournament as follows: take a

complete undirected graph and assign a direction to each edge. The problems of

finding directed pec s-t paths and pec circuits in c-edge-colored tournaments are

challenging. For example, the complexity of determining a pec circuit in a 2-edge-

colored tournament is evoked in [7, 30].

We begin with the problem of finding a directed pec Hamiltonian s-t path. Deal-

ing with uncolored tournaments, one of the earliest results is Rédei’s theorem, which

proves that every tournament has a directed Hamiltonian path (the endpoints are not

specified) [36]. More recently, in [8] the authors gave a polynomial algorithm to find a

directed Hamiltonian s-t path (if one exists) in a uncolored tournament. Given a gen-

eral c-edge-colored digraph Dc, the problem of deciding if Dc contains a directed pec

Hamiltonian s-t path is NP-complete (since it generalizes the Directed Hamiltonian

s-t path problem in general uncolored digraphs) [7]. However a nice characterization

[16] shows that it is polynomial in undirected c-edge-colored complete graphs (with

not specified endpoints). Here, if we fix a source s and a destination t, we prove that

this result cannot be extended to the directed case.

Theorem 12. Deciding whether a 2-edge-colored tournament T c contains a directed

pec Hamiltonian s-t path is NP-complete.
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v2
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v3
in v3
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v4
in v4

out

Dc

Figure 4.5: A digraph D and the 2-edge-colored digraph Dc. Dotted arcs are colored
blue and rigid arcs are colored red.

Proof: We use a reduction from the directed Hamiltonian s′-t′ path problem in

general uncolored digraphs (DHPP in short). Given a digraph D = (V, A) and two

vertices s′, t′, DHPP asks whether a directed Hamiltonian s′-t′ path exists. DHPP is

NP-complete (see problem [GT39] page 199 in [25]).

Let D = (V, A) be a digraph where V = {v1, . . . , vn} and v1 = s′, vn = t′,

instance of DHPP. Without loss of generality, assume that d−
D(v1) = d+

D(vn) = 0. The

construction of the 2-edge-colored tournament T c is done in two steps: we first build

a 2-edge-colored digraph Dc and then we complete Dc into T c.

The 2-edge-colored digraph Dc = (V ′, A′) is built in the following way: V ′ =

{vi
in, v

i
out : i = 1, . . . , n} and A′ = A′

1 ∪ A′
2 where A′

1 = { ~vi
outv

j
in : ~vivj ∈ A} and

A′
2 = { ~vi

inv
i
out : i = 1, . . . , n}. Arcs in A′

1 are colored red while arcs in A′
2 are colored

in blue. See Figure 4.5 for an illustration of Dc.

Next we build the tournament T c from Dc as follows. For every missing arc in Dc,

we apply the following procedure where 1 ≤ i < j ≤ n is assumed. If the endpoints
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Figure 4.6: A digraph D and the 2-edge-colored tournament T c. Dotted arcs are
colored blue and rigid arcs are colored red.

of the missing arc are vi
in and vj

in (resp., vi
in and vj

out), add a blue arc ~vj
inv

i
in (resp.,

~vj
outv

i
in). If the endpoints of the missing arc are vi

out and vj
in (resp., vi

out and vj
out), add

a red arc ~vj
inv

i
out (resp., ~vj

outv
i
out). These new blue (resp., red) arcs define a set denoted

by A′′
2 (resp., A′′

1).

The construction is completed (see Figure 4.6 for an illustration). It is clearly

done within polynomial time. The resulting tournament is 2-edge-colored. Its blue

arcs belong to A′
2∪A′′

2 while its red arcs belong to A′
1∪A′′

1. Let us give an intermediate

property.

Property 2. No directed pec path from v1
in to vn

out in T c can use an arc of A′′
1 ∪A′′

2.

Proof: By contradiction suppose that a directed pec path ρ = (v0, e0, v1, e1, . . . ,

ek, vk+1) linking v0 = v1
in to vk+1 = vn

out uses some arcs of A′′
1 ∪ A′′

2. Consider the last

arc ep ∈ A′′
1∪A′′

2 used by ρ (that is eq /∈ A′′
1∪A′′

2 for q = p+1, . . . , k+1). If ep = ~vj
inv

i
in

or ep = ~vj
outv

i
in (i < j) then it belongs to A′′

2 and it is blue. We have vi
in 6= vn

out so the
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path must contain an arc going out of vi
in which does not belong to A′′

1 ∪A′′
2. This arc

ep+1 = ~vi
invi

out is blue, contradiction. Otherwise, ep = ~vj
inv

i
out (i 6= j) or ep = ~vj

outv
i
out.

Therefore ep ∈ A′′
1 and it is red. We have vi

out 6= vn
out since ~vn

inv
n
out is the unique arc

coming into vn
out. Then, the path must contain an arc ep+1 /∈ A′′

1∪A′′
2 going out of vi

out

but all arcs of A′
1∪A′

2 going out of vi
out are red since they belong to A′

1, contradiction.

•

We deduce from Property 2 that any directed pec path from v1
in to vn

out in T c

only uses arcs of A′
1 ∪A′

2. Thus, D admits a directed Hamiltonian path from s′ = v1

to vn = t′, if and only if, T c has a directed pec Hamiltonian path from s = v1
in to

t = vn
out. �

We now solve a weaker version of an open problem raised in [7, 30].

Theorem 13. Deciding whether a 2-edge-colored tournament T c contains a pec cir-

cuit visiting a given vertex s of T c is NP-complete.

Proof: We start from the 2-edge-colored digraph Dc = (V ′, A′) built in Theorem

9 and we complete it in order to construct a tournament T c. The idea is to get a

tournament whose pec circuits passing through s (if one exists) also visit vertex t.

Then, directed paths from v to w in D (visiting at most one vertex from each pair of

C), instance of the Path with Forbidden Pairs Problem, correspond to pec circuits

passing through s in T c and vice-verse.

Recall that in the construction of Dc (see the proof of Theorem 9), we replace

each arc e ∈ A (resp., e from A′
2), except those which are incident to t, by a directed

path of length two in A (resp., in A′
2) where the added vertex is denoted by ve. If

e ∈ A (resp. e ∈ A′
2) then we suppose that ve ∈ V (A) (resp., ve ∈ V (A′

2)).
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Now, we show how to build the tournament T c. The construction is done in four

steps:

(1) Build a set of arcs A′
3 as follows. Add a red arc ~ts and a blue arc ~us. Do

E(Dc) ← E(Dc) ∪ A′
3. Then, add a blue arc ~tx for each x /∈ NDc(t), a blue arc

~xu for each x /∈ NDc(u) and a blue arc ~xs for each x /∈ NDc(s). Do E(Dc) ←

E(Dc) ∪ A′
3.

(2) Build a set of arcs A′
4 as follows. Choose an arbitrary vertex ve of V (A) (resp.,

V (A′
2)) with an incoming blue (resp., red) arc ~yve (resp., ~aive or ~bive), and add

a blue (resp., red) arc ~vex for every x /∈ NDc(ve). Let A′
4 be this new set of arcs

and do E(Dc)← E(Dc) ∪A′
4. Repeat the process for the remaining vertices ve

of V (A) (resp., V (A′
2)) by following an arbitrary order.

(3) Build a set of blue arcs A′
5 = { ~aqx : ∀x /∈ NDc(aq)} ∪ { ~bqy : ∀y /∈ (NDc(bq) ∪

{aq})}. Recall that (aq, bq) is the last pair of C. Set E(Dc)← E(Dc) ∪A′
5.

(4) Build a set A′
6 of blue arcs with endpoints in V (Dc)\ ({s, u, t, aq, bq}∪{ve : ve ∈

V (A) ∪ V (A′
2)}) and arbitrary directions. Set E(Dc)← E(Dc) ∪ A′

6.

The construction is completed. It is clearly done within polynomial time, and T c is

a 2-edge-colored tournament. We now give some useful properties:

Property 3. The following properties hold:

(i) Any pec circuit passing through s (resp., u) in T c uses ~ts and one arc among

{ ~sa1, ~sb1} (resp., uses exactly one arc among { ~aqu, ~bqu} and one arc ~uve ∈ A).

(ii) No pec circuit passing through s in T c uses an arc of A′
4.
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(iii) No pec circuit passing through s in T c uses an arc of A′
5 ∪ A′

6.

Proof: For (i). Due to step (1) of the above procedure, there is a unique red arc

incident to s (resp., t) which is ~ts. Thus, any pec circuit passing through s also visits

t. Moreover, vertex s only has two outgoing arcs ( ~xa1 and ~xb1 which are colored blue.

Concerning vertex u, ~aqu and ~bqu are the only red arcs incident to u. Thus, if a

pec circuit visits u then it contains one of these two arcs as incoming arc and one

arc ~uve ∈ A as outgoing arc. Actually, vertex u has only arcs ~uve ∈ A and ~us like

outgoing arcs and such a pec circuit cannot use the blue arc ~us since all arcs going

out of s are blue.

For (ii). By contradiction, assume that there is a pec circuit passing through

s, ρ = (v0, e0, v1, e1, . . . , ek, vk+1) with v1 = vk+1 = s and containing some arcs of

A′
4. Consider the first arc ep ∈ A′

4 met when we walk around ρ (i.e., eq /∈ A′
4 for

q = 1, . . . , p− 1). By construction ep = ~vex and from (i), we deduce k > p > 1 (i.e.,

x /∈ {s, t}). Since ep−1 /∈ A′
4 and ep−1 /∈ A′

3 from (i), arc ep−1 = ~yve ∈ A ∪ A′
2. Thus,

ep−1 has the same color as ep, which is a contradiction.

For (iii). By contradiction. Firstly assume that there is a pec circuit passing

through s, ρ = (v0, e0, v1, e1, . . . , ek, vk+1) with v1 = vk+1 = s and containing some

arcs of A′
5. In the same way as before, consider the first arc ep ∈ A′

5 of ρ (i.e., eq /∈ A′
5

for q = 1, . . . , p − 1). Without loss of generality, suppose ep = ~aqx (the same result

holds for ep = ~bqx; we get x 6= u from (i). Then, ep−1 = ~veaq ∈ A is colored in red

and from (ii) we deduce that ep−2 = ~yve ∈ A and is colored in blue. Since all arcs in

A′
6 are blue like ep−2, by induction we deduce that eq ∈ A for q = 1, . . . , p − 1. We

obtain a contradiction since from (i) e1 ∈ A′
1 (i.e., e1 ∈ { ~sa1, ~sb1}).
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Now, suppose that a pec circuit passing through s, ρ = (v0, e0, v1, e1, . . . , ek, vk+1)

with v1 = vk+1 = s contains some arcs in A′
6. Consider the last arc ep = ~xy ∈ A′

6 met

when we walk around ρ (i.e., eq /∈ A′
6 for q = p + 1, . . . , k + 1). Since ep is colored in

blue and y 6= t (from (i)), we deduce that ep+1 is colored in red. Then, we get y = ai

or y = bi and ep+1 = ~yve ∈ A′
2 since ep+1 /∈ A′

6. Moreover, from (ii), ep+2 = ~vez ∈ A′
2

is colored in blue. Now, since ek ∈ A (the arc of ρ incoming in vertex t) is also colored

in blue, the directed pec subpath of ρ from x to t = vk must contain arc ~aqu or ~bqu

(using Property 1 of Theorem 9, it is the only way to flip arcs of A′
2 to arcs of A).

Thus, this pec circuit ρ can be decomposed into three directed pec paths: ρ1 from y

to u, ρ2 from u to s (and containing arc ek+1 = ~ts) and ρ3 from s to y. In particular,

the directed pec path ρ3 begins with a blue arc (by (i)), only uses arcs in A′
2 and ends

by a blue arc, which is impossible since ρ3 does not contain u. Actually, directed path

ρ3 cannot use some arcs of A′
6. We have e2 = ~x1ve ∈ A′

2 with x1 ∈ {a1, b1} (since the

arc must be colored in red) and using (ii), arc e3 = ~vex2 with x2 ∈ {a2, b2} is colored

in blue. Thus, e4 /∈ A′
5 ∪ A′

6. Then, the result follows by induction. Notice that it

may exist a pec circuit containing one arc e = ~xy ∈ A′
6 (but not passing through s).

In this case, this pec circuit is composed of two directed pec paths ρ1 from y to u

and ρ2 from u to y: ρ1 only uses arcs of A′
2 from y to aq (or bq) and uses arc ~aqu ∈ A′

1

(or ~bqu ∈ A′
1) while ρ2 only uses arcs of A from u to x and uses arc e = ~xy ∈ A′

6. •

Using Properties 1 and 3, we can easily see that we have a path from u to w in

D and visiting at most one vertex from each pair of C, if and only if, we have a pec

circuit passing through s in T c. �

The Theorem 13 above also holds for an arbitrary number of colors. Thus, we
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have the following result:

Corollary 9. Deciding whether a c-edge-colored tournament T c contains a pec circuit

passing through s is NP-complete, even for c = Ω(|V (T c)|2).

Proof: Construct a tournament T c′

n with n vertices and c′ = 2 colors, as described

in the proof of Theorem 13 (note that s ∈ V (T c′

n )). Now, we can easily define a new

tournament T̄ c′

n with Ic ⊇ Ic′ by adding all arcs ~xy with x ∈ V (T̄ c
n), y ∈ V (T̄ c′

n ) and

arbitrary colors c( ~xy) ∈ Ic. Let E(T, T̄ ) be this new set of arcs. In this way, the

resulting tournament T c
2n with vertices V (T c

2n) = V (T c′

n ) ∪ V (T̄ c′

n ) and arcs E(T c
2n) =

E(T c′

n )∪E(T̄ c′

n )∪E(T, T̄ ) will have respectively, 2n vertices and at most n(n−1)
2

different

arc colors. Therefore, the determination of a pec circuit in T c′

n (for c′ = 2) will

correspond to the determination of a pec circuit in T c
2n with c = Ω(n2) colors and

vice verse. �

Dealing with paths instead of circuits, we get:

Corollary 10. Deciding whether a 2-edge-colored tournament T c contains a pec path

from s to t is NP-complete (the result also holds for c = Ω(|V (T c)|2) colors).

Proof: In the proof of Theorem 13, we have a pec circuit passing through s, if

and only if, we have a directed pec s-t path in T c. �

Now, regarding Theorem 12 above, we have the following open problem:

Open Problem 6. Given a 2-edge-colored tournament T c. The problem of deciding

if T c contains a directed pec Hamiltonian path (with no fixed extremities s and t) is

NP-complete?
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We conclude by recalling the open problem posed by Gutin, Sudakov and Yeo

[30]:

Open Problem 7. Given a 2-edge-colored tournament T c. To check whether T c

contains a pec circuit is NP-complete?



Chapter 5

Paths, trails and walks with reload

costs

In this chapter we deal with paths, trails and walks problems. The goal is to find

a path/trail/walk whose total reload cost is minimum.

We deal with the case of finding a minimum reload s-t walk, either with symmetric

or asymmetric reload cost matrix. We prove that both cases are polynomial time

solvable. Then, we discuss paths and trails with symmetric reload costs. We prove

that the minimum reload s-t trail problem can be solved in polynomial time for every

c ≥ 2. Besides, we show that the minimum reload s-t path problem is polynomially

solvable either if c = 2 and the triangle inequality holds and R is not necessarily

a symmetric matrix or if Gc has a maximum degree 3. Although, it is NP-hard

when c ≥ 3, even for graphs of maximum degree 4 and reload cost matrix satisfying

the triangle inequality, as well as if c ≥ 4 and the triangle inequality is satisfied,

the minimum symmetric reload s-t path problem remains NP-hard even for planar

64
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graphs with maximum degree 4. We also show that the TSP with reload costs is

NP-hard and no non-trivial approximation is likely to exist, even if c = 2 the reload

cost matrix is symmetric and satisfies the triangle inequality. Last, we deal with

asymmetric reload costs. For a reload cost matrix satisfying the triangle inequality,

we construct a polynomial time procedure for the minimum reload s-t trail problem

and we prove that the minimum asymmetric reload s-t trail problem is NP-hard even

for graphs with 3 colors and maximum degree equal to 3.

5.1 Walks with reload costs

Choosing a walk instead of a path can help in reducing the reload costs. For

instance, Figure 5.1 illustrates two different s-t walks, ρ1 = (s, e1, v1, e2, v2, e2, v1, e3,

t) and ρ2 = (s, e1, v1, e3, t), with reload costs ri,j = 1 for i, j ∈ {1, 2, 3} except for

r1,3 = r3,1 = 4. The reload cost of ρ2 is r(ρ2) = r1,3 = 4 whereas the reload cost of ρ1

is r(ρ1) = r1,2 + r2,2 + r2,3 = 3. Notice that the minimum reload cost of an s-t walk is

a lower bound on the minimum reload cost of an s-t trail which is a lower bound on

the minimum reload cost of an s-t path since a path is a trail and a trail is a walk.

We already know that the minimum reload s-t walk problem is polynomial since

there is a polynomial reduction from the minimum reload s-t walk problem to the

minimum reload+weight directed s-t trail problem (see Subsection 1.2 for a descrip-

tion of this problem). Actually, from Gc, c, Ic and a reload cost matrix R = [ri,j], an

instance of the minimum reload s-t walk problem, we build an instance Dc, c′ I ′
c, w

and a reload cost matrix R′ = [r′i,j ] of the minimum reload+weight directed s-t trail

problem as follows: V (Dc) = V (Gc) and we replace each edge e = vivj of Gc by two
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arcs e1 = ~vivj and e2 = ~vjvi with color c′(e1) = c′(e2) = c(e). Thus, I ′
c = Ic. Finally,

r′i,j = ri,j for i, j ∈ Ic and w(e) = 0 for every arc e ∈
−→
E (Dc). It is not difficult to see

that any directed s-t trail ρ of Dc with reload+weight cost r′(ρ) + w(ρ) corresponds

to an s-t walk ρc of Gc with reload cost r(ρc) = r′(ρ) + w(ρ). On the other side, any

optimal s-t walk ρ∗
c of Gc using a minimum number of edges can be converted into a

directed s-t trail ρ∗ of Dc with reload+weight cost r′(ρ∗) + w(ρ∗) = r(ρ∗
c).

c(e2) = 2

e2

e1

t

s

v2

e3

c(e1) = 1

c(e3) = 3

v1 ρ1
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Figure 5.1: Two different reload s-t walks and the associated reload cost matrix R.
Walk ρ1 has reload cost 5 and ρ2 has reload cost 3.

Here, we propose another polynomial method to solve the minimum reload s-t

walk problem. Notice that the construction used differs from the one given in [3] for

solving the minimum reload+weight directed s-t trail problem.

Let Gc with V (Gc) = {s, t} ∪ {v1, . . . , vn} be a simple c-edge-colored connected

graph. We reduce the minimum s-t walk problem to the computation of a shortest

s0-t0 path in an auxiliary digraph H = (V ′,
−→
E ′) whose arcs are weighted by w. The

digraph H contains |Ic| directed subgraphs Hℓ for ℓ ∈ Ic. The vertex set of each

subgraph Hℓ is {vℓ
1, . . . , v

ℓ
n}. There is an arc from vℓ

i to vℓ′

k , if and only if, there is a

walk (vj, e1, vi, e2, vk) in Gc such that c(e1) = ℓ and c(e2) = ℓ′. This construction can

be done within polynomial time. An example is given in Figure 5.2.

Formally, the digraph H is built as follows:
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Figure 5.2: Transformation of Gc into a digraph H .

• V ′ = {s0, t0} ∪ {s
ℓ, vℓ

1, . . . , v
ℓ
n, tℓ : ℓ ∈ Ic}

• For any pair of edges vjvi ∈ Eℓ(Gc) and vivk ∈ Eℓ′(Gc), with ℓ, ℓ′ ∈ Ic and

vi ∈ V (Gc) (possibly with vj = vk), add arcs ~vℓ
iv

ℓ′

k and ~vℓ′

i vℓ
j to
−→
E ′. Next update

−→
E ′ by deleting all incoming (resp., outgoing) arcs to sℓ (resp., to tℓ) for every

ℓ ∈ Ic. Moreover, add arc ~s0sℓ to
−→
E ′ (resp., ~tℓt0 to

−→
E ′), if and only if, there

exists svi ∈ Eℓ(Gc) (resp., vit ∈ Eℓ(Gc)).

• If vi 6= s, t and vj 6= s, t, then w( ~vℓ′

i vℓ
j) = rℓ′,ℓ for arc ~vℓ′

i vℓ
j ∈
−→
E ′. If vi ∈ {s, t}

or vj ∈ {s, t}, then w( ~vℓ′

i vℓ
j) = 0 for arc ~vℓ′

i vℓ
j ∈
−→
E ′. Finally, w( ~s0sℓ) = 0 for arc

~s0sℓ ∈
−→
E ′ and w( ~tℓt0) = 0 for arc ~tℓt0 ∈

−→
E ′.

Theorem 14. For any simple connected edge-colored graph Gc and any pair s, t of

vertices of Gc, the minimum reload s-t walk problem can be solved in polynomial time.

Proof: Let Gc with V (Gc) = {s, t} ∪ {v1, . . . , vn} be a simple edge-colored con-

nected graph with colors in Ic. We apply the transformation described above. Now,

observe that any directed path ρ′ from s0 to t0 in H with weight w(ρ′) =
∑

e∈ρ′ w(e)
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corresponds in Gc to an s-t walk ρc with reload cost r(ρc) = w(ρ′). Symmetrically

any minimum reload s-t walk ρ∗
c of Gc with reload cost r(ρ∗

c) and using a minimum

number of edges can be converted into a directed path ρ′ from s0 to t0 in H such

that w(ρ′) = r(ρ∗
c). Actually, in order to prove this claim we need to show that the

directed path ρ′ will not pass twice by vertex vℓ for each v ∈ V (Gc) and ℓ ∈ Ic. This

latter property holds because we have:

Property 4. If ρ∗
c is a minimum reload s-t walk of Gc using a minimum number of

edges, then ρ∗
c does not contain a subsequence (e0, v, e1, . . . , ek, v, ek+1) with c(e0) =

c(ek) or c(e1) = c(ek+1).

Proof: We will show Property 4 by contradiction. Let ρ∗
c be a minimum reload

s-t walk of Gc using a minimum number of edges and assume that ρ∗
c contains a

subsequence (e0, v, e1, . . . , ek, v, ek+1) with c(e0) = c(ek) or c(e1) = c(ek+1). Let ρ′
c be

the walk in which the subsequence (e0, v, e1, . . . , ek, v, ek+1) is replaced by (e0, v, ek+1).

In this case, the sequence ρ′
c is an s-t walk in Gc with reload cost r(ρ′

c) ≤ r(ρ∗
c),

contradiction with the definition of ρ∗
c . Thus, we deduce that ρ∗

c can be converted

into an oriented path from s0 to t0 in H since this path will pass through vertices vc(e0)

and vc(ek) which are different. Notice that Property 4 also implies that ρ∗
c contains

at most twice the same edge and if an edge e appears twice in ρ∗
c then it is used

in both directions (see for instance the walk ρ1 in Figure 5.1. This figure illustrates

two different s-t walks, ρ1 = (s, e1, v1, e3, t) and ρ2 = (s, e1, v1, e2, v2, e2, v1, e3, t), with

reload costs ri,j = 1 for i, j ∈ {1, 2, 3} except for r1,3 = r3,1 = 4. The reload cost of

ρ1 is r(ρ1) = r1,3 = 4 whereas the reload cost of ρ2 is r(ρ2) = r1,2 + r2,2 + r2,3 = 3). •

In conclusion, a shortest directed path from s0 to t0 in H corresponds to a min-
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imum reload s-t walk in Gc and thus it can be computed within polynomial time.

�

5.2 Paths and trails with symmetric reload costs

Let R be a symmetric matrix with non-negative integer reload costs. Here, we

prove that the minimum reload s-t trail problem can be solved in polynomial time

for every c ≥ 2. In addition, we show that the minimum reload s-t path problem can

be solved in polynomial time either if c = 2 and the triangle inequality holds (here

R is not necessarily a symmetric matrix) or if Gc has a maximum degree 3. However

the problem is NP-hard when c ≥ 3 for graphs satisfying the triangle inequality and

with maximum degree equal to 4. We conclude the section by showing that, if c ≥ 4

and the triangle inequality is satisfied, the minimum reload s-t path problem remains

NP-hard even for planar graphs with maximum degree 4.

In the sequel, we show how to turn the minimum reload s-t trail problem into

a minimum perfect matching problem in a weighted non-colored graph G defined as

follows.

Given two vertices s and t in V (Gc) = {v1, . . . , vn}, set W = V (Gc) \ {s, t}. Now,

for each vi ∈ W , we define a subgraph Gi with vertex and edge sets as illustrated in

Figure 5.3. Formally:

• V (Gi) = {vi,j, v
′
i,j : vj ∈ NGc(vi)} ∪ {p

i
j,k, q

i
j,k : j < k and vj, vk ∈ NGc(vi)}

• E(Gi) = {vi,jv
′
i,j : vj ∈ NGc(vi)} ∪ {v

′
i,jp

i
j,k, p

i
j,kq

i
j,k, q

i
j,kv

′
i,k : j < k and vj , vk ∈

NGc(vi)}
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(a) Neighborhood of vi in Gc (b) Weighted non-colored subgraph Gi

Figure 5.3: Reduction of the minimum reload s-t trail to a minimum perfect matching.

The non-colored graph G = (V ′, E ′) edge weighted by w is constructed as follows:

• V ′ = {s′, t′} ∪ (
⋃

vi∈W V (Gi)), and

• E ′ = {vi,jvx,y : j = x and i = y}∪{s′vi,j : vj = s and vivj ∈ E(Gc)}∪{vi,jt
′ : vj = t

and vivj ∈ E(Gc)}

• w(v′
i,jp

i
j,k) = 1

2
rc(vivj),c(vivk), w(v′

i,kq
i
j,k) = 1

2
rc(vivk),c(vivj) and all remaining edges have

a weight 0.

After G is constructed, we have to find a minimum weighted perfect matching

M∗ in G. The weight of matching M is w(M) =
∑

e∈M w(e) (computing a minimum

weighted perfect matching is polynomial, see [26] for a good reference on general

matchings). We can prove that perfect matchings in G will be associated with reload

s-t trails in Gc and vice-verse. Formally:

Theorem 15. For any simple connected edge-colored graph Gc and any pair s, t of

vertices of Gc, the minimum reload s-t trail problem can be solved in polynomial time.
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Proof: From Gc, an instance of the the minimum symmetric reload s-t trail

problem, we polynomially build a weighted undirected graph G = (V ′, E ′) as in-

dicated above (see Figure 5.3). Let M be a weighted perfect matching in G with

weight w(M) =
∑

e∈M w(e). The associated reload s-t trail ρc in Gc can be obtained

after the contraction of all subgraphs Gi in G and by associating the remaining non-

colored edges with colored edges in Gc. Since the reload cost matrix is symmetric

and w(v′
i,jp

i
j,k) + w(v′

i,kq
i
j,k) = rc(vivj),c(vivk) we can easily see that w(M) = r(ρc).

Conversely, given an s-t trail ρc of Gc with reload cost r(ρc), we construct the

associated perfect matching M in the following manner: (a) for every vertex vi of

Gc, out of ρc, we choose all edges with weight 0 in Gi; and (b), for every vertex vi

of Gc, belonging to ρc, if ρc contains the subsequence (va, e, vi, e
′, vb) with e 6= e′, we

choose edges v′
i,ap

i
a,b and qi

a,bv
′
i,b (we assume a < b) of Gi; and finally, (c) we choose

all the remaining edges of G (with cost 0), in order to obtain a perfect matching of

G. In this way, it is easy to see that w(M) = r(ρc). Therefore, a minimum reload

s-t trail corresponds in G to a minimum weighted perfect matching. Note that the

complexity of the minimum reload s-t trail is dominated by the complexity of the

minimum perfect matching problem in G. Since the construction of each Gi depends

on the number of neighbors of vi, we can say that a minimum reload s-t can be

obtained in polynomial time in the size of Gc.

In Figure 5.4 we show a cubic edge-colored-graph and its associated non-colored

graph.

�

Corollary 11. For any simple connected edge-colored graph Gc of maximum degree
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Figure 5.4: A 2-edge-colored graph Gc (top). Associated Weighted non-colored graph
G (bottom).



Chapter 5: Paths, trails and walks with reload costs 73

3 and any pair s, t of vertices of Gc, the minimum symmetric reload s-t path problem

can be solved in polynomial time.

Proof: The result is obvious, since in graphs of maximum degree 3, a minimum

s-t trail is an s-t path. The reload cost matrix being symmetric, one can apply

Theorem 15. �

Now, we deal with graphs Gc colored with two colors. We show that the minimum

reload s-t path problem is polynomial if the reload cost matrix R satisfies the triangle

inequality (R is not necessarily symmetric).

Theorem 16. Let Gc be a simple connected edge-colored graph with c = 2 colors,

such that the associated matrix R of reload costs satisfies the triangle inequality. For

any pair s, t of vertices of Gc, the minimum reload s-t path problem can be solved in

polynomial time.

Proof: Let Gc = (V, E) with Ic = {1, 2} be an instance of the minimum reload

s-t path problem. We also assume that the reload cost matrix R = [ri,j ] satisfies

the triangle inequality. Here, R is not necessarily symmetric. We first show that

any minimum reload s-t walk of Gc using a minimum number of edges is an s-t

path of Gc. Let ρ∗
c be a minimum reload s-t walk of Gc using a minimum number

of edges and assume that ρ∗
c passes twice through some vertices. Consider the first

vertex v visited twice by ρ∗
c . This means that ρ∗

c contains the subsequence C =

(v0, e0, v, e1, . . . , ek, v, ek+1, vk) (see Figure 5.5 for an illustration). Let ρ′
c be the s-t

walk in which the subsequence C is replaced by (v0, e0, v, ek+1, vk). We show that

r(ρ′
c) ≤ r(ρ∗

c) which leads to a contradiction since |ρ′
c| < |ρ

∗
c |. We consider two cases:
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Figure 5.5: Some cases for the subsequence C = (v0, e0, v, e1, . . . , ek, v, ek+1, vk).

• c(e1) 6= c(ek). If c(e0) = c(ek+1) then rc(e0),c(ek+1) ≤ rc(e0),c(e1) + rc(ek),c(ek+1)

(recall that |Ic| = 2); thus r(ρ′
c) ≤ r(ρ∗

c) and we get a contradiction. So,

c(e0) 6= c(ek+1) and moreover c(e0) = c(e1) for the same reasons. Now, since

|Ic| = 2, there exists i ∈ {2, . . . , k} such that c(e1) = c(ei−1) 6= c(ei). We deduce

that r(ρ′
c) ≤ r(ρ∗

c). See case A of Figure 5.5.

• Now, assume c(e1) = c(ek). Since edges e0, ek, ek+1 are adjacent to a common

vertex v, by applying the triangle inequality we obtain rc(e0),c(ek+1) ≤ rc(e0),c(ek)+

rc(ek),c(ek+1) = rc(e0),c(e1) + rc(ek),c(ek+1). Thus, r(ρ′
c) ≤ r(ρ∗

c). See case B of Figure

5.5.

In conclusion, any optimal reload s-t walk of Gc using a minimal number of edges

is an s-t path.

Finally, we apply the transformation made in Theorem 14 from instance Gc with

|Ic| = 2 except that we replace w(e) by w′(e) = (2m + 1)w(e) + 1 for each arc

e of H . Let ρ′ be a shortest directed s0 − t0 path in H with weight w′(ρ′). The

path ρ′ corresponds in Gc to an optimal reload s-t walk ρ′
c of Gc using a minimum

number of edges. This conclude the proof. Otherwise, let ρ∗
c be an optimal reload
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s-t walk of Gc using a minimum number of edges |ρ∗
c | < |ρ′

c|. We have |ρ∗
c | ≤ 2m

since any edge of Gc is used at most twice (see Property 4 of Theorem 14). The

sequence ρ∗
c corresponds to a directed path ρ∗ in H with weight w′(ρ∗) = (2m +

1)w(ρ∗) + |ρ∗
c|+ 2 = (2m+ 1)r(ρ∗

c) + |ρ∗
c |+ 2. We deduce r(ρ∗

c) = r(ρ′
c) since otherwise

w(ρ∗) = r(ρ∗
c) ≤ r(ρ′

c)− 1 = w(ρ′)− 1 (ri,j ∈ N) and then w′(ρ∗) ≤ (2m + 1)(w(ρ′)−

1) + |ρ∗
c | + 2 < (2m + 1)w(ρ′) + |ρ′

c| + 2 = w′(ρ′) (recall that |ρ∗
c | ≤ 2m). Thus,

w′(ρ∗) = (2m + 1)w(ρ∗) + |ρ∗
c | + 2 < (2m + 1)w(ρ′) + |ρ′

c| + 2 = w′(ρ′), which is a

contradiction since ρ′ is assumed to be a shortest directed s0 − t0 path of H . �

A possible application of Theorem 16 is the following. Consider a (2, 2)-matrix

R satisfying r1,1 = r2,2 = 0. It is easy to see that R satisfies the triangle inequality,

and then one can apply Theorem 16 (on the other hand, this restriction becomes

NP-hard for a (3, 3)-matrix with ri,i = 0, see the proof of item (i) of Corollary 12).

We also deduce that the minimum toll cost s-t path problem (see Subsection 1.2)

is polynomial for two colors since it is a subproblem of the case considered above.

Notice that, the minimum toll cost s-t path problem for rj = 1 ∀j ∈ Ic, is equivalent

to minimizing the number of color changes in an s-t path. Actually, the minimum toll

cost s-t path problem is polynomially solvable (without constraints on the number of

colors).

Theorem 17. Let Gc be a simple connected edge-colored graph and s and t be any

pair of vertices of V (Gc). The minimum toll cost s-t path problem can be solved in

polynomial time.

Proof: The proof is quite identical to Theorem 16. Let R = [ri,j] be a reload

cost matrix satisfying rj,j = 0 and ri,j = rj if i 6= j. We only show that any
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minimum reload s-t walk of Gc using a minimum number of edges is an s-t path of

Gc. Let ρ∗
c be a minimum reload s-t walk of Gc using a minimum number of edges and

assume that ρ∗
c contains the subsequence C = (v0, e0, v, e1, . . . , ek, v, ek+1, vk) (possibly

with e1 = ek). Let ρ′
c be the s-t walk in which the subsequence C is replaced by

C ′ = (v0, e0, v, ek+1, vk). If c(e0) = c(ek+1), then r(C ′) = 0 ≤ r(C). If c(e0) 6= c(ek+1),

then r(C ′) = rc(e0),c(ek+1) = rc(ek+1) = rc(ek),c(ek+1) ≤ r(C). The rest of the proof is

similar to proof of Theorem 16. �

Now, we show that the previous restrictions on Gc are almost the best ones to

obtain polynomial cases for the minimum reload s-t path problem.

Theorem 18. The minimum symmetric reload s-t path problem is NP-hard if c ≥ 3,

the triangle inequality holds and the maximum degree of Gc is equal to 4.

Proof: Given a set C of CNF clauses defined over a set X of boolean variables.

An instance of the (3, B2)-sat problem, called 2-balanced 3-SAT, is such that each

clause has exactly 3 literals, each of them appearing exactly 4 times in the clauses,

twice negated and twice unnegated. Deciding whether an instance of (3, B2)-sat is

satisfiable is NP-complete [10]. We are going to reduce (3, B2)-sat to the existence

of an s-t path with reload cost at most L. Let I be an instance of (3, B2)-sat. We

say that Cj is the h-th clause of xi, if and only if, xi appears in Cj and xi appears

in exactly h− 1 other clauses Cj′ with j′ < j. We say that xi is the ℓ-th variable of

Cj, if and only if, xi and exactly ℓ − 1 other variables xi′ with i′ < i appear in Cj.

We build Gc – instance of the s-t path with reload cost at most L – as follows. We

have Ic = {1, 2, 3} and L = 11|X |+ 3|C|. The matrix R is defined as r1,2 = r2,1 = M

where M > L. The other entries of R are set to 1.
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Figure 5.6: Gadgets for a variable xi (left) and a clause Cj (right).

The graph Gc has a source vertex s and a sink vertex t. In addition, for each

xi ∈ X (resp. Cj ∈ C) we build a gadget as depicted on the left (resp. right) of Figure

5.6. The gadget of a variable xi consists of a left part (vertices f 0
i to f 4

i and d0
i to

d3
i ), a right part (vertices t0i to t4i and k0

i to k3
i ), an entrance ai and an exit bi. The

left (resp. right) part corresponds to the case where xi is set to false (resp. true).

The gadget of a clause Cj consists of an entrance qj , an exit wj and three vertices u1
j ,

u2
j , and u3

j which correspond to the first, second and third variable of Cj respectively.

We link the gadgets by adding the following edges (see Figure 5.7):

• sa1,b1a2,b2a3,. . . ,b|X |−1a|X | with color 2 (bold) ;

• b|X |q1 with color 3 (dashed) ;

• w1q2],w2q3,. . . ,w|C|−1q|C|, w|C|t with color 1 (thin).

For each pair xi, Cj such that xi is the ℓ-th variable of Cj and Cj is the h-th

clause of xi we proceed as follows. If xi appears negated in Cj then add th−1
i uℓ

j, thi u
ℓ
j,

fh−1
i dh−1

i and fh
i dh−1

i with color 2 (bold). If xi appears unnegated in Cj then add
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Figure 5.7: Left: How the gadgets are linked. Right: How to link the gadget of x7

if it appears in C3 = (x1 ∨ x7 ∨ x8), C4 = (x3 ∨ x5 ∨ x7), C5 = (x7 ∨ x8 ∨ x9) and
C6 = (x1 ∨ x6 ∨ x7).

fh−1
i uℓ

j, fh
i uℓ

j, th−1
i kh−1

i and thi k
h−1
i with color 2 (bold). It is not difficult to see that

each vertex’s degree is at most 4. Moreover the triangle inequality holds.

Since r1,2 > L and r2,1 > L, any s-t path ρc with reload cost at most L starts at s,

enters the gadget of x1 and visits the variable-gadgets in turn. When b|X | is reached,

ρc uses b|X |q1 and visits the clause-gadgets in turn. Finally t is reached from w|C|.

Then exactly 11 (resp., 3) vertices are visited when passing through a variable-gadget

(resp., a clause-gadget).

If a truth assignment τ satisfies I then Gc admits an s-t path ρc with reload cost

11|X |+3|C|. Indeed, if xi is false (resp. true) in τ then ρc goes across the left (resp.

right) part of xi’s gadget. Since τ satisfies I we know that at least one literal per

clause is true. If the ℓ-th literal of Cj is true (choose ℓ arbitrarily if it is not unique)

then ρc passes through uℓ
j . Conversely an s-t path ρc with reload cost 11|X | + 3|C|

induces a truth assignment that satisfies I: set xi to false (resp. true) if ρc passes

through the left (resp. right) part of xi’s gadget. �
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Corollary 12. The two following statements hold:

(i) In the general case, the minimum symmetric reload s-t path problem is not

approximable at all if c ≥ 3, the triangle inequality holds and the maximum

degree of Gc is equal to 4.

(ii) If ri,j ≥ 1 for every i, j ∈ Ic, the minimum symmetric reload s-t path prob-

lem is not O(2P (n))-approximable for every polynomial P if c ≥ 3, the triangle

inequality holds and the maximum degree of Gc is equal to 4.

Proof: We show that the reduction built in Theorem 18 is a gap reduction. Let

us denote by OPT (Gc) the reload cost of an optimal solution of Gc, the instance built

in Theorem 18.

For (i) we modify the reload costs as follows: r2,3 = r3,2 = r3,1 = r1,3 = 0, ri,i = 0

for i ∈ Ic = {1, 2, 3} and r1,2 = r2,1 = M . Notice that the reload cost matrix R is

symmetric and satisfies the triangle inequality. We have OPT (Gc) = 0, if and only

if, I is satisfiable. Thus, it is NP-complete to distinguish between OPT (Gc) = 0 and

OPT (Gc) ≥ 1.

For (ii), let P be a polynomial. Set M = O(2P (n)) L where n is the number of

vertices of Gc in the proof of Theorem 18. We deduce that it is NP-complete to

distinguish between OPT (Gc) ≤ L and OPT (Gc) ≥ O(2P (n)) L. �

See Subsection 1.2 for a better description of the gap reduction technique.

Corollary 13. The minimum symmetric reload s-t path problem is NP-hard if c ≥ 4,

the graph is planar, the triangle inequality holds and the maximum degree is equal to

4.
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Proof: We use the instance Gc in the proof of Theorem 18 and make it planar.

To do so we use an additional color 4 such that r3,4 = r4,3 = M and r1,4 = r4,1 =

r2,4 = r4,2 = 1. Let Gc be an embedding of the graph built in Theorem 18. Here

M > n + 3p where n (resp. p) is the number of vertices (resp. intersections between

two edges) in the graph of Gc. Note that p is polynomially bounded in the order of

Gc.

One can suppose Without loss of generality, that b|X |q1 (with color 3) is not

intersected by another edge of Gc (see Figure 5.7). If some edge ab with color 1

intersects cd with color 2 in Gc we add a new vertex f and replace ab by {af, fb}

with color 1, and edge cd by {cf, fd} with color 2. If ab with color 1 (resp., 2)

intersects cd with color 1 (resp., 2), we add five new vertices {f, a′, b′, c′, d′} and

replace ab by {aa′, b′b} with color 1 (resp., 2), replace cd by {cc′, d′d} with color 1

(resp., 2), add {a′f, fb′} with color 3 and add {c′f, fd′} with color 4. In this way, the

graph of the resulting instance – denoted by Ḡc – is planar.

It is not difficult to see that I (the instance of (3, B2)−sat from which Gc is

built) is satisfiable iff there is an s-t path ρc in Ḡc such that r(ρc) < M . �

5.2.1 Traveling salesman problem with reload costs

The reload traveling salesman problem is defined upon a complete graph Kc
n

on vertices {1, . . . , n} where edges are colored in Ic. The goal is to find a vertex

permutation π (i.e., a Hamiltonian cycle) of Kn minimizing its reload cost r(π) =

∑n
i=1 rc(ei),c(e(i+1)mod n) with ei = (π(i), π((i + 1)mod n)) for i = 1, . . . , n.

Theorem 19. The reload traveling salesman problem is NP-hard even if c = 2, the
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color 1

color 2
1

2

5

42

5

3

1

3

4

r1,2

r2,1

r2,2

r1,1

Figure 5.8: Instance of the Hamiltonian Cycle, where all edges are colored 1 (left).
Complete graph, instance of the The reload traveling salesman problem (right).

reload cost is symmetric and satisfies the triangular inequality.

Proof: The reduction is very simple and it is done from the Hamiltonian cycle

problem (HC in short). This latter problem consists in deciding wether a simple

graph G contains an HC. HC is known to be NP-complete [25]. Starting from a

graph G = (V, E) on n vertices, instance of HC, we complete it into Kc
n where the

initial edges (i.e., edges of E) are colored 1 and added edges are colored 2 (see Figure

5.8). We set r1,1 = 1 and r1,2 = r2,1 = r2,2 = M where M > n. Clearly, Kc
n is colored

with two colors and the reload cost ri,j for i, j ∈ Ic is symmetric and satisfies the

triangular inequality.

It is clear that G has an HC, if and only, if there is an acyclic permutation π of

V (Kc
n) with reload cost r(π) ≤ n.

�

From this theorem, we deduce the following results.

Corollary 14. The two following statements hold:
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(i) In the general case, the reload traveling salesman problem is not approximable at

all even if c = 2, the reload cost matrix is symmetric and satisfies the triangular

inequality.

(ii) If ri,j ≥ 1 for every i, j ∈ Ic, the reload traveling salesman problem is not

O(2P (n))-approximable for every polynomial P (n) even if c = 2, the reload cost

matrix is symmetric and satisfies the triangular inequality.

Proof: The proofs are quite identical to the proof of Corollary 12. For (i),

replace the entries of R equal to 1 (i.e., r1,1 = 1) by 0, and for (ii) replace M by

M = O(2P (n)) n. �

5.3 Paths and trails with asymmetric reload costs

We now deal with asymmetric reload costs. We mainly prove that the minimum

reload s-t trail problem is NP-hard in this case.

Theorem 20. The minimum asymmetric reload s-t trail problem is NP-hard if c ≥ 3

and the maximum degree of Gc is equal to 3.

Proof: This proof is similar to the one of Theorem 18, i.e. we reduce (3, B2)-sat

to the existence of an s-t path with reload cost at most L. In what follows, we use

the same notations and only describe how Gc is built upon I. A trail must be a path

in the graph of Gc since a vertex’s maximum degree is 3. Hence we only deal with

paths in this proof.

We have Ic = {1, 2, 3} and L = 15|X | + 6|C| + 1. The matrix R is defined as

r1,2 = r2,3 = r3,1 = M where M > L. The other entries of R are set to 1. The graph
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Figure 5.9: Left: Gadgets for a variable xi. Middle: Gadget of a clause Cj. Right: x3

appears in the four clauses C1 = (x3∨x5∨x6), C2 = (x1∨x3∨x4), C5 = (x1∨x2∨x3)
and C7 = (x1 ∨ x2 ∨ x3).

Gc has a source s and a sink t. In addition, for each xi ∈ X (resp. Cj ∈ C) we build a

gadget as depicted on the left (resp. middle) of Figure 5.9. The gadget of a variable

xi consists of a left part (vertices fi, di and ei), a right part (vertices ti, ki and oi), an

entrance ai and an exit bi. The left (resp. right) part corresponds to the case where

xi is set to false (resp. true). The gadget of a clause Cj consists of a left part

(vertices u1
j and v1

j ), a middle part (vertices u2
j and v2

j ), a right part (vertices u3
j and

v3
j ), an entrance qj, an exit wj and four intermediate vertices z1

j , z2
j , y1

j and y2
j . The

left, middle and right parts correspond to the first, second and third variable of Cj

respectively.

We link the gadgets by adding the following edges with color 3 (dashed): sa1,

b1a2, b2a3, . . . , b|X |−1a|X |; b|X |q1; w1q2,w2q3, . . . , w|C|−1 q|C|, w|C|t (this construction is

similar to the one described in the left part of Figure 5.7 except for the colors of the

edges). For each pair xi, Cj such that xi is the ℓ-th variable of Cj and Cj is the h-th
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Figure 5.10: An example of the 3-edge-colored graph Gc associated with the instance
I = {(x1 ∨x2 ∨x3)∧ (x1 ∨ x̄2 ∨x3)∧ (x̄1 ∨ x̄2 ∨ x̄3)∧ (x̄1 ∨x2 ∨ x̄3)} of the (3, B2)-sat
problem.
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Figure 5.11: An example of a solution of the Figure 5.10, where the variable x1

is set to false and the variables x2 and x3 are set to true. The reload costs are
r1,2 = r2,3 = r3,1 = M > L, the others entries are set to 1 and L = 70.
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clause of xi we proceed as follows. If xi appears negated in Cj then add th−1
i vℓ

j with

color 1 (thin), thi u
ℓ
j with color 2 (bold), fh−1

i dh−1
i with color 1 and fh

i eh
i with color

2. If xi appears unnegated in Cj then add fh−1
i vℓ

j with color 1, fh
i uℓ

j with color 2,

th−1
i kh−1

i with color 1 and thi o
h
i with color 2. Now Gc is fully described. An example

is given on the right of Figure 5.9. It is not difficult to see that each vertex’s degree

of Gc is at most 3.

As in the proof of Theorem 18 it is not difficult to see that a truth assignment

that satisfies I corresponds to an s-t path with reload cost 15|X | + 6|C| in Gc and

vice-verse. See Figures 5.10 for an example and Figure 5.11 for its solution. �

For graphs of maximum degree 3, trails and paths are identical. Thus, using

Theorem 20, we deduce:

Corollary 15. The minimum asymmetric reload s-t path problem is NP-hard if c ≥ 3

and the maximum degree of Gc is equal to 3.

Corollary 16. The two following statements hold:

(i) In the general case, the minimum asymmetric reload s-t trail/path problems are

not approximable at all if c ≥ 3 and the maximum degree of Gc is equal to 3.

(ii) If ri,j ≥ 1 for every i, j ∈ Ic, the minimum asymmetric reload s-t trail/path

problems are not O(2P (n))-approximable for every polynomial P if c ≥ 3 and the

maximum degree of Gc is equal to 3.

Proof: The proofs are quite identical to the proof of Corollary 12. For (i) replace

the entries of R equal to 1 by 0 and for (ii) replace M by M = O(2P (n)) L. �
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We know that the minimum symmetric reload s-t trail problem is polynomially

solvable (see Theorem 15). We now prove that this result also holds with asymmetric

reload costs if the triangle inequality is satisfied.

Theorem 21. For any simple connected edge-colored graph Gc and any pair s, t of

vertices of Gc, the minimum asymmetric reload s-t trail problem can be solved in

polynomial time, if the triangle inequality holds.

Proof: The proof is similar to the one presented in Theorem 16 except that we

deal with trails instead of paths. In other words, we can prove that any minimum

reload s-t walk ρ∗
c of Gc using a minimal number of edges is indeed an s-t trail of Gc.

We recall that ρ∗
c contains the same edge at most twice (see Property 4 of Theorem

14). �

Open Problem 8. When c = 2, it is not known the complexity of the minimum

symmetric reload s-t path if the matrix of reload costs does not satisfy the triangle

inequality.

Open Problem 9. When c = 2, it is not known the complexity of the minimum

asymmetric reload s-t trail if the matrix of reload costs does not satisfy the triangle

inequality.

These open problems seem important to better understand the complexity of

the properly edge-colored s-t trail/path problems when Gc does not have a properly

edge-colored s-t trail/path. In this case, one could be interested in seeking an s-t

trail/path with a minimum number of vertices for which the adjacent edges have

the same color. As a future direction, one could be interested in finding heuristic
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or exact solutions for the minimum reload s-t path problem. In this case, the poly-

nomial problems regarding s-t trails/walks could be used in the determination of

good lower bounds for the value of the minimum reload s-t path problem. Notice

that if we study the min-max reload s-t walk/trail/path problems, all the results pre-

sented here also hold. In this case, we replace the reload cost of a path/trail/walk

ρ = (v1, e1, v2, e2, . . . , ek, vk+1) between vertices s and t defined as in equation (1.1)

by r(ρ) = max{rc(ej),c(ej+1) : j = 1, . . . , k − 1}.



Chapter 6

Conclusions and Future Work

We have considered different questions regarding monochromatic and pec s-t

paths and trails on c-edge-colored graphs and digraphs. We also give a rather complete

description of the complexity of the minimum reload s-t walk/trail/path problems.

Note that, when dealing with reload costs we want to study the complexity of those

problems for the smaller number of colors as possible. On the other hand, when

studying graphs with no reload costs, finding pec or monochromatic paths and trails

seems easier the greater is the number of colors. In this way, we are interested to

find out if the problems remain NP-complete when the set of colors is as great as

possible.

Finally, in addition to the open problems proposed at the end of each chapter, an

interesting question is to study the complexity of pec s-t paths/trails when restricted

to c-edge-colored planar graphs or series-parallel graphs. Next, we enumerate the list

of open problems:

Open Problem 1. Consider a non-oriented c-edge-colored graph Gc with no pec

89
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closed trails, an integer k and a sequence p = (v1, . . . , vk) of vertices in V (Gc). Is it

possible to find in polynomial time a pec s-t path/trail visiting all vertices of p in

this order?

Open Problem 2. Consider Gc a non-oriented c-edge-colored graph, an integer k

and a sequence C = (c1, . . . , ck) of colors. Find a pec s-t path/trail (if any) only

visiting the sequence of C in this order. Is this problem polynomial for graphs with

no pec cycles?

Open Problem 3. Let L be the size of a minimum shortest pec s-t path. Consider

the problem of deciding whether a graph Gc (with no pec closed trails) has k or more,

edge disjoint pec paths between nodes s and t, each having at most L + 1 edges. Is

this problem NP-complete?

Open Problem 4. Given a 2-edge-colored graph Gc with no pec cycles, two vertices

s, t ∈ V (Gc) and a fixed constant k ≥ 2. Does Gc contains k pec vertex/edge disjoint

paths between s and t? Is this problem NP-complete?

Open Problem 5. Is the problem of finding 2 monochromatic (vertex disjoint) s-t

paths with different colors in planar c-edge-colored graphs NP-complete?

Open Problem 6. Given a 2-edge-colored tournament T c. The problem of deciding

if T c contains a directed pec Hamiltonian path (with no fixed extremities s and t) is

NP-complete?

Open Problem 7. Given a 2-edge-colored tournament T c. To check whether T c

contains a pec circuit is NP-complete?

Open Problem 8. When c = 2, it is not known the complexity of the minimum

symmetric reload s-t path if the matrix of reload costs does not satisfy the triangle
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inequality.

Open Problem 9. When c = 2, it is not known the complexity of the minimum

asymmetric reload s-t trail if the matrix of reload costs does not satisfy the triangle

inequality.

Tables 6.1, 6.2, 6.3 summarize the main results given in this work.

Table 6.1: Summary of main polynomial results of Chapters 2, 3 and 4.

Polynomial time problems

c-edge-colored digraph maximizing the number of pec s-t trails
finding a pec closed trail

c-edge-colored graph with no finding a s-t trail visiting all
pec closed trail Gc vertices of Gc a predefined number of times

Hamiltonian path
Eulerian path

Table 6.2: Summary of main NP-complete results of Chapters 2, 3 and 4.

NP-complete problems

c-edge-colored digraphs Dc a directed pec s-t path,
even if Dc is a planar 2-edge-colored digraph with no pec

circuits or if Dc is 2-edge-colored tournament or if Dc

has Ω(|V (Dc)|) colors
if Dc is a 2-edge-colored tournament,

to find a directed pec s-t Hamiltonian path
if Dc is a 2-edge-colored tournament,

to decide if Dc contains a pec

circuit passing through a given vertex
2 vertex disjoint monochromatic s-t paths,

for paths with different colors
Gc with no pec closed trail 2 pec vertex/edge

disjoint with length at most L > 0
c-edge-colored graphs Gc 2 vertex disjoint monochromatic s-t paths,

for paths with different colors
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Table 6.3: Summary of main results of Chapter 5.

Polynomial time problems NP-hard problems

walk all cases
trail (sym. R) (asym. R) ∧ (∆(Gc) = 3) ∧ (c = 3)

(asym. R) ∧ (triangle ineq.)
path (c = 2) ∧ (triangle ineq.) (sym. R) ∧ (∆(Gc) = 4) ∧ (c ≥ 3)

∧ (triangle ineq.)
(sym. R) ∧ (∆(Gc) ≤ 3) (sym. R) ∧ (Gc is planar) ∧

(∆(Gc) = 4) ∧ (c ≥ 4) ∧ (triangle ineq.)
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