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Abstract

In this work we deal with sandwich graphs G = (V,E) and present the notion of
vertices f -controlled by a subset M ⊆ V . We introduce the generalized max-

controlled set problem (gmcsp), where gaps and positive weights are associated
to each vertex of V . In this case, the objective is find a sandwich graph G in order
to maximize the sum of the weights associated to all vertices f -controlled by M .
We present a 1

2 -approximation algorithm for the gmcsp and a new procedure for
finding feasible solutions based on a linear relaxation. The best solution is then used
as starting point in a local search procedure (Tabu Search with Path Relinking).
Finally, we present some computational results and compare the performance of our
heuristics with the optimum solution value of some instances of the problem.
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1 Introduction
Given two graphs G1 = (V, E1) and G2 = (V, E2) such that E1 ⊆ E2, we say
that G = (V, E), where E1 ⊆ E ⊆ E2, is a sandwich graph for some property
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Π if G = (V, E) satisfies Π. A sandwich problem consists of deciding whether
there exists some sandwich graph satisfying Π. We denote optional and fixed
edges, the edges belonging, respectively, to E2\E1 and E1 (see [2]).

Given an undirected graph G = (V, E) and a set of vertices M ⊆ V , a
vertex i ∈ V is said to be controlled by M if |NG[i]∩M | ≥ |NG[i]∩U |, where
NG[i] = {i}∪{j ∈ V |(i, j) ∈ E} and U = V \M . The set M defines a monopoly
in G if every vertex i ∈ V is controlled by M . Therefore, if cont(G, M) denotes
the set of vertices controlled by M in G, M will be a monopoly in G if and
only if cont(G, M) = V .

Prior to define the generalized max-controlled set problem (gmcsp), we
first consider the monopoly verification problem (mvp) and the max-controlled

set problem (mcsp) as defined in [3]. In the mvp, given a set M ⊆ V and two
graphs G1 = (V, E1) and G2 = (V, E2), where E1 ⊆ E2, the question is to
decide whether there exists a set E such that E1 ⊆ E ⊆ E2 and M is a
monopoly in G = (V, E). If the answer of the mvp is “no”, we then consider
the mcsp, whose goal is to find a set E such that E1 ⊆ E ⊆ E2 and the
number of vertices controlled by M in G = (V, E) is maximized. The mvp can
be solved in polynomial time by formulating it as a network flow problem.
Unfortunately, the mcsp is NP-hard, even for those instances where G1 is an
empty graph and G2 is a complete graph (see [3] for details).

Now, consider the notion of f -controlled vertices (as introduced in Makino
et. al.[3]) where f denotes a function on V . Thus, given a value fi ∈ Z, the
vertex i ∈ V is said to be f -controlled by M if and only if |NG[i] ∩ M | −
|NG[i] ∩ U | ≥ fi. The constant fi represents the gap necessary to f -control
the vertex i ∈ V . Note, for instance, that if fi = −∞ (fi = +∞), vertex i is
always (never) f -controlled by M .

Finally, if positive weights wi are assigned to each i ∈ V , our goal in the
gmcsp is to find a sandwich graph G = (V, E) (where E1 ⊆ E ⊆ E2) in order
to maximize the sum of the weights associated to all vertices f -controlled by
M . The gmcsp is obviously NP-hard since it generalizes the mcsp (particular
instance of the gmcsp where fi = 0 and wi = 1, ∀ i ∈ V ).

2 Reduction rules
Now we generalize the reduction rules as described in [3,4] for the MCSP.
In this case, it suffice to change the definition of controlled by f -controlled
vertices. As will be observed later, these rules will be helpful in the definition
of a tight linear integer programming formulation for the gmcsp.

For A, B ⊆ V , we denote by D(A, B) = {(i, j) ∈ E2\E1 | i ∈ A, j ∈ B},
the set of optional edges with both ends belonging to A and B respectively.
Two rules are used: a new edge set E∗

1 is obtained by the union of E1 and
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D(M, M) and a new edge set E∗
2 is obtained by removing D(U,U) from E2.

Therefore, the set E in the sandwich graph G must satisfy: E1 ∪D(M, M) ⊆
E ⊆ E1 ∪D(M, M) ∪D(U,M). For simplicity, assume from now on E1 = E∗

1

(Reduction Rule 1) and E2 = E∗
2 (Reduction Rule 2).

Prior to describe the remaining reduction rules, consider the following
partition of V : we denote by MAC and UAC , respectively, the subset of vertices
belonging to M and U which are always f -controlled by M in any sandwich
graph G. Analogously, we denote by MNC and UNC the subset of vertices
which are never f -controlled by M in any sandwich graph. Finally, we define
the subsets MR = M\(MAC ∪ MNC) and UR = U\(UAC ∪ UNC).

In order to construct this partition of V it is sufficient to look at “worst
case” assignments. Thus, after setting E = E2 we identify all vertices belong-
ing to MAC ∪ UNC . Similarly, if we set E = E1, we determine UAC ∪ MNC .
The reduction rules are listed in the sequel:

• Add to E1 all edges belonging to D(MAC ∪ MNC , UR) (Rule 3);

• Remove from E2 all edges belonging to D(MR, UAC ∪ UNC) (Rule 4);

• Add/Remove at random all edges in D(MAC ∪MNC , UAC ∪UNC) (Rule 5).

3 Generalized Max-Controlled Set Problem - GMCSP
3.1 A 1

2
-approximation algorithm

The 1
2
-approximation algorithm for the mcsp proposed by Makino et.al. [3]

may be easily extended to the gmcsp (see Algorithm 1). First of all, consider
W1 and W2 the sum of the weights associated to all vertices f -controlled by
M in G = (V, E) for E = E1 and E = E2 respectively. Hence, we have the
following 1

2
-approximation algorithm for the gmcsp (see [5] for the proof):

Algorithm 1 : Based MYK - 1
2
-aproximation algorithm for the gmcsp

1: W1 ← Sum of the weights associated to all vertices f -controlled by M in the graph
G = (V,E), for E = E1;

2: W2 ← Sum of the weights associated to all vertices f -controlled by M in the graph
G = (V,E), for E = E2;

3: zH1 ← max{W1,W2};

3.2 An Heuristic Based in the Linear Programming - LP

In order to describe our Based LP procedure for the gmcsp (Algorithm 2),
we first introduce an integer programming formulation. We define binary
variables zi ∈ {0, 1} for every i ∈ V , which determine whether vertex i is
f -controlled or not by M . Binary variables xij are used to decide whether
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optional edges belonging to E2\E1 will be considered or not in the optimal
sandwich graph. The constants wi ∈ Z

+ and fi ∈ Z denote, respectively, the
weight and gap of vertex i ∈ V . Binary constants aij ∈ {0, 1} are associated
to (i, j) ∈ E2 with aij = 1 if and only if i = j or (i, j) ∈ E2. Further, we
assume that aij = aji, ∀i, j ∈ V .

Consider the sets MR, MAC , MNC , UR, UAC , UNC as described in the reduc-
tion rules. In order to define a tight formulation for the gmcsp, we first define
some constants bi, denoting the worst possible gap associated to each vertex
i ∈ MR ∪ UR. Initially, consider the following auxiliary expression:

bi =

∣∣∣∣∣
∑
j∈M

aijxij −
∑
j∈U

aijxij − fi

∣∣∣∣∣ , ∀ i ∈ MR ∪ UR(1)

The constants bi are computed in the following way: if i ∈ MR, we set
xij = 1, ∀ (i, j) ∈ E2\E1. Analogously, if i ∈ UR, we set xij = 0, ∀ (i, j) ∈
E2\E1. Obviously, in both cases we have xij = 1, ∀ (i, j) ∈ E1 (fixed edges).
Then, we define the following tight linear integer programming formulation
for the gmcsp:

zmax = maximize

(∑
i∈V

wizi

)
(2)

s.t.:∑
j∈M

(
aij

bi

)
xij −

∑
j∈U

(
aij

bi

)
xij − fi

bi

+ 1 ≥ zi, ∀ i ∈ MR ∪ UR(3)

zi = 1, ∀ i ∈ MAC ∪ UAC(4)

zi = 0, ∀ i ∈ MNC ∪ UNC(5)

xij = 1, ∀ (i, j) ∈ E1(6)

xii = 1, ∀ i ∈ V(7)

xij ∈ {0, 1},∀ (i, j) ∈ E2\E1(8)

zi ∈ {0, 1},∀ i ∈ V(9)

The objective function (2) computes the sum of the weights of all vertices
f -controlled by M . Inequality (3) guarantees that every time a vertex i is
f -controlled by M , the left hand side will be greater or equal than 1. On the
other hand, if the left hand side is less than 1, vertex i is not f -controlled
by M and zi will be settled to 0. The constants bi are defined in order to
maintain the difference between the two summutions and fi/bi always greater
than −1, while guaranteing at the same time, a tight solution for the linear
programming relaxation. Equalities (4) and (5) denotes, respectively, the set
of vertices always f -controlled and never f -controlled by M . Equalities (6) and
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(7) are associated to the set of fixed edges. Finally, the linear programming
relaxation (represented by P̄ ) is obtained by replacing integrality constraints
(8) and (9) by xij ∈ [0, 1] and zi ∈ [0, 1], respectively.

Actually, we can prove through network flows arguments, that binary 0−1
values (related to the x′s variables) are obtained after solving P̄ (see [5]).

Therefore, in our Based LP procedure (Algorithm 2), a feasible solution
for the gmcsp is constructed in the following way. Given a solution (x̃, z̃) of P̄
with components x̃ij ∈ {0, 1},∀ (i, j) ∈ E2 and z̃i ∈ [0, 1], ∀ i ∈ V , we simply
define as f -controlled all vertices i ∈ V with z̃i = 1, and as non f -controlled
the remaining vertices with z̃i < 1. A new procedure may be constructed
by simply choosing the best solution obtained in Algorithms 1 and 2. As
discussed in [4], this procedure restricted to mcsp (particular instance of the

gmcsp) has a performance ratio equal to 1
2

+ 1+
√

n
2(n−1)

, ∀ n > 4.

4 Tabu Search and Some Computational Results
Given a sandwich graph G = (V, E) (associated to a current solution S),
we denote by N0(G), our neighbourhood structure to be used within the TS
framework [1]. In this neighbourhood, we hope to f -controll new vertices with
positive weights in such way that all vertices already f -controlled by M in G
remains f -controlled after the local search.

Assume, without loss of generality that V = MR ∪ UR. Thus, given a
sandwich graph G, consider MG ⊆ MR and UG ⊆ UR the subset of vertices
f -controlled by M in G. In addition, consider: LG = MG ∪UG. The tabu list
T is constructed in the following way: given a sandwich graph G representing
a local optimal, we choose an arbitrary vertex i (f -controlled by M) to be
removed from LG. If i ∈ MG (respectively i ∈ UG) we define a new solution
by adding (by removing) all edges incident to vertex i and updating all asso-
ciated costs. This vertex remains in the tabu list by |T | steps. Diversification
strategies and Path Relinking where also implemented (see [5] for details).

In the computational tests, all vertices have associated weights and gaps
defined at random within intervals established at hand. All parameters in-
volved in the TS procedure were empirically tested. Table 1 present some
results for graphs varing from 300 to 1000 vertices. The reduction rates are
listed in the column Reduction Rules. The objective function values obtained
by Algorithms 1 and 2 are presented, respectively, in columns Based MYK
and Based LP. The best of both solutions (represented by boldface letters),
is used as starting point in our TS procedure. For instances with 300 and
500 vertices, the TS was repeated 10 times in each case. The column Best
Value shows the objective function value obtained at the best execution while
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Table 1
Results of TS for instances with 300, 500 and 1000 vertices.

the column Average exibits the medium performance after all repetions. The
values between parentheses, indicates the number of times the best solution
were attained after 10 executions of the TS. For intances with 1000 vertices,
we execute one iteration of the TS followed by the Path Relinking-PR pro-
cedure. The performance of the PR was better for some instances with up
1000 vertices. In the column Approx. we compute the approximation rates
obtained through the average performance ratio of the TS and the bounds
gathered by the linear programming relaxation. Note, for instance, that for
all instances considered the approximation rates were within 6% of the opti-
mum value. Finally, the column Time exibits the worst execution time (at all
repetions) after the construction phase (in seconds), demanded by both TS
and TS with PR.
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