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Abstract

This paper deals with the existence and search of properly edge-colored paths/trails
between two, not necessarily distinct, vertices s and t in an edge-colored graph from an algo-
rithmic perspective. First we show that several versions of the s− t path/trail problem have
polynomial solutions including the shortest path/trail case. We give polynomial algorithms
for finding a longest properly edge-colored path/trail between s and t for a particular class
of graphs and characterize edge-colored graphs without properly edge-colored closed trails.
Next, we prove that deciding whether there exist k pairwise vertex/edge disjoint properly
edge-colored s − t paths/trails in a c-edge-colored graph Gc is NP-complete even for k = 2
and c = Ω(n2), where n denotes the number of vertices in Gc. Moreover, we prove that these
problems remain NP-complete for c-colored graphs containing no properly edge-colored cy-
cles and c = Ω(n). We obtain some approximation results for those maximization problems
together with polynomial results for some particulars classes of edge-colored graphs.
Keywords : Edge colored graphs, connectivity, properly edge-colored paths, trails and
cycles.

1 Introduction, Notation and Terminology

In the last few years a great number of problems have been dealt with in terms of edge-
colored graphs for modeling purposes as well as for theoretical investigation [4, 8, 9, 10, 19, 24].

∗A preliminary version of this paper was accepted for publication in the Proceedings of the 8th Latin-American
on Theoretical Informatics, 8th-LATIN - Búzios-RJ/Brazil - 2008.
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‡Sponsored by Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico - CNPq

1



Previous work on the subject has focused on the determination of particular properly edge-
colored subgraphs, such as Hamiltonian or Eulerian configurations, colored in a specified pattern
[2, 3, 5, 6, 7, 11, 22, 23, 26, 28], that is, subgraphs such that adjacent edges have different colors.

Our first aim in that respect was to extend the graph-theoretic concept of connectivity to col-
ored graphs with a view to gaining some insight into our problem from Menger’s Theorem in
particular. In other words, we intended to define some sort of local alternating connectivity for
edge-colored graphs. Informally speaking, local connectivity in general (non-colored) graphs is
a local parameter. For two given vertices x and y, it is the maximum number of (edge-disjoint
or vertex-disjoint) paths between them. By contrast, connectivity is a global parameter defined
to be the minimum number over all x, y of their local connectivity’s. Difficulties arose, however,
from local connectivity being not polynomially characterizable in edge-colored graphs, as can
easily be seen. Thus, there can be no counterpart to Menger’s Theorem as such, and even the
notion of a connected component as an equivalence class does not carry over to edge-colored
graphs since the concatenation of two properly edge-colored paths is not necessarily properly
edge-colored. We settled then for some practical and theoretical results, herein presented, which
deal with the existence of vertex-disjoint paths/trails between given vertices in c-edge-colored
graphs. Most of those path/trail problems happen to be NP-complete, which thwarts all at-
tempts at systematization.

Formally, let Ic = {1, 2, . . . , c} be a set of given colors, c ≥ 2. Throughout the paper, Gc will
denote an edge-colored simple graph such that each edge is in some color i ∈ Ic and no parallel
edges linking the same pair of vertices occur. The vertex and edge-sets of Gc are denoted by
V (Gc) and E(Gc), respectively. The order of Gc is the number n of its vertices. The size of Gc

is the number m of its edges. For a given color i, Ei(Gc) denotes the set of edges of Gc colored
i. For edge-colored complete graphs, we write Kc

n instead of Gc. If Hc is a subgraph of Gc, then
N i

Hc(x) denotes the set of vertices of Hc, linked to x by an edge colored i. The colored i−degree
of x in Hc, denoted by di

Hc(x), is |N i
Hc(x)|, i.e., the cardinality of N i

Hc(x). An edge between
two vertices x and y is denoted by xy, its color by c(xy) and its cost (if any) by cost(xy). The
cost of a subgraph is the sum of its edge costs. A subgraph of Gc containing at least two edges
is said to be properly edge-colored if any two adjacent edges in this subgraph differ in color.
A properly edge-colored path does not allow vertex repetitions and any two successive edges on
this path differ in color. A properly edge-colored trail does not allow edge repetitions and any
two successive edges on this trail differ in color. However, note that the edges on this trail need
not form a properly edge-colored subgraph since we can have adjacent and not successive edges
with the same color. The length of a path/trail is the number of its edges. Given two vertices
s and t in Gc, we define a properly edge-colored s − t path/trail (or just, s − t path/trail for
short) to be a path/trail with end-vertices s and t. Sometimes s will be called the source, and
t the destination of the path/trail. A properly edge-colored path/trail is said to be closed if its
endpoints coincide, and its first and last edges differ in color. A closed properly edge-colored
path (trail) is usually called a properly edge-colored cycle (closed trail).

Given a digraph D(V,A), we denote by ~uv an arc of A, where u, v ∈ V . In addition, we define
N+

D (x) = {y ∈ V : ~xy ∈ A} the out-neighborhood of x in D, and by N−
D (x) = {y ∈ V : ~yx ∈ A}

the in-neighborhood of x in D. Finally, we represent by ND(x) = N+
D (x) ∪ N−

D (x) the in-out-
neighborhood of x ∈ V (or just neighborhood for short). Also, given an induced subgraph Q of a
non colored graph G, a contraction of Q in G consists of replacing Q by a new vertex, say zQ,
so that each vertex x in G−Q is connected to zQ by an edge, if and only if, there exists an edge
xy in G for some vertex y in Q.
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This paper is concerned with algorithmic issues regarding various trail/path problems between
two given vertices s and t in Gc. First, we consider the s−t path/trail version problem whose ob-
jective is to determine the existence or not of an arbitrary properly edge-colored s− t path/trail
in Gc. Polynomial algorithms are established for such problems as the Shortest properly edge-
colored path/trail, the Shortest properly edge-colored path/trail with forbidden pairs, the Shortest
properly edge-colored cycles/closed trails and the Longest properly edge-colored path/trail for a
particular class of instances. Actually, we show that all these results may be derived from the
Szeider’s Algorithm for the properly edge-colored s− t paths. We also characterize edge-colored
graphs without properly edge-colored closed trails. Next, we deal with the Maximum Properly
Vertex Disjoint Path and Maximum Properly Edge Disjoint Trail problems (respectively, mpvdp

and mpedt for short), whose objective is to find the maximum number of properly edge-colored
vertex-disjoint paths (respectively, edge-disjoint trails) between s and t. Although these prob-
lems can be solved in polynomial time in general non-colored graphs, most of their instances
are proved to be NP-complete in the case of edge-colored graphs. In particular we prove that,
given an integer k ≥ 2, deciding whether there exist k properly edge-colored vertex/edge disjoint
s − t paths/trails in Gc is NP-complete even for k = 2 and c = Ω(n2). Moreover, for an arbi-
trary k we prove that these problems remain NP-complete for c-colored graphs containing no
properly edge-colored cycles/closed trails and c = Ω(n). We show a greedy procedure for these
maximization problems, through the successive construction of properly edge-colored shortest
s− t paths/trails. This is a straightforward generalization of the greedy procedure to maximize
the number of edge or vertex disjoint paths between k pair of vertices in non-colored graphs
(see [21, 18] for details). Similarly, we obtain an approximation performance ratio. We finish
the paper exhibiting a polynomially solvable class of instances for the related maximization
problems.

The following two results will be used in this paper. The first result, initially proved by Grossman
and Häggkvist [17] for 2-edge-colored graphs and generalized by Yeo [28], characterizes c-edge-
colored graphs without properly edge-colored cycles.

Theorem 1.1. (Yeo) Let Gc be a c-edge-colored graph, c ≥ 2, such that every vertex of Gc is
incident with at least two edges colored differently. Then either Gc has a properly edge-colored
cycle or for some vertex v, no component of Gc−v is joined to v by at least two edges in different
colors.

In terms of edge-colored graphs, Szeider’s main result [25] on graphs with prescribed general
transition systems may be formulated as follows:

Theorem 1.2. (Szeider) Let s and t be two vertices in a c-edge-colored graph Gc, c ≥ 2. Then,
either we can find a properly edge-colored s− t path or else decide that such a path does not exist
in Gc in linear time on the size of the graph.

Given Gc, the main idea of the proof is based on earlier work by Edmonds (see for instance
Lemma 1.1 in [22]) and amounts to reducing the properly edge-colored path problem in Gc to
a perfect matching problem in a non-colored graph defined appropriately. The latter graph will
be called henceforth the Edmonds-Szeider graph and is defined as follows. Given two vertices s
and t in Gc, set W = V (Gc) \ {s, t}. Now, for each x ∈ W , we first define a subgraph Gx with
vertex- and edge-sets, respectively:

V (Gx) =
⋃

i∈Ic
{xi, x

′
i|N i

Gc(x) 6= Ø} ∪ {x′′
a, x

′′
b} and

E(Gx) = {x′′
ax

′′
b} ∪

(

⋃

{i∈Ic|x′
i∈V (Gx)}({xix

′
i} ∪ (

⋃

j=a,b{x′
ix

′′
j}))

)

.
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Now, the Edmonds-Szeider non-colored graph G(V,E) is constructed as follows:

V (G) = {s, t} ∪ (
⋃

x∈W V (Gx)), and
E(G) =

⋃

i∈Ic

(

{sxi|sx ∈ Ei(Gc)} ∪ {xit|xt ∈ Ei(Gc)} ∪ {xiyi|xy ∈ Ei(Gc)}
)

∪
(
⋃

x∈W E(Gx)
)

.

The interesting point in the construction is that, given a particular (trivial) perfect matching
M in G − {s, t}, a properly edge-colored s − t path exists in Gc if and only if there exists an
augmenting path P relative to M between s and t in G. Recall that a path P is augmenting with
respect to a given matching M if, for any pair of adjacent edges in P , exactly one of them is in
M , with the further condition that the first and last edges of P are not in M . Since augmenting
paths in G can be found in O(|E(G)|) linear time (see [27], p.122), the same execution time
holds for finding properly edge-colored paths in Gc as well, since O(|E(G)|) = O(|E(Gc)|).

2 The s− t path/trail problem

Given two, not necessarily distinct, vertices s and t in Gc, the main question of this section is to
give polynomial algorithms for finding (if any) a properly edge-colored s− t path or trail in Gc.
The properly edge-colored s − t path problem was first solved by Edmonds for two colors (see
Lemma 1.1 in [22]) and then extended by Szeider [25] to include any number of colors. Here we
deal with variations of the properly edge-colored path/trail problem, i.e., the problem of finding
an s− t trail, closed trails, the shortest s− t path/trail, the longest s− t path (trail) in graphs
with no properly edge-colored cycles (closed trails) and s− t paths/trails with forbidden pairs.

2.1 Properly edge-colored s−t trails and the characterization of graphs with-
out properly edge-colored closed trails

This section is devoted to the properly edge-colored s − t trail problem. Among other results,
we prove that the s− t trail problem reduces to the s− t path problem over a new c-edge-colored
graph. As the latter problem has been proved polynomial [25], it follows that our problem is
polynomial as well. We conclude the section with some results on closed trails in edge-colored
graphs. Let us start with the following simple, though important, result.

Lemma 2.1. Given two vertices s, t of Gc, assume that there exists a s−t properly edge-colored
trail T in Gc. Further, suppose that at least one internal vertex on this trail is visited three times
or more. Then, there exists another properly edge-colored s− t trail T ′ in Gc such that no vertex
is visited more than twice on T ′.

Proof: Set T = e1e2 . . . ek, where ei are the edges of the trail. Let {a1, a2, . . . , ar} denote the
set of distinct vertices of T . Let now λi denote the number of times vertex ai is visited on T , for
each i = 1, 2, . . . , r. Set λ = max(λ1, λ2, . . . , λr). Let us choose T to be the shortest such trail
so that λ is the smallest possible, as is therefore the number of vertices ai with λi = λ. If λ ≤ 2
we are done. Assume therefore λ ≥ 3. Thus, there exist some vertex, say ap, 1 ≤ p ≤ r, visited
at least three times on T . Assume λ = 3, the proof being almost identical for higher values. Let
us rewrite T = e1e2 . . . eiei+1 . . . ejej+1 . . . efef+1ef+2 . . . ek so that : i) ap is the vertex common
to the pair of edges ei, ei+1, (respectively to ej , ej+1 and to ef , ef+1) and ii)ap is not a member
of the vertex set of the graph induced by the edges of the segment ef+2 . . . ek. Notice that
edges ei and ej+1 have the same color, for otherwise, the trail e1e2 . . . eiej+1 . . . efef+1ef+2 . . . ek
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violates the choice of T , since ap is visited fewer times on this trail than on T . Similarly, edges ei

and ef+1 have the same color. But then the trail e1e2 . . . eiei+1 . . . ej−1ejep+1ep+2 . . . ek violates
the choice of T . Finally, we update every λi in this trail and repeat the process until no more
vertices with λ ≥ 3 are found. This completes the argument and the proof of lemma. �

Thus, as will be discussed later, for checking the existence of s− t trails, it suffices to take into
account only those trails where no vertices are visited more than twice.

Now, we show how to transform the trail- to the path-problem over a new c-edge-colored graph.
Given Gc and an integer p ≥ 2, let us consider an edge-colored graph denoted by p − Hc

(henceforth called the trail-path graph) obtained from Gc as follows. Replace each vertex x of
Gc by p new vertices x1, x2, . . . , xp. Furthermore for any edge xy of Gc colored, say j, add two
new vertices vxy and uxy, add the edges xivxy, uxyyi for i = 1, 2, . . . , p all of them colored j, and
finally add the edge vxyuxy with color j′ ∈ {1, 2, . . . , c} and j′ 6= j. For convenience of notation,
the edge-colored subgraph of p−Hc induced by the vertices xi, vxy, uxy, yi (for i = 1, . . . , p) and
associated with the edge xy of Gc will be denoted throughout by Hc

xy. Moreover for p = 2, we
just write Hc instead of p−Hc.

Therefore, as a consequence of Lemma 2.1, we have the following relation between Gc and
trail-path graph Hc:

Theorem 2.2. Given two vertices s and t in Gc, there exists a properly edge-colored s− t trail
in Gc, if and only if, there exists a properly edge-colored s1 − t1 path in Hc.

Proof: Let s, t be two vertices in Gc. Assume first that there exists a properly edge-colored
trail, say, T = e1, e2, . . . , ek between s and t in Gc, where ei are the edges of the trail and s is
the left endpoint of e1 while t is the right endpoint of ek. By Lemma 2.1, we may choose T so
that no vertex is visited more than twice on T . Given Hc as defined above, we show how to
construct a properly edge-colored path P between s1 and t1 in Hc. For any edge ei = xy of T , we
consider the associated subgraph Hc

ei
in Hc, and then replace the edge ei by one of the segments

x1vxy, vxyuxy, uxyy1 or x1vxy, vxyuxy, uxyy2 or x2vxy, vxyuxy, uxyy1 or x2vxy, vxyuxy, uxyy2 in Hc.

Conversely, any properly edge-colored s1 − t1 path in Hc uses precisely one of the sub-paths
x1vxy, vxyuxy, uxyy1 or x1vxy, vxyuxy, uxyy2 or x2vxy, vxyuxy, uxyy1 or x2vxy, vxyuxy, uxyy2 in each
subgraph Hc

xy of Hc. Now it is easy to see that a properly edge-colored s1 − t1 path in Hc will
correspond to a properly edge-colored s− t trail T in Gc where no vertices are visited more than
twice on T . �

The following corollary is a straightforward consequence of Theorem 1.2 and Theorem 2.2. The
proof il left to the reader.

Corollary 2.3. Consider two distinct vertices s and t in a c-edge-colored graph Gc. Then we
can either find a properly edge-colored s − t trail or else decide correctly that such a trail does
not exist in Gc in linear time on the size of Gc.

Another possibility, is to deal with a based BFS procedure to solve the properly edge-colored s−t
trail problem. In our case, however, we are particularly concerned with the Szeider’s algorithm
and its consequences.

Now, we intend to characterize edge-colored graphs without properly edge-colored closed trails.
Recall that the problem of checking whether Gc contains no properly edge-colored cycle was
initially solved by Grossman and Häggkvist [17] for 2-edge-colored graphs and then by Yeo [28]
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for an arbitrary number of colors (see Theorem 1.1 above). In both studies, the authors used
the concept of a cut-vertex separating colors, i.e., a vertex x such that all the edges between
each component of Gc − x and x are colored alike. Analogously, let e be a bridge of Gc. We say
that e separates colors, if no component of Gc− e is joined to e by at least two edges of different
colors. Thus, by introducing the concept of bridges separating colors, we obtain the following:

Theorem 2.4. Let Gc be a c-edge-colored graph, such that every vertex of Gc is incident with
at least two edges colored differently. Then either Gc has a bridge separating colors or Gc has a
properly edge-colored closed trail.

Proof: Given Gc, consider the trail-path graph Hc associated with Gc as in the foregoing.
Observe that if a vertex x of Gc is incident with two edges colored differently in Gc, then both
x1 and x2 will be incident with edges of different colors in Hc. In addition, for every edge xy of
Gc, we have by the definition of Hc that both vxy and uxy are incident with edges of two different
colors. Therefore, we conclude that if every vertex of Gc is incident with at least two edges in
different colors in Gc, than every vertex of Hc will be incident with at least two edges of different
colors in Hc. Then, it follows by Theorem 1.1 that Hc has either a cut-vertex separating colors
or a properly edge-colored cycle.

Now, suppose first that Hc has a cut-vertex separating colors. Notice that, since every vertex x
of Gc is incident with at least 2 edges of different colors, we cannot have a vertex xi separating
colors in Hc (even if x is a cut-vertex separating colors in Gc). Thus, if this cut-vertex is one
of vxy ∈ Hc

xy, it is easy to see that uxy is another cut-vertex of Hc separating colors. Therefore,
the edge vxyuxy is a bridge in Hc. This implies that the edge xy of Gc associated with Hc

xy is
also a bridge in Gc.

Assume now that Hc has a properly edge-colored cycle. Then we conclude that Gc has a properly
edge-colored trail if and only if we have a properly edge-colored cycle in Hc.

From the above, it follows that if each vertex of Gc is incident with at least two edges colored
differently, then Gc has either a bridge or a properly edge-colored trail, as required. �

As for the algorithmic aspects of this problem, it suffices to delete all bridges separating colors
(if any) and all vertices adjacent to edges of the same color in Gc to test for the existence of a
properly edge-colored closed trail in polynomial time. Notice that all such edges and vertices
may be deleted without any properly edge-colored closed trail being destroyed. Thus, if the
resulting graph is non-empty, it will contain a properly edge-colored closed trail.

2.2 Shortest properly edge-colored paths/trails

In this section we consider shortest properly edge-colored s− t paths and trails. By associating
appropriate costs with the edges of the Edmonds-Szeider non-colored graph G(V,E) defined in
the introduction, we first show how to find, if any, a shortest properly edge-colored path between
(not necessarily distinct) s and t in Gc. As a consequence, this procedure may be used to find
a shortest properly edge-colored trail between s and t in Gc. At the end of the section, we will
show how adapt these ideas to find a shortest properly edge-colored cycle and closed trail. For
the shortest properly edge-colored path problem, let us consider the following algorithm:

Algorithm 1: Shortest properly edge-colored path

Input: A c-edge-colored graph Gc, vertices s, t ∈ V (Gc).
Output: If any, a shortest properly edge-colored s− t path P in Gc.
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Begin
1. Define: W = V (Gc) \ {s, t};
2. For every x ∈W , construct Gx as defined in Section 1;
3. Construct the Edmonds-Szeider graph G associated with Gc;
4. Define: E′ = ∪x∈W E(Gx);
5. For every pq ∈ E(G) \E′ do cost(pq)← 1;
6. For every pq ∈ E′ do cost(pq)← 0;
7. Find a minimum weighted perfect matching M in G (if any);
8. Use M to build a path P in Gc and return P , or say that P does not exist;

End.

Henceforth, we define the weighted non-colored graph G above as the weighted Edmonds-Szeider
graph. Intuitively, the idea in Algorithm 1 is to penalize all edges of G associated with edges
in the original graph Gc. In this way, we ensure that a minimum perfect M will maximize the
number of edges of E(Gx) (with cost 0) associated with x ∈ V (Gc) \ {s, t}. To obtain P from
M in Step 8, we contract all subgraphs Gx of G to a single vertex x. The remaining edges of M
in this resulting non-colored graph, say G′, will define a s− t path in G′ which is associated to a
properly edge-colored s−t path in Gc. Notice that all the vertices not in this s−t path in Gc are
isolated, i.e we cannot have properly edge-colored cycles containing these vertices (otherwise,
M would not be a minimum weighted perfect matching in G).

In addition, observe that the overall complexity of Algorithm 1 is dominated by the complexity
of a minimum weighted perfect matching (Step 8). Several matching algorithms exist in the
literature. Gabow’s bound [13] in O(n(m + nlogn)), is one of the best in terms of n and m, but
other bounds are possible when the edge weights are integers. Note that Algorithm 1 may be
easily adapted if we deal with arbitrary positive costs associated with colored edges. Gabow and
Tarjan [15] proposed an ingenious approach to obtain a bound in O(mlog(nN)

√

nα(n,m)logn)),
where α(n,m) is the Tarjan’s “inverse” of Ackerman’s function and N is the maximum weight
of an edge. See Gerards [16] for a good reference on general matchings.

Formally, we have established the following result:

Theorem 2.5. Algorithm 1 always find, if any, a shortest properly edge-colored s − t path in
Gc.

Proof: Let M be a minimum weighted perfect matching in G and P the associated path in
Gc (obtained after Step 8). For a contradiction, suppose that P is not a properly edge-colored
shortest path in Gc. Then, there exists another properly edge-colored s− t path P ′ in Gc with
cost(P ′) < cost(P ). In addition, suppose that all the remaining vertices not in P ′ are isolated.
Now, observe that cost(pq) = 1 for every pq ∈ E(G) \ E′ and cost(pq) = 0 for every pq ∈ E′.
Thus, we can easily construct a new matching M ′ in G such that all edges with unit costs are
associated with edges in the s − t path P ′. The remaining edges of M ′ will have cost zero. In
this way, since cost(P ′) < cost(P ), we obtain cost(M ′) < cost(M) resulting in a contradiction.
Therefore, P is a shortest properly edge-colored path in Gc. �

Now, to solve the shortest trail problem, it suffices to use the above algorithm as follows: Given
s and t in Gc, construct the trail-path graph Hc associated with Gc. Next, we find a shortest
properly edge-colored s1 − t1 path P in Hc by the previous algorithm. Then, by using path P
of Hc, come back and construct a shortest properly edge-colored s− t trail T in Gc. Remember
that each subgraph Hc

xy of Hc is associated with some edge xy of Gc. Furthermore, observe

7



that a properly edge-colored path between xi and yj in Hc
xy contains exactly 3 edges. Thus,

in order to obtain T in Gc from P in Hc, it suffices to replace each xi − xj path of P in
Hc

xy with the corresponding edge xy in Gc. Therefore, we obtain a shortest s − t trail with
cost(T ) = cost(P )/3. The correctness of this algorithm is guaranteed by Theorems 2.2 and 2.5.

We conclude this section with some algorithmic results on shortest properly edge-colored cycles
and closed trails. Firstly, we adapt the ideas described above to construct such shortest cycles
in Gc (if any), as follows. For an arbitrary vertex x of Gc, construct a graph Gc+1

sc (x) (with c+1
colors) associated with x by appropriately splitting x into vertices, say sx and tx, and c auxiliary
vertices x1, . . . , xc. Vertices sx and tx will correspond to temporary source and destination of
Gc+1

sc (x), and vertices x1, . . . , xc are defined in such a way that properly edge-colored sx − tx
paths in Gc+1

sc (x) will correspond to properly edge-colored cycles in Gc passing through vertex
x ∈ V (Gc). Therefore, to find a shortest properly edge-colored cycle, it suffices to repeat this
process for every vertex x of Gc while saving the minimum cost solution at each iteration.
Formally, we define:

V (Gc+1
sc (x)) = (V (Gc) \ {x}) ∪ {sx, tx, x1, . . . , xc} and

E(Gc+1
sc (x)) = (E(Gc)\{xy : y ∈ NGc(x)})∪(

⋃

i∈Ic
{xiy : y ∈ N i

Gc(x)}∪({sx, tx}×{x1, . . . , xc}).
In the construction of E(Gc+1

sc (x)) above we set c(xiy) = i for every color i ∈ Ic. In addition we
color every edge of {sx, tx} × {x1, . . . , xc} with a new color c + 1. After this construction, we
find (if any) a shortest properly edge-colored path between sx and tx in Gc+1

sc (x). This process is
repeated for the remaining vertices of Gc. Note that a properly edge-colored sx − tx path Px in
Gc+1

sc (x) of length |Px| is associated with a properly edge-colored cycle Cx in Gc passing through
x of length |Cx| = |Px| − 2. We denote this algorithm by PSC (Properly Shortest Cycle), for
short.

Formally we have established the following result:

Theorem 2.6. Given Gc, Algorithm PSC above always finds in polynomial time a shortest
properly edge-colored cycle in Gc or else decides correctly that Gc has no properly edge-colored
cycles at all.

The correctness of Algorithm PSC is guaranteed by Theorem 2.5.

As for shortest properly edge-colored cycles, to exhibit a shortest properly edge-colored closed
trail, we define a graph Gc+1

sct (x) associated to x ∈ V (G) in the following way. Let Gcx
aux be

an auxiliary edge-colored graph with cx ≤ c colors obtained from Gc after deleting x ∈ V (Gc).
Now, as described in the Section 2.1, construct the trail-path graph Hcx

aux associated to Gcx
aux.

Thus, Gc+1
sct (x) is defined by:

V (Gc+1
sct (x)) = V (Hcx

aux) ∪ {sx, tx, x1, . . . , xc} and
E(Gc+1

sct (x)) = E(Hcx
aux) ∪ (

⋃

i∈Ic
(∪j∈{1,2}{xiyj : y ∈ N i

Gc(x)})) ∪ ({sx, tx} × {x1, . . . , xc}).
We define color(pq) = c + 1 for every pq ∈ {sx, tx} × {x1, . . . , xc}. Finally, for every i ∈ Ic

and y ∈ N i
Gc(x), color c(xiyj) = i for j ∈ {1, 2}. After this construction, we find a shortest

properly edge-colored path between sx and tx in Gc+1
sct (x) using Algorithm 1. The overall process

is repeated for the remaining vertices of Gc. Note that a shortest properly edge-colored sx − tx
path Px in Gc+1

sct (x) of length |Px| is associated with a shortes properly edge-colored closed trail
CTx in Gc passing through x of length |CTx| = (|Px|−2)/3. We denote this algorithm by PSCT
(Properly Shortest Closed Trail), for short. The correctness of PSCT is guaranteed by Lemma
2.1, Theorems 2.2 and 2.5.
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2.3 The longest properly edge-colored s− t path/trail problem

The problem of finding the longest properly edge-colored s− t path in arbitrary c-edge-colored
graphs is obviously NP-complete since it generalizes the Hamiltonian Path problem in non-
colored graphs. Based on the maximum weighted perfect matching problem (see [13, 15] for
further details), we propose a polynomial time procedure for finding a longest properly edge-
colored s− t path (trail) in graphs with no properly edge-colored cycles (closed trails).

Theorem 2.7. Assume that Gc has no properly edge-colored cycles. Then, we can always find
in polynomial time a longest properly edge-colored s− t path or else decide that such a path does
not exist in Gc.

Proof: Construct the weighted Edmonds-Szeider graph G (associated to Gc) and compute the
maximum weighted perfect matching M in G (if any), otherwise, we would not have a properly
edge-colored path between s and t in Gc (see [13, 15] for the complexity of the maximum weighted
perfect matching problem). Now, given M , to determine the associated s− t path P in Gc, we
construct a new non-colored graph G′ by just contracting subgraphs Gx to a single vertex x. It is
easy to see that G′ will contains a s− t path, cycles and isolated vertices, associated respectively
to a properly edge-colored s − t path, properly edge-colored cycles and isolated vertices in Gc

. However, by hypothesis Gc does not contains properly edge-colored cycles. Therefore, each
edge with unitary cost in M it will be associated to an edge in P and vice-versa. Then, since
M is a maximum weighted perfect matching, the associated path P will be the longest properly
edge-colored s− t path in Gc. �

Observe in the problem above that, since every vertex is visited at most once and we do not
have properly edge-colored cycles, all the vertices not in the longest s− t path will be isolated.
However, to find a longest properly edge-colored s − t trail we do not know how many times
a given vertex x ∈ V (Gc) \ {s, t} will be visited. Note that Lemma 2.1 cannot be applied to
this case. Nonetheless, constructing a trail-path graph p−Hc for a convenient parameter p, we
obtain the following result concerning the longest properly edge-colored s− t trail.

Theorem 2.8. Let Gc be a c-edge-colored graph with no properly edge-colored closed trails and
two vertices s, t ∈ V (Gc). Then, we can always find in polynomial time, a longest properly
edge-colored s− t trail in Gc, provided that one exists.

Proof: Given Gc, construct the associated trail-path graph p − Hc for p = ⌊(n − 1)/2⌋ (as
described in Subsection 2.1). Note that, no vertices may be visited more than p times in Gc. To
see that, consider a properly edge-colored s− t trail T passing by x ∈ V (Gc) with the maximum
possible number of cycles through x of length 3.

Now, using the same arguments as in Theorem 2.2, we can easily prove that each properly edge-
colored closed trail in Gc is associated with a properly edge-colored cycle in p−Hc. Therefore,
since Gc does not contain properly edge-colored closed trails (by hypothesis), it follows that
p −Hc has no properly edge-colored cycles. In addition, note that p −Hc has O(n2) vertices.
Thus, by Theorem 2.7 we can find (if any) a longest properly edge-colored path, say P between
s1 and t1 in p −Hc in polynomial time. Therefore, the associated trail, say T in Gc will be a
longest properly edge-colored s− t trail with cost(T ) = cost(P )

3 . �
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2.4 The forbidden-pair version of the one s− t path/trail problem

Consider a c-edge-colored graph Gc for an arbitrary c ≥ 2, a pair of vertices s, t and a set
S = {{s1, t1}, {s2, t2}, . . . , {sk, tk}} of k pairs of vertices of Gc. In the Properly edge-colored
s− t Path with k Forbidden Pairs problem (ppkfp for short), the objective is to find a properly
edge-colored s − t path containing at most one vertex from each pair in S. Using a simple
transformation attributed to Häggkvist [22], we prove the following result concerning c-edge-
colored graphs:

Theorem 2.9. The ppkfp problem is NP-complete even for graphs without properly edge-colored
cycles.

Proof: The ppkfp obviously belongs to NP. To prove that ppkfp is NP-hard, we construct a
reduction from the Path with Forbidden Pairs problem - pfp. Given a digraph D(V,A), a pair
a vertices s, t and a set S = {{s1, t1}, {s2, t2}, . . . , {sk, tk}} of k pair of vertices, the objective in
the pfp problem is to find a s− t directed path in D that contains at most one vertex from each
pair in S or else decide that such a path does not exist in D. As discussed in [14], this problem is
NP-complete even on acyclic digraphs. In the present reduction, we construct a c-edge-colored
graph Gc(V ′, E) with V ′ = V ∪ {P 1

~xy, . . . , P
c−1
~xy : ~xy ∈ A}. To simplify the notation, for every

~xy ∈ A consider x = P 0
~xy and y = P c

~xy. Now, the edge set E is constructed in the following way:

every arc ~xy ∈ A is changed by edges P j
~xyP

j+1
~xy for j = 0, . . . , c − 1 with c(P j

~xyP
j+1
~xy ) = j + 1.

The set S of forbidden pairs in Gc remains the same. Notice that the new edge-colored graph
does not contains properly edge-colored cycles. After that, it is easy to see that feasible paths
in D corresponds to feasible paths in Gc and vice-versa. �

In addition, notice that if k = O(logn), the ppkfp problem can be easily solved in polynomial
time. Basically, at each step i of this algorithm, we construct a new graph Gci

i (Vi, Ei) with
ci ≤ c colors and Vi = V (Gc) \ Pi where Pi = {pi

1, . . . , p
i
k} and pi

j = sj or tj (for j = 1, . . . , k),
and Ei = E(Gci

i ). For each subgraph Gci

i for i = 1, . . . , O(n); we polinomially find a properly
edge-colored s− t path (provided that one exists) using its associated Edmonds-Szeider graph.
Finally, the s− t trail case is analogous and will be omitted here.

3 The k-path/trail problem

Let k-pvdp and k-pedt be the decision versions associated respectively with Maximum Prop-
erly Vertex Disjoint Path (mpvdp) and the Maximum Properly Edge Disjoint Trail (mpedt)
problems, i.e., given a c-edge-colored graph Gc, two vertices s, t ∈ V (Gc) and an integer k ≥ 2,
we want to determine if Gc contains at least k properly edge-colored vertex disjoint paths (re-
spectively, edge disjoint trails) between s and t. Initially, in next section we show that both
k-pvdp and k-pedt are NP-complete even for k = 2 and c = Ω(n2). In particular, in graphs
with no properly colored cycles (respectively, closed trails) and c = Ω(n) colors, we prove that
k-pvdp (respectively, k-pedt) is NP-complete for an arbitrary k ≥ 2. Next, at the end of the
section, we establish some approximation results and polynomial algorithms for special cases for
both mpvdp and mpedt problems.

10



3.1 NP-complete results for general graphs

In Theorem 3.2 stated below we will prove that both 2-pvdp and 2-pedt are NP-complete for 2-
edge-colored graphs. In view of that theorem, let us first consider 2 auxiliary results concerning
directed cycles and closed trails in (non-colored) digraphs. Let u and v be two fixed vertices in
a digraph D. Deciding if D contains or not a directed cycle containing both u and v is known
to be NP-complete [12]. In next theorem we prove that deciding if D contains or not a directed
closed trail containing both u and v is also NP-complete. We will denote these 2 problems,
respectively, by Directed Cycle (dc) and Directed Closed Trail (dct).

Theorem 3.1. The dct problem is NP-Complete.

Proof: The dct problem obviously belongs to NP. To prove that dct is NP-hard, we define a
reduction from the following problem. Given four vertices p1, q1, p2, q2 belonging to a digraph
D, we wish to determine if there exist 2 arc-disjoint directed trails connecting p1−q1 and p2−q2

in D. Here, this problem will be named 2-Arc Disjoint Trail (2-adt) problem. As proved in
[12] the 2-adt is NP-complete.

In particular, given a digraph D, we show how to construct in polynomial time another directed
graph D′ with a pair of vertices u, v in D′ such that there are 2 arc-disjoint trails p1 − q1 and
p2 − q2 in D, if and only if there exists a directed closed trail containing both u and v in D′.

Before constructing D′ let us set S = {p1, p2, q1, q2}, S′ = {p′1, p′2, q′1, q′2} and S′′ = {p′′1, p′′2 , q′′1 , q′′2}.
The idea is to split appropriately each vertex pi (qi) in S into two new vertices p′i and p′′i (q′i and
q′′i ) belonging to S′ and S′′, respectively. Thus, we have:

V (D′) = (V (D) \ S) ∪ S′ ∪ S′′ ∪ {u, v},

and

A(D′) =

(

A(D) \ {
⋃

x∈S

{ ~xy, ~yx : y ∈ ND(x)}}
)

∪
(

⋃

x′′∈S′′

{ ~x′′w : w ∈ N+
D (x)}

)

∪

∪
(

⋃

x′∈S′

{ ~wx′ : w ∈ N−
D (x)}

)

∪ { ~up′1,
~p′1p

′′
1,

~p′2p
′′
2,

~q′1q
′′
1 , ~q′′1v, ~vp′2,

~q′2q
′′
2 , ~q′′2u}.

Given the definitions above, consider two arc-disjoint trails p1 − q1 and p2 − q2, say T1 and T2

respectively, in D. Then, it is easy to see that the sequence:

T = (u, p′1, p
′′
1, T1, q

′
1, q

′′
1 , v, p′2, p

′′
2 , T2, q

′
2, q

′′
2 , u)

defines a closed trail containing both u and v in D′ (see Figure 1).

Conversely, consider a directed closed trail containing both vertices u and v in D′. Note that,
we have exactly one outcoming and one incoming arc incident to u and v. It follows that, all
closed trails containing u and v, also contain all vertices in S′ and S′′ and each pair (p′i, p

′′
i ) and

(q′i, q
′′
i ), for i = 1, 2, must be visited exactly once. This is possible, if and only if we have a trail

between p′1 and q′′1 , and p′2 and q′′2 in D′. If we delete u, v ∈ D′, and contract all pairs (p′i, p
′′
i ) to

obtain pi, and (q′i, q
′′
i ) to obtain qi, i = 1, 2, we obtain 2 arc-disjoint trails p1 − q1 and p2− q2 in

D. �

Now, using both dc and dct problems we prove the following result:
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Figure 1: Reduction 2-ADT α DCT

Theorem 3.2. Both 2-pvdp and 2-pedt problems are NP-Complete for 2-edge-colored graphs.

Proof: We can easily check in polynomial time that both 2-pvdp and 2-pedt problems are
in NP. To show they are NP-hard, we propose polynomial time reductions from the dc and
dct problems, respectively. Consider two vertices u and v in a digraph D . We show how to
construct in polynomial time, a 2-edge-colored graph Gc and a pair of vertices a, b ∈ V (Gc),
such that there is a cycle (respectively, closed trail) containing u and v in D, if and only if there
are 2 vertex-disjoint properly edge-colored a − b paths (respectively, 2 edge-disjoint properly
edge-colored a− b trails) in Gc. Let us first define from D another digraph D′ by replacing u by
two new vertices s1, s2 with N−

D′(s2) = N−
D (u), N+

D′(s1) = N+
D (u). Similarly replace t1, t2 and

N−
D′(t2) = N−

D (v), N+
D′(t1) = N+

D (v). Finally, add the arcs (s2, s1) and (t2, t1) in D′. Now in
order to define Gc replace each arc ~xy of D′ by a colored segment xzy where z is a new vertex
and edges xz, zy are on colors red and blue, respectively. Finally, we define z = a for z between
s1 and s2, and z = b for z between t1 and t2. Observe now that there is a vertex-disjoint cycle
(respectively, arc-disjoint closed trail) containing u and v in D if and only if there are two vertex-
disjoint properly edge-colored a− b paths (respectively, properly edge-colored edge-disjoint a− b
trails) in Gc. �

Intuitively speaking, note that both 2-pvdp and 2-pedt problems become easier when 3 colors
or more are considered (an extreme case is when all edges of Gc have different colors). As a
consequence of that, an interesting question is to study the NP-completeness of these problems
for graphs with many colors. Thus, we prove the following result:

Theorem 3.3. Both 2-pvdp and 2-pedt problems remain NP-complete even for graphs with
Ω(n2) colors.

Proof: Both 2-pvdp and 2-pedt problems restricted to graphs with Ω(n2) colors obviously
belong to NP. Now, given a 2-edge-colored graph Gc with n vertices, define a complete graph
Kc′

n with Ic′ ⊇ Ic and an additional edge xy with x ∈ V (Kc′
n ), y ∈ V (Gc) and some color

c(xy) ∈ Ic′ . In this way, the new resulting graph Gc′
α with vertices V (Gc′

α ) = V (Gc) ∪ V (Kc′
n )

and edges E(Gc′
α ) = E(Gc) ∪ E(Kc′

n ) ∪ {xy} will have, respectively, 2n vertices and at most
n(n−1)

2 different edge colors. Therefore, 2 properly edge-colored s− t paths/trails in Gc (with 2

12



colors) will correspond to 2 properly edge-colored paths/trails in Gc′
α with c′ = Ω(n2) colors and

vice-versa. Thus, from the preceding theorem (restricted to 2-edge-colored graphs), we conclude
that both 2-pvdp and 2-pedt problems in graphs with Ω(n2) colors are NP-complete. �

3.2 NP-complete results for graphs with no properly edge-colored cycles
(closed trails)

Now, we prove that k-pvdp (respectively, k-pedt) for k ≥ 2, remains NP-complete even for
2-edge-colored graphs with no properly edge-colored cycles (respectively, closed trails). We
conclude this section generalizing these results for graphs with Ω(n) colors.

Recall that, as discussed in previous sections, the existence or not of properly edge-colored cycles
or closed trails in edge-colored graphs may be checked in polynomial time. Our proof is based on
some ideas similar to those used by Karp [20] for the Discrete Multicommodity Flow problem for
non-oriented (and non-colored) graphs (usually known in the literature as the Vertex Disjoint
Path problem).

Theorem 3.4. Let Gc be a 2-edge-colored graph without properly edge-colored cycles (respec-
tively, closed trails). Given two vertices s, t in Gc and an integer k, to decide if there exist k
properly edge-colored vertex-disjoint s − t paths (respectively, edge-disjoint s− t trails) in Gc is
NP-complete.

Proof: Let us first consider the vertex-disjoint case. The k-pvdp problem obviously belongs to
NP. To show that k-pvdp is NP-hard we construct a reduction using the Satisfiability problem.
Consider a boolean expression B = ∧k

l=1Cl in the Conjunctive Normal Formula with k clauses
and n variables x1, . . . , xn. We show how to construct a 2-edge-colored graph Gc with two ver-
tices s, t ∈ V (Gc) and with no properly edge-colored cycles, such that a truth assignment for
B corresponds to k properly edge-colored vertex disjoint s − t paths in Gc, and reciprocally, k
properly edge-colored vertex-disjoint s−t paths in Gc define a truth assignment for B. Basically,
the idea is to construct a set of k auxiliary source-sink pairs sl, tl of vertices, each pair corre-
sponding a to clause Cl. Each variable xj is associated to a 2-edge-colored grid graph Gj . Then
graph Gc is obtained by appropriately joining all together these grid graphs and then adding
two new vertices s and t. As described in the sequel, the construction of Gc will be done in 4
steps.

Given B, consider a boolean variable x occurring in the positive form in clauses i1, i2, . . . , ip
and in the negative form in clauses j1, j2, . . . , jq. Each occurrence of x in the positive (negative)
form is associated to a horizontal path sia − tia (vertical path sjb

− tjb
) in the grid Gx such that

all consecutive edges between vertices sia and tia for a = 1, . . . , p (respectively, between sjb
and

tjb
for b = 1, . . . , q) differ in one color. Every properly edge-colored path sia − tia has a vertex

in common with every properly edge-colored path sjb
− tjb

. We say that grid Gx satisfy the
blocking property if there are no properly edge-colored paths between sia and tjb

, or respectively,
between sjb

and tia for every a ∈ {1, . . . , p} and b ∈ {1, . . . , q} (see the example of Figure 2).
In the first step, all grids Gxj

, for j = 1, . . . , n, are constructed in order to satisfy the blocking
property. Note that, different colorings of Gx satisfying the blocking property are possible. In
this case, we can choose any one at random among them. This finish the first step.

Now, we say that a set of grids satisfies the color constraint if all edges incident to sl and tl,
l = 1, . . . , k, in all occurrences of sl and tl in the various grids, have the same color. All grids
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Gxj
for j = 1, . . . , n, must be constructed in order to satisfy both blocking property and color

constraint. However, note that the color constraint may be not verified after the first step. To
solve this problem, suppose w.l.o.g., that all edges incident to sl in the various grids must be red
if l is odd, and blue if l is even. Similarly, suppose that all edges incident to tl (in the various
grids) must be blue if l is odd, and red if l is even.

Therefore, suppose that edge slw (for w ∈ NGxj
(sl)) must be blue. If c(slw) = blue, we are done.

Otherwise, we add a new vertex p between sl and w and fix c(slp) = blue and c(pw) = red. We
apply this procedure for every edge incident to sl (for l = 1, . . . , k) in the various subgraphs Gxj

for j = 1, . . . , n. Finally, we repeat the same transformation for every tl and Gxj
for l = 1, . . . , k

and j = 1, . . . , n. Note that, at the end of the second step, we have all grids satisfying both
blocking property and color constraint (see Figure 3(a)).

Now, in the third step, we identify all occurrences of sl (respectively, tl) belonging to the various
grids Gxj

, as a single vertex s′l (respectively, t′l). We repeat this process for each l = 1, . . . , k. Let
G′ be this new 2-edge-colored graph. Note that, due to the color constraint, all edges incident to
s′l (respectively t′l) in G′ must have the same color. Finally, in the third step, we add a source s
and destination t, and new edges ss′l and t′lt for l = 1, . . . , k. Therefore, to construct k properly
edge-colored paths between s and t in this new graph, all edges ss′l (respectively t′lt) must be
colored with a different color, other than those incident to sl or tl in G′ (see Figure 3(b)). Let
G′′ this new 2-edge-colored graph.

In the last step, note that we can have c(ss′a) 6= c(ss′b) (analogously c(t′at) 6= c(t′bt)) for some
a, b ∈ {1, . . . , k} and a 6= b. In addition, by construction of our grids, we can have a properly
edge-colored path between s′a and s′b in some grid Gxj

for some j ∈ {1, . . . , n}. Therefore, in
this case, we can have a properly edge-colored cycle through s (or t) in G′′ (what is not allowed
by hypothesis). To avoid that in the construction of Gc, it suffices to add auxiliary vertices pi

between s and s′i (respectively, auxiliary vertices qi between t and t′i) and conveniently change
the colors of edges spi (respectively qit) such that all edges incident to s (respectively t), have
the same color. In this way, the new resulting graph Gc (obtained from G′′) will contains no
properly edge-colored cycles.

Thus, given a truth assignment for B, we obtain a set of k properly edge-colored vertex disjoint
s− t paths in the following manner. If variable xj is true, we select the horizontal paths in the
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grid Gxj
between vertices sia and tia (for a = 1, . . . , p); if xj is false, we select the vertical paths

between sjb
and tjb

(for b = 1, . . . , q). Note that, if either xj or x̄j occurs in clause Cl, and is true
in the assignment, we have a path between vertices s′l and t′l in G′ and consequently, between s
and t in Gc. Therefore, if B is true, we will have k properly edge-colored vertex-disjoint paths
between s and t in Gc, each of them passing by s′l and t′l for l = 1, . . . , k.

Conversely, consider a set of k properly edge-colored vertex disjoint s− t paths in Gc. Observe
in the grid Gxj

that, if we have a properly edge-colored path between vertices sia and tia′ for
a ∈ {1, . . . , p} and a′ ≤ a, the clause Cia and variable xj will be true. Analogously, if we have a
path between sjb

and tjb′
for b ∈ {1, . . . , q} and b′ ≤ b, the clause Cjb

will be true and variable xj

will be false. Thus, k properly edge-colored vertex disjoint s− t paths will correspond to k true
clauses in B. Therefore, for an arbitrary k ≥ 2, we proved that k-pvdp problem is NP-complete
in 2-edge-colored graphs with no properly edge-colored cycles.

We turn now to the edge-disjoint version (k-pedt) of this problem. We will first consider
properly edge-colored s − t paths and finally conclude with properly edge-colored s − t trails.
We can use similar arguments as in the construction of Gc above. However, we can have 2-edge-
disjoint paths between s and t in Gc corresponding to vertical and horizontal paths in some
grid Gx. In another words, we can have a vertex in the intersection of two s − t paths. If this
happens, we cannot determine the value of x in B. To solve this problem, we add a fifth step in
the construction of a new 2-edge-colored graph, say Gc

α, obtained from Gc as follows. We change
each vertex of Gx (represented by Xab) in the intersection of paths sia − tia for a = 1, . . . , p
(horizontal path) and sjb

− tjb
for b = 1, . . . , q (vertical path) by 3 new vertices w1, w2 and w3

obtaining a new grid G′
x as described in Figure 4. In addition, for every grid Gx, suppose that

vertices va,Xab and vc belong to path sia−tia, vertices vb,Xab and vd belong to path sjb
−tjb

, and
c(vaXab) = c(Xabvd) = red and c(vbXab) = c(Xabvc) = blue in Gc. Finally, set c(w1w2) = blue
and c(w1w2) = red in the grids G′

x (see Figure 4). Note that Gc
α with these new grid graphs G′

x

also satisfy both blocking property and color constraint. Therefore, if we have a path between
sia and tia (for some a ∈ {1, . . . , p}) passing by va and vc, we cannot have a path between sjb

and tjb
(for some b ∈ {1, . . . , q}) passing by vb and vd in Gc

α (otherwise, both s− t paths would
not be edge-disjoint). Now, to deal with properly edge-colored s− t trails we can replace one or
more arbitrary edges xy of Gc

α with some color i ∈ {red, blue} by a colored segment xyz where z
is a new vertex between x and y, and 2 additional vertices p, q with edges zp, pq and qz. These
edges are colored in the following way: c(xz) = c(zy) = c(pq) = i and c(zp) = c(qz) 6= i. If we
repeat this construction for every grid G′

x, we conclude that k-pedt problem is NP-complete in
2-edge-colored graphs with no properly edge-colored cycles
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Finally, to apply this result to 2-edge-colored graphs with no properly edge-colored closed trails
(represented by Gc

β), it suffices to repeat the construction of steps 1, 2, 3 and 5 as above. Note
that, since the forth step was ommited, we can have properly edge-colored cycles passing by
s or t in Gc

β , but no properly edge-colored closed trails. In this way, k properly edge-colored
edge-disjoint s− t trails in Gc

β will be associated to a true assignment for B and vice versa. �

Theorem 3.5. The k-pvdp (respectively, k-pedt) problem remains NP-complete even for
graphs with Ω(n) colors and no properly edge-colored cycles (respectively, closed trails).

Proof: Here, we only deal with the k-pvdp problem, the k-pedt will be analogous. The k-
pvdp problem in graphs with n colors and with no properly edge-colored cycles is obviously
in NP. Let Gc be a 2-edge-colored graph with no properly edge-colored cycles and 2 vertices
s, t ∈ V (Gc). Using Gc, we construct a new graph Gc′

γ with no properly edge-colored cycles and
c′ ≤ n, such that k properly edge-colored vertex-disjoint s − t paths in Gc, corresponds to k
properly edge-colored vertex-disjoint s− t paths in Gc′

γ and vice versa.

Firstly, consider a non-colored complete graph G1 = Kn. For every non-colored graph Gi

for i = 1, . . . , n − 1, choose x ∈ V (Gi) and color c(xy) = j for some j ∈ {1, 2, . . . , i} and
y ∈ NGi

(x). Let Gi = Gi−1 \ {x} (for i ≥ 2) be the resulting non-colored complete graph.
Obviously, the final edge-colored Kc′

n (with c′ ≤ n−1) obtained in this way contains no properly
edge-colored cycles. Finally, add a new edge pq with p ∈ V (Gc), q ∈ V (Kc′

n ) and a new color
c(pq) = c′ + 1. Note that the new graph Gc′

γ with vertices V (Gc′
γ ) = V (Kc′

n ) ∪ V (Gc) and edges

E(Gc′
γ ) = E(Gc)∪E(Kc′

n )∪{xy} contains no alternating cycles and will have at most n different
colors. Therefore, it follows from the preceding theorem (restricted to 2-edge-colored graphs)
that both k-pvdp and k-pedt problems in graphs with Ω(n) colors and no properly edge-colored
cycles/closed trails is NP-complete. �

3.3 Some Approximation and Polynomial results

In this section, we describe greedy procedures for both mpedt and mpvdp, based in the determi-
nation of shortest properly edge-colored s− t trails (respectively s− t paths). Their performance
ratio are based on the same arguments used for the Edge/Vertex Disjoint Path problem between
k pairs of vertices in non-directed graphs [18, 21]. We conclude this section by presenting some
polynomial results for some particular instances of both problems.

At each steep of the greedy procedure for the mpedt problem, we find a shortest properly edge-
colored s − t trail T in Gc . We then delete all edges in this trail and repeat the process until
no s− t trails are found. We denote this procedure by Greedy-ED, for short.

In this section, s − t trails (or paths), means properly edge-colored s − t trails (or paths) for
short. Now consider the following definitions: we say that a s− t trail T1 hits a s− t trail T2, or
equivalently, that T2 is hitted by T1, if and only if T1 and T2 share a common edge. If Γ denotes
the set of all properly edge-colored s − t trails, we define I ⊆ Γ as the subset of trails obtained
by the greedy procedure and J ⊆ Γ the subset of s− t trails associated to an optimal solution.
Then, we have the following:

Theorem 3.6. Algorithm Greedy-ED has performance ratio equal to O(1/
√

m).

Proof: Let T ∈ Γ be an arbitrary properly edge-colored s − t trail in Gc. We say that a s − t
trail T ∈ Γ is short if |E(T )| ≤ √m, and long otherwise. Therefore, for a trail T ∈ Jlong we have
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Figure 5: Let Gc be a 2-edge-colored graph. Suppose |E(Ti)| = k + 2 for i = 1, . . . , k/2. The
ratio between Greedy-ED and the optimal solution is 2/k.

|E(T )| ≥ (
√

m + 1) and |Jlong|(
√

m + 1) ≤ m. Thus, w.l.o.g., if we consider |I| ≥ 1, it follows
that |Jlong| <

√
m < |I|√m.

Additionally, we can say that every s− t trail Tj ∈ Jshort \ I is hitted by a s− t trail Ti ∈ Ishort,
otherwise (if Ti ∈ Ilong) at the point when Ti was picked, Tj was available and shorter than Ti

and should have been taken by the greedy procedure. Thus, if Ti is the shortest s− t trail that
hits Tj we have |E(Ti)| ≤ |E(Tj)| ≤

√
m.

Now, observe that all s− t trails in Ishort have at most |Ishort|
√

m edges and each Pj ∈ Jshort \ I
is hitted by at least one edge of Ishort. Furthermore, since all s − t trails Tj are edge-disjoint
it follows that one edge in Ishort cannot hit more then one s − t trail Tj . Thus, |Jshort \ I| ≤
|Ishort|

√
m ≤ |I|√m.

Finally, we have |J | = |Jshort| + |Jlong| < |(Jshort \ I) ∪ I| + |I|√m ≤ (2
√

m + 1)|I| which
guarantees a O(1/

√
m) performance ratio for the mpedt problem. �

To give some idea about the determination of the value
√

m above, suppose that a s− t trail T1

hits k s− t trails of J \ I1 at the first step of the Greedy-ED. Note that, one edge of T1 can hit
at most one other trail of J and therefore T1 has length at least k. Since T1 is a shortest s − t
trail, all other trails in J \ I1 also have at least k edges. Therefore, k2 ≤ m, so k =

√
m. This

idea may be inductively applied for the remaining steps of the greedy procedure.

In the Figure 5, we consider a 2-edge-colored graph Gc with |E(Ti)| = k + 2 for i = 1, . . . , k/2.
In this case, since |E(T0)| = k +1 (the shortest s− t trail), the Greedy-ED procedure first select
T0, hitting k/2 properly edge-colored s − t trails. Clearly an optimal solution is obtained by
choosing trails T1, . . . , Tk/2. Thus 2/k is ratio between the greedy and an optimal solution where
k ≤ √m.

We turn now to the vertex-disjoint version of the above problem, namely, the Maximum number
of Properly Vertex-Disjoint s− t paths in Gc. We can easily modify the Greedy-VD procedure
to solve the mpvdp problem. In this case, after the determination of a shortest s − t path P
(instead of a s−t trail T ), it suffices to remove all vertices belonging to P \{s, t}. We repeat this
process until no more properly edge-colored s − t paths are found. We call this new procedure
Greedy-VD. Using the same ideas as described in Theorem 3.6, we prove the following result:
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Theorem 3.7. The Greedy-VD procedure has performance ratio equal to O(1/
√

n) for the
mpvdp problem.

We end this section with some polynomial results for some specific families of graphs. To begin
with, we introduce the following definition: given an c-edge-colored graph Gc, we say that a cycle
Cx = xa1 . . . ajx with x 6= ai for i = 1, . . . , j is an almost properly edge-colored cycle (closed trail)
through x in Gc, if and only if c(xa1) = c(xaj) and both paths (respectively trails) x− a1 and
x−aj are properly edge-colored . If c(xa1) 6= c(xaj), then Cx define a properly edge-colored cycle
(closed trail) through x. In the sequel, we show how to solve the mpvdp (respectively, mpedt)
problem in polynomial time for graphs containing no properly or almost properly colored cycles
(respectively, closed trails) through s or t. Notice that to check if an edge-colored graph Gc

contains or not a properly edge-colored or an almost properly edge-colored cycle (closed trail)
through x, it suffices to define an auxiliary graph Gc

x obtained from Gc by replacing x with
two new vertices xa and xb and setting NGc

x
(xa) = NGc(x) and NGc

x
(xb) = NGc(x). Now, using

Theorem 1.2 (respectively, Corollary 2.3) we compute, if any, a properly edge-colored xa − xb

path (trail) in Gc
x. Clearly if no such xa − xb path (trail) exists in Gc

x, then there exists no
properly or almost properly edge-colored cycle (closed trail) through x in Gc.

Initially, consider the following decision version associated with mpvdp problem. Given an
integer k ≥ 1, we show how to construct a polynomial time procedure for the k-pvdp in graphs
with no (almost) properly edge-colored cycles through s or t.

Theorem 3.8. Consider an integer k ≥ 1 and a c-edge-colored graph Gc with no (almost)
properly colored cycles through s or t. Then, the k-pvdp problem may be solved in polynomial
time.

Proof: Suppose, w.l.o.g., that we do not have (almost) properly edge-colored cycles through
vertex s in Gc. Observe in this case that (almost) properly edge-colored closed trails through s
are allowed.

For k = 1, the problem is polynomially solved by Edmonds-Szeider’s Algorithm. For k ≥ 2, we
construct an auxiliary non-colored graph G′ in the following way. As discussed in Section 1, we
first define W = V (Gc)\{s, t}, and non-colored graphs Gx for every x ∈W (see the first part in
the definition of the Edmonds-Szeider’s graph). Now, define Sk = {s1, . . . , sk}, Tk = {t1, . . . , tk}
and proceed as follows:

V (G′) = Sk ∪ Tk ∪ (
⋃

x∈W V (Gx)), and
E(G′) =

⋃

j=1,...,k

(
⋃

i∈Ic

(

{sjxi|sx ∈ Ei(Gc)} ∪ {xitj |xt ∈ Ei(Gc)}
))

∪
(
⋃

i∈Ic
{xiyi|xy ∈ Ei(Gc)}

)

∪
(
⋃

x∈W E(Gx)
)

.

Now, find a perfect matching M (if any) in G′ and contract each subgraph Gx into a single
vertex x. Let G′′ this new non-colored graph. Observe that all si − tj paths in G′′ are defined
by edges belonging to M ∩E(G′′). In addition, we cannot have a path between si and sj in G′′

(otherwise, we would have a (an almost) properly edge-colored cycle though s in Gc). In this
way, all paths in G′′ begins at vertex si ∈ Sk and finish at some vertex tj ∈ Tk. Finally, we
construct a non-colored graph G′′′ by contracting subsets Sk and Tk respectively to vertices s and
t. In this way, note that non-colored s− t paths in G′′′ are associated to properly edge-colored
s − t paths in Gc and vice-versa. Therefore, if the construction of a perfect matching M in G′

is possible (what is done in polynomial time), we obtain k properly edge-colored s− t paths in
Gc. �
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Since the perfect matching problem is solved in polynomial time, we can easily construct a
polynomial time procedure for the mpvdp in graphs with no (almost) properly colored cycles
through s or t. To do that, it suffices to repeat all the steps described in Theorem 3.8 for
k = 1, . . . , n − 2 until some non-colored graph G′ containing no perfect matchings is found.

The ideas above may be generalized for the mpedt in graphs with no (almost) properly colored
closed trails through s or t. Firstly, we deal with its associated decision version.

Theorem 3.9. Consider a constant k ≥ 1 and a c-edge-colored graph Gc with no (almost)
properly edge-colored closed trails through s or t. Then, the k-pedt problem can be solved in
polynomial time.

Proof: Given Gc, construct the associated trail-graph p − Hc (as described in Section 2) for
p = ⌊(n− 1)/2⌋. Note that, no vertices may be visited more than p times in Gc even if they are
shared by different properly edge-colored s− t trails. To see that, consider a vertex x ∈ V (Gc)
and a properly edge-colored s − t trail of length 2 through x, all other properly edge-colored
trails through x will have at least 4 edges, each of them containing at least 2 new vertices in Gc.

Thus, suppose w.l.o.g., that we do not have (almost) properly colored closed trails through
vertex s in Gc. Now, using Theorem 2.2, we can easily prove that Gc contains a (an almost)
properly colored closed trail through s, if and only if, Hc contains a (an almost) properly colored
cycle through s1. As a consequence of that, we have no (almost) properly edge-colored cycles
through s1 in p−Hc. Thus, by Theorem 3.8 we can find in polynomial time (if any) k properly
edge-colored paths between s1 and t1 in the graph p − Hc. Now, substituting every subgraph
Hc

xy in p−Hc by edge xy in Gc we obtain k properly edge-colored s−t trails in Gc in polynomial
time. �

Similarly to the mpvdp problem, to construct a polynomial procedure for the mpedt, it suffices
to repeat all the steps above (in Theorem 3.9) for k = 1, . . . , n− 2 until some non-colored graph
associated to Hc and containing no perfect matching is found.

4 Conclusions and open problems

In this work, we have considered path and trail problems in edge-colored graphs. We generalized
some previous results concerning properly edge-colored paths and cycles in edge-colored graphs,
which allowed us to devise efficient algorithms for finding them. On the negative side, we proved
that finding k properly vertex/edge disjoint s − t paths/trails is NP-complete even for k = 2
and c = Ω(n2). In addition, we showed that both problems remain NP-complete for arbitrary
k ≥ 2 in graphs with no properly edge-colored cycles (closed trails) and c = Ω(n), which led
us to investigate approximation. For that purpose, a procedure for mpedt, which greedily
builds shortest properly edge-colored s − t trails, was shown to have a respectable O(1/

√
m)

performance ratio. Similarly, we obtained an approximation ratio in O(1/
√

n) for the mpvdp.
Finally, we showed that both mpvdp (mpedt) are solved in polynomial time when restricted to
graphs with no (almost) properly edge-colored cycles (closed trails) through s or t. However,
the following questions are left open.

Is the following problem NP-complete?

Problem 4.1. Input: Given a 2-edge-colored graph Gc with no properly edge-colored cycles, two
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vertices s, t ∈ V (Gc) and a fixed constant k ≥ 2.
Question: Does Gc contains k properly edge-colored vertex/edge disjoint paths between s and t?

As a future direction, another important question is to consider improved approximation per-
formance ratios (as well as inapproximability results) for both mpvdp and mpedt for general
edge-colored graphs or for graphs with no properly edge-colored cycles (closed trails). We con-
clude our paper by recalling the following open problem from [22].

Problem 4.2. Input: Given a 2-edge-colored complete graph Kc
n and two vertices s, t ∈ V

Question: Does there exist a polynomial algorithm for finding the maximum number of properly
edge-colored edge-disjoint s− t trails in Kc

n?
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