A relax and cut algorithm for the vehicle routing
problem

Carlos Martinhon
Departamento de Ciéncia da Computacao, Instituto de Computacao
Universidade Federal Fluminense
Rua Passo da Pdtria 156, Sao Domingos, Niteroi, RJ, 24210-240, Brazil
mart@dcc.ic.uff.br

Abilio Lucena
Departamento de Administragao
Universidade Federal do Rio de Janeiro
Av. Pasteur 250, Rio de Janeiro, RJ, 22290-240,Brazil
lucena@openlink.com.br

Nelson Maculan
Programa de Engenharia de Sistemas e Computacao, COPPE
Universidade Federal do Rio de Janeiro
P.O. Box 68511, Rio de Janeiro, RJ, 21945-970, Brazil
maculan@cos.ufrj.br

November 6, 2000

Abstract

A Lagrangian relaxation based exact solution algorithm for the Ve-
hicle Routing Problem is introduced in this paper. Lower bounds are
obtained by allowing exponentially many inequalities as candidates to
Lagrangian dualization. Three different families of strong valid in-
equalities (each one with exponentially many elements) appear in the
formulation used. For each family, violated inequalities are identi-
fied through separation procedures for points that define minimum
K-Trees (i.e. the solutions to the underlying Lagrangian problems).
Violated inequalities are dualized in a relax and cut framework. Up-
per bounds for the problem are generated through a simple Lagrangian
based Clarke and Wright heuristic. The lower and upper bounds thus
obtained are used in some variable fixation tests based on (approximat-
ing) linear programming reduced costs. Computational results indicate
that the algorithm is competitive with other exact solution algorithms
in the literature.

Key words: Exact Solution Algorithm, Vehicle Routing Problem,
Valid Inequalities, Relax and Cut.

1 Introduction

Vehicle Routing Problems is the generic name given to a large class of prob-
lems involving the distribution of goods, services, information or personnel.
A particularly important special case of the general problem is that of min-
imizing the total distance (time) required by a fleet of vehicles to satisfy
delivery orders placed by customers. Vehicles are stationed at a central
depot (to which they should return at the end of the operation) and have
identical, fixed, capacities. The number of vehicles to be used, i.e. routes to
be formed, K > 1, is assumed to be part of the problem input data. Routing
decisions involve the allocation of customers to vehicles (without exceeding
vehicle capacities) and determining the sequence in which customers allo-
cated to a vehicle should be visited. This problem has been known in the
literature as either the the Vehicle Routing Problem (VRP) (Christofides,
Mingozzi and Toth [12, 13]), the Truck Dispatching Problem (Dantzig and
Ramser [17], Christofides and Eilon [11], Krolak, Felts and Nelson [31])),
the Vehicle Scheduling Problem (Clarke and Wright [14], Gaskell [24]), or
else the Classical VRP (Laporte [33]). In this paper, the problem is to be
referred, simply, as the VRP.

The VRP is clearly N'P-hard. Indeed it generalizes the Traveling Sales-
man Problem (TSP) (see the book by Lawler, Lenstra, Rinnooy Kan and
Shmoys [38] or the survey by Jiinger, Reinelt and Rinaldi [28], for instance)
in that a TSP can be viewed as a VRP with a single vehicle of infinite ca-
pacity. The VRP has been the object of a considerable amount of research
for the past four decades. For surveys on exact and approximate VRP al-
gorithms the reader is referred to Christofides [10], Laporte and Norbert
[35], Fisher [23] and Laporte and Osman [37]. An annotated bibliography
on the subject can be found in Laporte [33]. VRP models and exact solu-
tion algorithm based on these models are studied in Beasley, Lucena and
Poggi de Aragao [8]. Some recent exact solution algorithms for the problem
can be found in Augerat, Belenguer, Benevant, Corberdan, Naddef, and Ri-
naldi [3, 4], Hadjiconstantinou, Christofides and Mingozzi [29]), Mingozzi,
Christofides and Hadjiconstantinou [45], Miller [44] and Ralphs, Pulleyblank
and Trotter [48].

In this paper, one builds upon the results in [21], where a Lagrangian
relaxation based exact solution algorithm for the VRP is proposed. Lower
bounds in [21] are obtained from K-Tree relaxations of the problem. A
K-Tree (see [22] for details) can be thought of as a generalization of the
concept of a 1-Tree (see Held and Karp [26]). In this paper, the basic
Lagrangian relaxation algorithm of Fisher [21] is modified in a number of
ways. Firstly the algorithm proposed here, contrary to that of Fisher, is a
relaz and cut one (see Lucena [41, 42]). Therefore, an exponential number
of inequalities are true candidates for Lagrangian dualization. Secondly,
a stronger formulation is used. This formulation incorporates additional

families of valid inequalities to the formulation in [21]. Thirdly, tests for
fixing variables, based on lower bounds for Linear Programming reduced
costs are proposed and successfully used. In a further development, a quite
effective Lagrangian heuristic, based on the algorithm of Clarke and Wright
[14], is also introduced in this paper. The combination of all these ingredients
leads to sharper lower bounds than those obtained in [21]. A more detailed
description of most of what is presented here can be found in Martinhon
[43].

This paper is organized as follows. In Section 2 some basic results from
[21, 22] are presented. These are fundamental for the development of the
algorithm introduced here. In particular, a VRP formulation is presented
and its associated K-Tree relaxation is described. Section 3 brings a general
outline for a relax and cut algorithm. For Sections 4, 5 and 6, given a
point z in a multidimensional real valued space, this is assumed to be the
incidence vector of a K-tree. In Section 4 a procedure for the separation of
generalized subtour elimination constraints from z is proposed. In Section 5
the same applies in relation with comb inequalities. In Section 6, yet again,
the same applies in relation with multistar inequalities. Variable fixation
is the subject of Section 7. In Section 8 a Lagrangian based heuristic for
the problem is introduced. In Section 9 one finds a description of the way
implicit enumeration is conducted. Computational experiments are treated
in Section 10. Finally Section 11 closes the paper with some conclusions
that can be drawn.

2 VRP Formulation and Minimum K-Tree Relax-
ation

Let G = (Vo, E) denote an undirected graph with a vertex set Vj with n+1

vertices indexed {0,1,... ,n} and an edge set E. For simplicity, assume G
to be a complete graph. Furthermore assume V C V{ to be that subset of
vertices indexed by {1,...,n}. Following [21] vertices in V are associated

with customers and the vertex indexed by 0 is associated with the depot.
Edges in F may be referred to as either e € E or else e = (4,7), i < 7,
for i,j € Vp; whatever is more convenient. Costs {c. : e € E} which may
express time, distance or a combination of both, are associated with the
edges of G. For easy of presentation one will be somewhat lax with the
notation and use 7 to denote, simultaneously, vertex ¢ € V) and that vertex
in V; indexed by ¢, assuming, as a result, that those two vertices are the
same. The same convention will also apply to an edge ¢ € E and that edge
of F indexed by e. Therefore, the demand for customer (vertex) i € V is
given by d; and the capacity for each one of the K vehicles stationed at the
depot is given by b. The depot is assumed to have a demand of dy = 0 units.
For a given set of vertices S C V', d(S) denotes the sum of the demands for

the vertices in S. Accordingly, F(S) C E,S C Vj, is used for the set of edges
of G with both endpoints in S. The complement in Vj for a set of vertices
S C V is denoted S = V; \ S. Those edges with one endpoint in S C V and
the other endpoint in S form the cut-set E(S,S). Given a set of vertices
S C V, the subset of edges of E with exactly one endpoint in S is denoted
by 6(S). For simplicity, whenever set S has a single vertex, say vertex 4, one
uses 0(i) instead of 6({7}). Finally, r(S) is used to denote [d(S)/b],S C V,
where [y] is the smallest integer larger than or equal to the scalar y.

A K-tree, Tk, as introduced in Fisher [22] is defined as a subgraph of
G with n 4+ K edges that spans the vertices in V5. VRP lower bounds have
been generated in [21] through the use of minimum K-trees with 2K edges
incident on the depot vertex. Given G, an O(n?) algorithm for generating
a minimum K-Tree can be found in Fisher [22].

In order to introduce a formulation for the VRP, let binary {0, 1} vari-
ables {z. : e = (4,j) € E} control the inclusion or not of an edge in a
VRP solution (2, = 1 for inclusion). Therefore, in accordance with the
convention set above, those variables may also be described as {z;; : i =
0,...,n—1;5=(>G4+1),...,n;i < j}. A set X is used to denote all the
incidence vectors of K-trees with exactly 2K edges incident on vertex 0. A
formulation for the VRP [21] (which precludes the use of single routes, i.e.
routes serving a single customer) is given by

min{Zcexe:xERg}, (1)

ecE
where Ry is the feasibility region defined by

er:2, i€V, (2)

ecd(i)

Y me>2(S), SCV, (3)
ecE(S,S)

z € X. (4)

Inequalities (3) are known as the Generalized Subtour Elimination Con-
straints (GSECs) and have been introduced by Laporte and Norbert [34] in
the following equivalent description:

Z $6S|S|_2T(S)7 ScV (5)
ecE(S)

Inequalities (5) generalize the Subtour Elimination Constraints, intro-
duced by Dantzig, Fulkerson and Johnson [16] for the TSP. Notice that r(S)

gives a lower bound on the number of vehicles necessary to feasibly service
the customers represented in S. Inequalities (3) can be made stronger by
replacing 7(S) with the optimal solution to the bin packing problem associ-
ated with bins of size b and a set of | S| elements with weights {d; : i € S}.
This strengthening of (3) has been credited by Laporte and Norbert [35]
to Bezalel Gavish. In order to introduce another possible strengthening of
(3) consider an auxiliary set S° = {5 € S\ {0} : d; > br(S) — d(S)}, in
relation with a given vertex set S, |S| > 2. Inequalities in (3) may be lifted
(as suggested in [21]) to

> lze>2r(S), SCN, |S]>2, (6)
e€E(S,S)

where {l, =1: e € E(S,S)\ E(S,S)} with the remaining coefficients (for
the edges in E(S, S")) being set either to 0 if |S'| < 2 or else to r(S)/(r(S) +
1).

Given a feasible VRP route, an incidence vector x associated with this
route has an entry ., = 1 for an edge e in the route and z, = 0, otherwise.
The lifted Inequalities in (6) have been shown by Fisher [21] not to be facet
inducing for the VRP polytope, i.e. the polytope defined by the convex hull
of the incidence vectors associated with feasible VRP solutions. In what
follows, GSECs are to be used in their lifted form (6).

2.1 K-Tree Relaxation

Suppose that one attaches Lagrangian multipliers u; € IR to (2) and vg €
IR, to (6). Then, after dualizing (2) and (6) in a Lagrangian fashion, one
is left with the problem

zD(u,v):min{ZEexe:xeX} (7)

eck

where, for e = (¢,), Ce = o — u; —uj — E{SQV: ec(5,5)} lovg.
At least in principle, the Subgradient Method (SM) of Held, Wolfe and
Crowder [27] could be used to attain

max zp(u,v). 8
. S (8)

Nevertheless that should prove, practically speaking, unlikely. Notice
that the number of entries in v would clearly grow exponentially with n.
Therefore just the task of computing all subgradients

> 2w(8) —lewe, SCV, |S]>2, (9)
ecE(S,S)

for just a single iteration of the SM, may result, computationally speaking,
unattainable. Even assuming that this first hurdle could be passed, obsta-
cles would still remain. For instance, notice that, for any nontrivial VRP
instance, the number of nonzero subgradients involved, at any iteration, is
likely to be huge. As a result, multiplier values would be likely to change
only very marginally from iteration to iteration and convergence to (8) could
be jeopardized.

Fisher [21] dealt with the difficulties outlined above by selecting, a pri-
ori, a sufficiently small, attractive, subset of all GSECs to work with. The
selection process is initialized with a feasible VRP solution (see Laporte
and Osman [37] for a choice of VRP heurirstics). One would then choose
m = K + 3 vertices in Vj to act as seeds. The first K seeds are cho-
sen as the vertices which are the furtherest away from the depot for each
one of the K routes in hand. The three remaining seeds are chosen, se-
quentially, as those vertices that are maximally distant, simultaneously,
from existing seeds and the depot (see [21] for details). All GSECs that
are to be considered must originate from one of these K + 3 seeds. For
each seed, up to 60 subsets S C V are generated. In more detail, let s;
be a given seed, defined by vertex ¢ € N. Additional, let 41,49,... ,%p_1
be an indexing of the remaining n — 1 vertices in V. Subsets are gen-
erated, nested around s;, in a pattern of increasing subset cardinality, as
{SZ', ’il}, {SZ', ig}, {SZ', il, ’iQ}, {SZ', il, ’i2, ig}, {SZ', il, ’i2, i4}, {87;, ’il, 'ng, 'ng, ’i4}, ..., unl-
til a subset cardinality of 60 is reached.

An alternative way for conducting Subgradient Optimization, when faced
with exponentially many inequalities that are candidates for Lagrangian
relaxation, is explained next.

3 Relax and Cut

A large number of combinatorial optimization problems can be generically
described as the linear integer program

min{cy : Ay >b, yeY}. (10)

Variables y in (10) are assumed to be binary 0 — 1, i.e. y € B%,q > 1.
Furthermore, let ¢ € RP,p > 1, b € R?, and A be a real valued matrix of
conformable dimensions. Assume, as it is customary in Lagrangian relax-
ation, that

min{cy: yeY} (11)

is an easy (polynomial time) problem to solve. On the other hand, in what
is unusual for the application of Lagrangian relaxation, let ¢ be very large
(even exponential in p). In spite of that, assume that one wishes to dualize

in a Lagrangian fashion and let A € RL be the corresponding array of
Lagrangian multipliers. Subgradient Optimization (SO) could then be used
to solve

r/r\lgé({min{(c—AA)y—l—Ab : yeY}} (13)

Optimization is typically conducted here in an interactive way with mul-
tipliers being updated so that the optimal value of (13) is attained (see [27]).
For the sake of completeness, let us briefly review the Subgradient Method
(SM) (see [27] for details) which is used here. At any given iteration of the
SM, for given feasible values of Lagrangian multipliers A, let § be an optimal
solution to

min{(c — AA)y+Ab: yeY} (14)

Denote by 2z the value of this solution and let z,, be a known upper
bound on (10). Additionally, let G € R? be an array of the subgradients
associated with the relaxed constraints. For the current solution, 7, G is
evaluated as

gi:(bi—aiy), 1=1,2,...,q. (15)

In the literature (see [20], for instance) Lagrangian multipliers are usually
updated by firstly determining a “step size” 6,

9 — '/T(Zub - Zlb) (16)

> 9
i=1,.

seee

where 7 is a real number assuming values in (0,2]. One would then proceed
to computing

Ai = max{0;\; +f0g;}, i=1,...,q (17)

and then move on to the next iteration of the SM.

Under the conditions imposed here, the straightforward use of updating
formulas (15)-(17) is not as simple as it might appear. The reason being
the very large number of inequalities that would, typically, be dualized. In
actual fact, for the conditions imposed here, at every SM iteration, sub-
gradients could be divided into three groups. The first one would involve
subgradients for those inequalities in (12) that are violated by . The sec-
ond group would involve those subgradients g; for which, currently, A; > 0.
Notice that a subgradient may be, simultaneously, in the two groups just
described. Finally, the third group consists of the remaining subgradients
and their evaluation would account for the lion’s share of the computational

burden at a SM iteration. One should notice that, under the proposed classi-
fication, subgradients may change groups from one SM iteration to another.
It should also be noticed that the only multipliers that may directly con-
tribute to the Lagrangian costs (¢ — AA), at a given SM iteration, are the
ones associated with subgradients in groups one or two. These multipliers
are denoted active multipliers and their associated subgradients active sub-
gradients. Conversely, subgradients on the third group are denoted inactive
and so are their associated multipliers. Finally, another point to be made is
that, from (17), no multiplier associated with subgradients in group three
will change its current null value, after the application of that updating
formula.

If, on the one hand, inactive multipliers do not contribute to Lagrangian
costs, inactive subgradients, on the other hand, do play a decisive role in
determining the value of 6. Typically, for our application, # would tend to
be extremely small, leaving multiplier values virtually unchanged from iter-
ation to iteration. Bearing this in mind, one may choose to apply (15)-(17)
exclusively to active subgradients and multipliers. That results into a dy-
namic scheme where the set of active multipliers may continuously change.
Notice, in association, that a multiplier may become active at one given
SM iteration, then become inactive at a subsequent SM iteration and, yet
again, become active at a later iteration. The introduction of this scheme
(very much akin to cutting planes generation) into implicit enumeration
for a problem with exponentially many inequalities as candidates for La-
grangian dualization, has been firstly proposed and successively applied to
the Steiner Problem in Graphs by Lucena ([41, 42]). Later on this approach
has been used by Hunting, Faigle and Kern [30] for the Edge-Weighted
Clique Problem and by Moraes Palmeira, Lucena and Porto [46] for the
Quadratic Knapsack Problem.

A different approach, which has been introduced after [41, 42], and that
also allows exponentially many inequalities as candidates for Lagrangian
dualization, has been already coined relaz and cut (see Escudero, Guignard
and Malik [19] for details). That approach presents significant differences
from the one in [41, 42]. Nevertheless, both approaches operate within a La-
grangian relaxation framework and dualize inequalities on the fly. Therefore
the term relaz and cut appears appropriate enough to describe the algorithm
in [41, 42] as well and that is followed here.

For Lagrangian Relaxation based methods, the first attempt to allow
exponentially many inequalities as candidates for dualization was suggested
by Balas and Christofides [5]. For this approach, firstly, a valid relaxation
of the problem being tackled is solved to optimality. Let T denote the relax-
ation solution. Then, a valid inequality which is violated at Z is identified
and dualized in a Lagrangian fashion. In the process, the Lagrangian mul-
tiplier associated with the violated inequality (initially valued at zero) is
increased, in order to improve dual bound value, while keeping = optimal

for the modified Lagrangian problem. The procedure is repeated until no
more violated inequalities which can improve dual bounds (while keeping Z
optimal for the modified Lagrangian problem) can be found. This overall
scheme has been named Restricted Lagrangian Approach.

A second attempt to allow exponentially many inequalities as candidates
for Lagrangian dualization was suggested by Gavish [25] for the Capacitated
Minimum Spanning Tree Problem. The procedure begins by solving a given
Lagrangian relaxation of the problem under consideration. The solution
is examined in order to identify some valid inequalities that are violated.
Violated inequalities are then added to the Lagrangian problem, resulting
in a reinforced relaxation of the original problem. A dual ascent procedure
is then applied and is complemented with subgradient optimization.

Finally, more recently, Fisher [21] proposed the dualization of an a pri-
ori selected subset of a family of valid inequalities (with exponentially many
members). The approach suggested by Fisher goes halfway between the tra-
ditional Lagrangian relaxation framework and the one suggested in Lucena
[41, 42].

As it may be appreciated, the approaches of Balas and Christofides [5]
and Gavish [25] differ substantially from that of Lucena [41, 42], which bears
a close resemblance with branch and cut type algorithms (see Padberg and
Rinaldi [47]).

For the three following sections, separation algorithms for different fam-
ilies of VRP wvalid inequalities are described. One should stress that, in
the presence of exponentially many inequalities as candidates to Lagrangian
dualization, solving a separation problem is required in order to determine
some of the active multipliers.

4 Separation of Generalized Subtour Elimination
Constraints

Consider the following problem: given an optimal solution {Z. : e € E}
to the problem of finding a least cost K-Tree with an edge degree of 2K at
vertex 0, find a GSEC that is violated at that solution or determine that
no such inequality exists. This problem is clearly important to us since it
identifies some of the GSECs to be labelled active. For obvious reasons,
it is denoted GSEC Separation Problem (GSEC-SP). Fisher [21] dealt with
a simplified version of this problem since the subsets of GSECs that are
candidates for dualization in [21] comprise only a tiny fraction of all GSECs.
As a result, the associated, restricted, GSEC-SP in [21] could be solved by
inspection. For the general case, nevertheless, inspection is clearly not an
option.

In this paper a two steps exact solution algorithm for the GSEC-SP is
introduced. Let Tk be the support graph associated with x, i.e. the subgraph

of G for those edges e € F with T, = 1. Therefore, Tk defines a K-Tree
with 2K edges incident on vertex 0 (i.e. the depot). In what follows, given
a subset F' C F, one uses z(F) to denote) xe.

In the first step, remove from T all edges that are incident on vertex 0.
Let m be the number of connected components that result from this action
and let M = {1,... ,m} be an associated index set. Assume, without loss of
generality, that one is working with (3) instead of (6). This is clearly valid
since violation of (3) implies violation of (6). Let Sy C V, k € M, denote
the set of vertices in that component indexed by k. In association, compute
or,k € M, where

o = 2r(Sk) —Z(0(Sk)), (18)

and, as defined before, 7(S;) = [d(Sk)/b]. Notice that whenever oy is
strictly positive, the corresponding GSEC in (3) is violated for {Z. : e € E}
and should therefore be labelled active and dualized (in case the inequality
has not been labelled active already).

In the second step, one selects all those K-Tree vertices with an edge
cardinality of one. It is straightforward to verify that each of them define a
violated GSEC which should be dualized.

The overall identification procedure described above could be summa-
rized into the following algorithm:

Algorithm SSP (Subtour Separation Procedure):
Begin

1. Generate connected components from Tk, identify {S; : k € M} and
compute {0 : k€ M}. If o, > 0,k € M, the GSEC implied by Si
is violated for {Z. : e € E} and should be labelled active.

2. Identify K-Tree vertices of cardinality one. Label the GSECs implied
by each of these vertices active.

End

After applying algorithm SSP, one should dualize active inequalities, in
case they have not been dualized already.

In order to prove that algorithm SSP solves GSEC-SP exactly, let Ep(S) C
E define those edges with T, = 1,e € E(S). Accordingly let V}, = Si U
{0},k € M. Once again, in order to simplify the presentation, and yet
again without loss of generality, let us consider inequalities (3) instead of

(6)-

Lemma 1 If no Sy with o, > 0 exists for k € M then d(S) < b for any
ke M.

10

Proof: Suppose there exists an S;,I € M, with Z(4(S;)) = 1. Since
[d(Sy)/b] > 1 for any k € M, one would then have o; = 2[d(S;)/b] —1 > 0.
That, in turn, contradicts the assumption that o, < 0,Vk € M. Therefore,

Z(0(Sk)) > 2 for all k € M. (19)

Suppose now, by contradiction, that d(S;) > b for some [€ M. Then
[d(S;)/b] > 2 and, since no violated GSEC is meant to exist, oy = 2[d(S;)/b]—
Z(0(S;)) < 0. That, in turn, translates into

z(6(51)) = 4. (20)

At this point, notice that any connected component Ep(Sk), k € M, must
have |E7(Sg)| > |Sk| — 1. Therefore, from (19) and (20), |Ex (V)| > |Sk| +
1, k€ M\ {l} and |Er(V;)| > |Si| + 3, thus resulting in }_, .,/ |E7 (V)| >
> ke (ISkl +1) +[Si] + 3 = (m + 2) + n. The minimum possible number
of edges induced by solution T would then sum, exactly, m + n + 2 and that
is attained for

Z(0(Sk)) =2, keM\{}, (21)
and
Z(0(S))) = 4. (22)

One would thus have component [being linked to vertex 0 by exactly 4
edges and each the remaining components being linked to vertex 0 by exactly
2 edges. Furthermore, since the topology implied by Tk is that of a K-Tree
one must additionally have m = K — 1. As a result, >,/ |E7(Vy)| >
n+ K + 1, in contradiction with the fact that a K-Tree must have, exactly,
n + K edges. Therefore, d(S;) < b, for all k € M. O

Lemma 2 If no violated component exists at the end of algorithm SSP, then
every connected component S,k € M, must be linked to vertex 0 by exactly
2 edges. Furthermore, every Sk, k € M, must define o tree.

Proof: If no violated component exists at the end of algorithm IDS then,
from Lemma 1, d(Sk) < b for all & € M. It then follows that o = 2 —
Z(0(Sk)) <0 for all k € M and, consequently, T(0(S;)) > 2 for all k € M.
Suppose, by contradiction, that Z(d(S;)) > 3 holds for some [€ M and
notice that, due to connectivity, Z(E(Sk)) > |Sk| — 1 for all £ € M. It then
follows that |Ep(Vy)| > [Sk| + 1 for k € M \ {l}, while |Ep(V})| > |Si| + 2.
On the other hand, one has exactly m connected components and therefore
> okem Er(Ve)| = 2 penn g (ISkl +1) +|Si| + 2 must hold. Nevertheless,
as Y pear ISkl = noand D o0 [E7(Vi)| = n + K it follows that n + K >
n+m+1and m < K — 1 is then implied. Recalling that the number of

11

connected components equals m, denote by ¢ the number of edges that are
non incident on the depot vertex. A valid lower bound on % is therefore
Yicm(Si]l = 1) = n — m. Nevertheless, since m < K — 1, it then follows
that ¥ > n — K + 1. That contradicts the fact that one has a K-Tree with
exactly n — K edges non incident on the depot.

An analogous proof can be followed to show that any of the connected
components implied by Si, k € M, must have exactly | S| — 1 edges when no
violated components are found at the end of SSP. In that line, suppose, in
order to reach a contradiction, that one of the connected components, say
that one implied by S;, has at least |S;| edges. Notice that every connected
component Sk, k € M, must have, by connectivity, at least |Sx| — 1 edges.
Since T(d(Sk)) = 2 for all k € M and additionally m = K, one reaches the
strict inequality Y,/ [ET(Vi)| = D penr @ (ET(Sk)) +2) > D pcnr(ISk] —
1+2) =3 ,car ISkl +m =n+ K. That, in turn, contradicts the fact that
> ken [ET(Vi)] = n + K and therefore every connected component implied
by Sk, k € M, must define a tree. [

Theorem 1 Let Tk be the support graph associated with Z, i.e. o K-Tree
with 2K edges incident on vertex 0. Algorithm SSP will always find a vio-
lated subtour in Tg, provided one exists.

Proof: Suppose that no violated partition Si,k € M, has been found at
the end of step 1 of algorithm SSP. Therefore, in order to conclude that no
violated GSEC exists on Tk, one must ensure that no vertex with an edge
degree of one exists on that tree (step 2 of algorithm SSP).

Provided no violated GSEC has been found in step 2 of algorithm SSP,
all T vertices must have an edge degree of, at least, 2. That follows since a
Ty vertex with an edge degree of one would have been detected in step 2 of
SSP. Furthermore, lemma 2 establishes that one must have exactly two edges
on Tk connecting component S to the depot vertex. Denote by (0,v1) and
(0,v2) the corresponding two edges and Gy, = (Vi, Er(Vj)) the implied sub-
graph. Since S defines a tree (lemma 2), the existence of one only cycle in
G, is implied. Denote by Cj the vertices on this cycle. Being a tree, E7(Sk)
must contain one only path between vertices v; and vo. Assume there exists
a vertex with an edge degree of at least 3 in such a path. It is then easy to
check that Vi, = Vj \ Cy is non empty. Therefore E7(V}) would define a for-
est. That in turn would imply the existence of a vertex with an edge degree
of one in Ep(Vj), thus contradicting previous assumptions. Since capacity
constraints are satisfied for every Sy and Ep(Cy) = Ep(Vy) for every k € M
is implied, it then follows that Tk must define a feasible VRP solution. [

Additional violated GSECs can be obtained by further refining algorithm
SSP. To that effect some definitions are required.

Definition 1 A K-Tree leaf is an edge of a K-Tree with one end vertex
with edge cardinality one. Given a K-Tree leaf, denote a leaf base the leaf
verter with edge cardinality larger than one.

12

Additional violated GSECs can be obtained by shrinking K-Tree leaves
into their leaf bases. That applies when one has exactly [— 1 leaves incident
on a leaf base with an edge degree of [> 2. The original vertices of G
mapped into a shrunken vertex define a new violated GSEC. This overall
scheme is to be repeated for as long as it is applicable.

5 Separation of Combs

A problem akin to the one just described for the separation of GSECs can
also be posed in relation with Comb Inequalities. Differently from the exact
solution approach used in the previous section, a heuristic will be suggested
for the separation of comb inequalities. The comb inequalities studied here
are those suggested in Cornuejols and Harche [15]. Namely, let H be a set
of vertices denoted handle and T1,... ,Ts be a collection of sets of vertices
denoted teeth. A particular type of comb inequality, which is valid for the
VRP, is given by

P(B(H) + Y a(B) < |H|+ 3|1 - 25 pak -1 (23)
=1 =1

where, for s > 3 and odd,

T\ H|>1and [TiNH|>1fori=1,...,s,

TiNT;|=0,1<i<j<s

and « may assume values 0, 1 or 2. A value @ = 0 applies when 0 ¢
H U (U;_T;). When 0 € (H\ U}_,T;), a = 1 applies. Finally, @« = 2 when
0€e HNT; for some i =1,...s.

Specific separation algorithms have been devised for combs where «
equals either 0 or 1. The case where o equals 2 may obviously be con-
sidered as well. However, that case has been left out of this study since the
trade off between the computational effort associated with their use the dual
bound improvements they bring about does not appear to pay off.

Definition 2 An external K-Tree leaf is a K-Tree leaf that is not incident
on the depot vertez.

Let Tk be a K-Tree with 2K edges incident on the depot. In association,
let) be a set of non intersecting external leaves of T. Furthermore, suppose
that Tk is the support graph associated with {Z, : e € E}. A sufficient
condition for the existence of a comb inequality which violates Z is given
bellow.

Theorem 2 If |Q| > 3, then there exists a comb inequality which violates
T.

13

Proof: Let |Q| > 3. Define H as being the set of all vertices in Vj with
a Tk edge degree greater or equal to 2. Additionally, select three different
leaves of) and denote them T;,7 = 1,...3. The proof consists in showing
that a comb inequality, which violates Z, is implied by H, T1, T3 and T3. To
that order, let Q, with cardinality 7, be the set of all leaves in Tk (external
or not). Clearly, @ C Q. Recalling that Tk has exactly n + K edges, one
must have T(E(H)) = n+ K — n. Therefore, H must contain n + K — 7
edges with both endpoints in H (the remaining 1 edges in Tx must belong
to Q) and |H| = n + 1 —n. Furthermore, one must have 2?21 Z(E(T;)) =3
and Y2 |T;| = 6. Since aw = 1, as 0 € H, it then follows that the difference
between the left and the right hand sides of (23), say o¢, must equal, exactly,
2. Therefore a comb inequality which violates Z is thus implied by H, T}, T5
and T3. O

Assume that one is given a K-Tree Tx with 2K edges incident on
the depot vertex. Furthermore, assume that Tk is the support graph for
{ZTe : € € E}. A heuristic that attempts to separate comb inequalities (in
their simplest form, as described above) is proposed next.

Algorithm CSP (Comb Separation Procedure):
Begin

1. Introduce into H all those vertices with a Tk edge degree larger or
equal to two.

2. Form a set () with the non intersecting external leaves of T'.

3. If |Q| > 3, choose 3 different, arbitrary, components of () and denote
them, respectively, T1,T» and T5. Sets H,T},T> and T3 define a comb
inequality that violates 7.

End

Given T and a comb inequality as in (23), let o be the difference between
the left and right hand sides of (23). Value o¢ can be interpreted as being
the degree of violation for that inequality. Furthermore denote a SmallComb
a comb inequality which has & = 0 (i.e. it does not include the depot
vertex). In our case, such an inequality can be thought of as being local, in
the sense that it is associated with one only connected component obtained
from Tk (after eliminating the edges incident on the depot vertex). Denote
a BigComb a comb inequality with o = 1 (i.e. it does not include the depot
vertex). Such an inequality can be seen as being global in the sense that
it involves more than one of the connected components referred above. In
the same vein, one can define a BigTooth as being a tooth which consists,
yet again, of a connected component (as referred above) with the additional
property that it contains at least one cycle. Having such a kind of tooth, in
a given comb inequality, appears desirable since it leads to a higher degree
of violation (as it may be observed from (23)).

14

A number of alternatives to CSP are available in an attempt to identify
comb inequalities which violate T for o¢ over 3. As one may appreciate from
(23), for a given handle H, it is advantageous (in terms of increasing the
degree of violation) to have as many odd K-Tree leaves into the inequality
as possible.

Another alternative would be to construct BigCombs by firstly forcing
BigTeeth to contain the largest possible number of cycles. As it may be
appreciated from (23) that would increase the implied degree of violation.
For a given connected component, consider the number of vertices and edges
in it. Notice that the larger the ratio between the two, the larger is the
number of cycles in the connected component.

For the computational results in section 10, all the comb separation
procedures described above have been used.

6 Separation of multistars

Multistar inequalities, which induce facets of the VRP polytope when cus-
tomer demands are identical, have been introduced by Araque (see Araque,
Kudva, Morin and Pekny [2]). These inequalities remain valid for the prob-
lem under non identical customer demands. In this case, nevertheless, they
are not any more facet inducing for the VRP polytope.

Consider a customer vertex £ € V and let I' = {S; : i € It},Ip =
{1,...,s}, be a set of subsets of V. Elements of I' must satisfy d(S;) < b,
for any i € Ir, S;NS; = {k} and d(S; U S;) > b for any ¢,j € Ir,i # j.
Under these conditions,

> w(6(S)) > 4s -2 (24)

i€lr

is valid for the VRP and is denoted a multistar inequality (I', k). In relation
with multistar inequality (24), vertex k is known as its nucleus while S;,i €
I, are the multistar extremities.

Assume, as it was the case before, that the support graph of {Z. : e € E'}
is a K-Tree Tk = (Vy, Er(Vp)), with an edge degree of 2K at the depot
vertex. In association, consider a tree T = (V', Er(V')) of Tk such that
Z(6(V')) = 1. Denote by ® the set of all such trees. A subset ® C @ of
particular interest, is defined as ® = {T'= (V' ,Ep(V')) € ® : d(V') < b}.

Definition 3 A tree Tg = (Vg, Er(Vg)) is denoted a basic extremity of ®
if dVg) > d(V'),NT = (V',Er(V')) € ®. Remaining trees are denoted non
basic. For every set ®, select only one basic extremity (in case of a draw,
choose Ty arbitrarily).

Definition 4 A filter of ® is the set ®x with all those trees of ® that are
not contained in the basic extremity.

15

Since one aims at generating violated multistars, the underlying idea
is to feasibly combine the basic extremity T with some other trees from
® . A non basic extremity S; of a multistar is generated by combining a
nucleus k of Vg with a given tree T = (V', Ep(V")) of ¢ \ T so that d(V' U
{k}) < b. Obviously, in the process, care must be taken in the selection of a
nucleus k& (in order to enhance the chances of attaining multistar violation).
A procedure for nucleus selection, which leads to multistar violation, is
obtained from a result that follows.

Theorem 3 Suppose that the extremities I' = {S; : i € Ir} of a violated
multistar (', k) have been generated using a filter ®x where s = |Ip| > 2.
Let S1 = Vg and k € Vg be the nucleus of (T',k). Then, the edge degree dy,
of nucleus k is such that di < 3 for any s > 2.

Proof: In order to prove the theorem it suffices to notice that Z(0(S1)) =1
(since S; = Vp) and that £(6(S;)) = di + 1, for i € Ir \ {1}. It then follows
that

Z((S1))+ Y E(G(S)) =1+ (s — 1)(dx +1). (25)
ieIr\{1}

Since constraint (25) is assumed to be associated with a violated mul-
tistar, one must have 1 + (s — 1)(dy + 1) < 4s — 2 and therefore dj, <
(3s — 2)/(s — 1) applies. Furthermore, by induction, it is easy to establish
that 3 < (3s —2)/(s — 1) < 4 for all s > 2. Since d; must be integral and
dr < (3s —2)/(s — 1), one must have dy < 3,Vs > 2. O

From the results above, a procedure to separate multistars of 2 extrem-
ities is immediate. It should be noticed that separation of multistars with
more than 2 extremities will incur into a considerable computational burden
(due to the combinatorial nature of the underlying problem involved).

Algorithm S2M (Separation of 2 extremities multistars):
Begin

1. Generate filter @ and set S; = Vg, as indicated above.
2. For (every vertex k € Vg with dj, < 3) do

(a) For (every T = (V',Ep(V')) € ®x \ T) do
i. Ifd(Vg) +d(V') > b and d(V') + d({k}) < b then

A. The musltistar with extremities S; = Vg and Sy = V' U
{k} is violated.

(b) End For

3. End For

16

End

It is straightforward to adapt the above procedure for situations where
more than two basic extremities are involved (thus increasing multistar viola-
tion). In this case, nevertheless, potentially, a very large number of violated
multistars could be generated. Therefore, care must be exercised in order
to achieve a reasonable trade off between computational effort and lower
bound improvement. Bearing this in mind, in this study, one only takes into
consideration violated multistars with 2 extremities and a nucleus k£ with a
degree d; = 1.

7 Variable Fixation

For the computational experiments carried out, tests for fixing variables
have been implemented at every node of the search tree. The idea being
to use VRP upper bounds and the K-Tree lower bounds to attempt to
fix edges either in or out of a solution. In this way, roughly speaking, a
minimum K-Tree (with an edge degree of 2K at the depot vertex) which is
forced to contain a given edge is computed. Clearly, at the root node of the
enumeration tree, if the cost of such a K-Tree exceeds a known VRP upper
bound, the corresponding edge is guaranteed not to be part of an optimal
VRP solution. The edge may then be eliminated from G. Conversely, a
similar test may be implemented in order to check if a given edge must be
part of an optimal VRP solution. In this way, a minimum K-Tree (with
an edge degree of 2K at the depot vertex), which is forced not to contain
a given edge, is computed. Clearly, at the root node of the enumeration
tree, if the cost of such a K-Tree exceeds a known VRP upper bound, the
corresponding edge is guaranteed to be part of an optimal VRP solution.
The corresponding variable may then be fixed to one. Further details on
variable fixation can be found in [43].

Fixing variables, as outlined above, would result, computationally speak-
ing, far too expensive. Procedures that compute lower bounds on the Linear
Programming reduced costs discussed above have, alternatively, been imple-
mented.

8 Primal bounds: a Lagrangian based Clarke and
Wright procedure

Throughout subgradient optimization, a Clarke and Wright [14] based pro-
cedure is used to generate feasible VRP solutions. The procedure is called
a number of times; each one under a different set of (Lagrangian modified)
edge costs. In this way one attempts to benefit, in the upper bounds gener-
ation, from the same source that brings about the relax and cut based lower

17

bounds introduced here.

The form in which this Clarke and Wright type algorithm is implemented
presents some peculiarities. In addition to the use of Lagrangian modified
costs (which could assume negative or positive values), one also makes room
for the use of variable fixation information. A more detailed description of
the algorithm is then necessary.

Let {cfj : e = (i,j) € E} be the Lagrangian modified edge costs at
iteration ¢ of the Subgradient Method. Recall that E(V) C E denotes all
those edges of G that are not incident on the depot. In association, denote
by F!(V) the subset of edges of F (V') not yet fixed either to zero or one (i.e.
the set of free edges at iteration ¢ of SM). Let & be a VRP solution where
vehicle capacity constraints are not violated but is infeasible since a number
of routes larger than K are involved. Such a solution would typically emerge
after a few edges have been fixed to one and either single vertex routes or else
fixed edge routes are formed to initialize the Clarke and Wright algorithm.
Define E'(£,V) C F'(V) as being the set of edges for which the following
conditions apply: (a) edge (i,7) € F*(V) and 4 and j are on different routes
of & (b) the combined demand for the routes of £ that contain vertices 7 and
J must not exceed the vehicle capacity; (c) each one of the vertices 7 and j
must be a route extremity (i.e. be linked to the depot through, at least, one
edge in £). Savings Sé = {sgj =cly + c§.0 - cgj ce = (i,7) € BY(V,€)} could
then be computed. Furthermore, Lagrangian modified costs for those edges
incident on the depot, which have already been fixed to zero, are set to co.
Notice that proceeding in this way one makes it impossible for a Lagrangian
Clarke and Wright route to contain such an edge.

Differently from the traditional Clarke and Wright algorithm, one initial-
izes the algorithm by introducing all the edges already fixed to one into the
solution to be formed. Single routes formed by vertices which have already
been proved not to be incident on the depot vertex are initially considered.
Nevertheless, as the algorithm proceeds, they will be readily eliminated (due
to their exceedingly high costs).

In order to simplify the description of the algorithm, define an initial
degree of freedom, for every vertex i € V, as being equal to two less the
number of edges fixed to one which are incident on 7. In association, notice
that a vertex with an initial degree of freedom equal to zero can not be linked
to other vertices while forming Clarke and Wright routes. Only vertices
with degrees of freedom one or two can serve that purpose. Bearing this
in mind, from this point on, the Lagrangian Clarke and Wright algorithm
would proceed exactly as the classical one. At the point where a feasible
VRP solution has been constructed, 3-opt moves (see Lin and Kerningham
[39]) are applied for each individual route in the solution (in an attempt to
reduce upper bound value).

A variant of the heursitic described above has also been implemented in
this study. The basic difference amounting to the use of edge costs given

18

by {ce(1 —Z.) : e € E} instead of Lagrangian ones. As a result, edges that
appear at the dual solution are made more attractive to be chosen along the
algorithm.

No significative difference has been noticed (in terms of bound quality)
between the two versions of the heuristic. For some of the VRP instances
tested, one would produce better bounds than the other while the reverse
would be true for some other instances. The computational results quoted
on Section 10 have been obtained by applying both heuristics, for every
instance tested, at the root node of the enumeration tree. At nodes other
than the root, only the version using Lagrangian costs has been used.

9 Branching rules

A branching rule, akin to the one used in Christofides, Mingozzi and Toth
[12] and Miller [44] has been implemented in conjunction with the VRP
lower and upper bounding schemes described above. The basic idea being
to extended a partially formed feasible route initiated at the depot vertex.
Therefore two end points exist for a route being formed, one of which is the
depot vertex. It should be noticed that, due to the variable fixation tests,
a partially formed route may, eventually, be extended by a chain of edges
fixed to one (instead of a single edge).

Branching is carried out by firstly choosing an yet unscanned tree node
with the least associated lower bound (ties are broken arbitrarily). At this
point, one may be faced with some routes that have already been closed
and other ones which are still under construction. A tree node is normally
associated with a vertex from G which is an endpoint (other than the depot
vertex) of a route being formed. An edge incident on this vertex is then
chosen to extend the corresponding partially formed route. The edge to be
chosen is the one with the least Lagrangian cost. Clearly, only the inclusion
of those edges which will not overflow vehicle capacity is to be considered.
Other types of infeasible (and more subtle) moves (particularly the ones
which may bring, at a later stage, the kind of infeasibility quoted above)
may also be detected when choosing the branching edge.

Variable fixation has been applied at search tree nodes other than the
root. The information thus obtained is then carried over to lower level tree
nodes.

10 Computational experiments

Computational experiments have been conducted in order to evaluate the
quality of the lower and upper bounds proposed in this paper. Experiments
were performed, under the LINUX operating system, on a Pentium III based
machine with CPU running at 450 MHz and having 256 Mb of RAM memory.

19

The algorithms were coded in C and the -O3 option was used for compilation
under GNU’s gcc compiler.

A comparison with the lower bounds of Fisher [21] is detailed in Table 1.
Columns on that table correspond, respectively, to instance descriptions (for
instance, c51.dat, indicates a problem with 50 customers plus the depot),
vehicle capacity, number of vehicles to be used, Fisher’s lower bounds, three
different relax and cut lower bounds (one involving GSECs, another one
involving GSECs and combs and a third one involving GSECs, combs and
mutistars), best Lagrangian Clarke and Wright bounds and best known
upper bounds. An asterisk, for an entry in column 8 of Table 1, indicates
that the corresponding upper bound has been proven to be optimal. VRP
instances used in this experiment are the ones in [21]. Instances c51.dat,
c76.dat and c101.dat come [11]. Instances c150.dat and c200.dat come from
[21]. Instance c101b.dat come [12]. Instances c121.dat, f45.dat, f72.dat and
f135.dat come from [21].

In order to allow for a proper comparison with the results quoted in [21],
edge costs {c. : e € E'} were taken as the Euclidean distance between the
corresponding pair of vertices (no rounding involved). Letter ”a”, for an
entry in column 1, indicates that 3000 iterations of the SM were allowed
for the relax and cut algorithms. For the remaining instances, only 2000
iterations were allowed. As customary, an initial value of 2.0 was associated
with the step-size parameter a. After 50 consecutive SM iterations, without
an overall improvement on the lower bounds, « is to be reduced to 0.75 of its
current value. The Lagrangian Clarke and Wright heuristic has been called
for every one of the initial 50being that it has been empirically observed
that Lagrangian multipliers (and costs) tend to change only slightly after
that many iterations. As a result, the feasible solutions thus obtained tend
to remain virtually unchanged. Notice that this effect is less dramatic for
the lower bounds since small perturbations for Lagrangian multiplier values
tend to imply larger perturbations for lower bound values.

Table 2 gives the CPU times for computing the relax and cut bounds
quoted in Table 1. A direct comparison with the CPU times quoted by
Fisher [21] does not seem possible since quite different computers are used
in each case.

As it can be appreciated from Table 1, substantial improvements over
the lower bounds in [21] have been attained by each one of the three different
relax and cut algorithms used. That appears to indicate that the relax and
cut algorithms were capable of benefiting from the stronger VRP formula-
tions associated with them. As to which relax and cut version performed
best in terms of lower bound quality, the results appear inconclusive. If one
brings into the picture CPU times, it does not seem to pay off, at least for
the computational results obtained, to go for versions other than the one
involving only GSECs and the degree constraints. For the computational
results that follow, only that version has been used.

20

Further computational results are given in Table 3. They relate with
the full blown branch and bound algorithm. The SM parameter settings,
for the root node, are identical to those for Table 1 (2000 iterations case).
For nodes other than the root, 1000 iterations of the SM are allowed with «
being reduced, as above, after 50 consecutive iterations without an overall
improvement of the lower bound. The Lagrangian Clarke and Wright heuris-
tic, under Lagrangian modified costs, has been called at every tree node (for
every one of the first 1000 iterations of the SM at the root node and for
every one of the first 250 iterations at nodes other than the root). Instances
A-n32-k5 and A-n46-k7 come from [3]. Instance att48.vrp come from [49].
Instance chl8.dat come from [15]. Instances eil7.vrp, eil2l.vrp, eil23.vrp,
eil30.vrp and eil33.vrp come from[11]. Instances mchl6a, mch16b, mch2la,
mch21b, mch22 and mch62 come from [45]. Instance mlm24 is a randomly
generated instance introduced in this paper and instance rhgl4.dat comes
from [50].

All instances in Table 3 are generated in the Euclidean plane (with cus-
tomers corresponding to points in that plane). Edge costs are taken as the
associated Euclidean distances (with the addition of 0.5) rounded to the
largest integer with a lesser value.

Based on the computational results obtained, the proposed algorithm
appears competitive with the other exact solution VRP algorithms in the
literature.

11 Conclusions

A relax and cut algorithm for the VRP was introduced in this paper. Three
basic versions of the algorithm were computationally tested. Differences
between the versions relate with the different families of strong valid in-
equalities that are used as candidate for Lagrangian dualization. For each
one of these three families, separation procedures have been studied and
implemented for points T with a support graph that defines K-Trees with
degree 2K at the depot vertex. In particular, an exact solution algorithm is
proposed for the separation of GSECs. Computational experiments indicate
a substantial improvement over the lower bounds quoted by Fisher [21]. This
comparison is important since one uses here the same K-Tree relaxation that
has been introduced in [21]. A simple Lagrangian based Clarke and Wright
heuristic and some variable fixation tests, based on (approximating) linear
programming reduced costs, have also been proposed and computationally
tested. Overall, the algorithm introduced in this paper appears competitive
with the exact solution VRP algorithms in the literature.

21

References

[1]

[11]

[12]

Y. Agarwal, K. Mathur and H. M. Salkin. A Set-Partitioning Based
Exact Algorithm for the Vehicle Routing Problem. Networks, 19:731—
749, 1989.

J.R. Araque, G. Kudva, T.L. Morin and J.F. Pekny. A branch and cut
algorithm for vehicle routing problems. Annals of Operations Research,
50:37-59, 1994.

P. Augerat, J.M. Belenguer, E. Benevant, A. Corberan, D. Naddef, and
G. Rinaldi. Computational results with a Branch and Cut Code for
the Capacitated Vehicle Routing Problem. Technical Report RR940-M,
Univ. Joseph Fourier, Grenoble, 1995.

P. Augerat, J.M. Belenguer, E. Benevant, A. Corberan, D. Naddef, and
G. Rinaldi. separating Capacity Constraints in the CVRP using Tabu
Search. European Journal of Operational Research, 106:546-557, 1998.

E. Balas and N. Christofides. A restricted Lagrangian approach to
the traveling salesman problem. Mathematical Programming, 21:19-46,
1981.

M. L. Balinski and R. E. Quandt. On an Integer Program for a Delivery
Problem. Operations Research, 12:300-304, 1964.

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh
and P. H. Vance. Branch-and-Price: Column Generation for Huge
Integer Programs. Operations Research, 46:316-329, 1998.

J.E. Beasley, A. Lucena and M. Poggi de Aragado. The vehicle Routing
Problem Handbooks of Applied Optimization, P. Pardalos and M.G.C.
Resende eds., Oxford University Press, New York, to appear 2000.

V. Campos, A. Corberan and E. Mota. Polyhedral Results for a Vehicle
Routing Problem. European Journal of Operational Research, 52:75-85,
1991.

N. Christofides. Vehicle Routing. In The Traveling Salesman Problem,
E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys,
eds., J. Wiley & Sons, Chichester, 1985.

N. Christofides, S. Eilon. An Algorithm for the Vehicle-Dispatching
Problem. Operational Research Quarterly, 20:309-318, 1969.

N. Christofides, A. Mingozzi and P. Toth. Exact Algorithms for the
Vehicle Routing Problem, Based on Spanning Tree and Shortest Path
Relaxations. Mathematical Programming, 20:255-282, 1981.

22

[13]

[24]

[25]

N. Christofides, A. Mingozzi and P. Toth. State Space Relaxation Pro-
cedures for the Computation of Bounds to Routing Problems. Networks,
11:145-164, 1981.

G. Clarke and J. W. Wright. Scheduling of Vehicles from a Central
Depot to a Number of Delivery Points. Operations Research, 12:568—
581, 1964.

G. Cornuejols and F. Harche. Polyhedral Study of the Capacitated
Vehicle Routing Problem. Mathematical Programming, 60:21-52, 1993.

G. B. Dantzig, D. R. Fulkerson and S. M. Johnson. Solution of a Large
Scale Traveling Salesman Problem. Operations Research, 2:393-410,
1954.

G. B. Dantzig and J. H. Ramser. The Truck Dispatching Problem.
Management Science, 6:80-91, 1959.

J. Desrosiers, F. Soumis and M. Desrochers. Routing with Time Win-
dows by Column Generation. Networks, 14:545-565, 1984.

L. Escudero, M. Guignard, and K. Malik. A lagrangian relax and cut
approach for the sequential ordering with precedence constraints. An-
nals of Operations Research, 50:219-237, 1994.

M. L. Fisher. The lagrangian method for solving integer programming
problems. Management Science, 27:1-18, 1981.

M. L. Fisher. Optimal Solution of Vehicle Routing Problems using
Minimum K-Trees. Operations Research, 42:626-642, 1994.

M. L. Fisher. A Polynomial Algorithm for the Degree Constrained
Minimum K-Tree Problem. Operations Research, 42:765-779, 1994.

M. L. Fisher. Vehicle Routing Problem. In Networks Models, Hand-
books in Operations Research and Management Science, T. L. Mag-

nanti, C. L. Monma and G. L. Nemhauser, eds., Elsevier Publisher
B.V., Amsterdam, 1995.

T. J. Gaskell. Bases for Vehicle Fleet Scheduling. Operational Research
Quarterly, 18:281-295, 1967.

B. Gavish. Augmented Lagrangean based algorithms for centralized
network design. IEEE Transactions on Communications, 33,12:1247-
1257, 1985.

M. Held and R.M. Karp. The traveling salesman problem and minimum
spanning trees. Operations Research, 18:1138-1162, 1970.

23

[27]

[28]

M. Held, P. Wolfe and H.P. Crowder. Validation Subgradient Opti-
mization. Mathematical Programming, 6:62-88, 1974.

M. Jiinger, G. Reinelt and G. Rinaldi. The Traveling Salesman Prob-
lem. In Networks Models, Handbooks in Operations Research and Man-
agement Science, T. L. Magnanti, C. L. Monma and G. L. Nemhauser,
eds., Elsevier Publisher B.V., Amsterdam, 1995.

E. Hadjiconstantinou, N. Christofides, and A. Mingozzi. A new wxact
solution algorithm for the vehicle routing problem based on g-paths and
k-shortest paths relaxations. Freight Transportation, G. Laporte and
M. Gendreau, eds., Annals of Operations Research, 61:21-44, 1995.

M. Hunting, U. Faigle, and W. Kern. A Lagrangian relaxation approach
to the edge-weighted clique problem. working paper, Department of
Applied Mathematics, Twente University, 1998.

P. D. Krolak, W. Felts and J. H. Nelson. A Man-Machine Approach
Toward Solving the Generalized Truck-Dispatching Problem. Trans-
portation Science, 6:149-170, 1972.

A. Langevin, M. Desrochers, J. Desrosiers, S. Gélinas and F. Soumis.
A Two-Commodity Flow Formulation for the Traveling Salesman and
the Makespan Problems with Time Windows. Networks, 23:631-640,
1993.

G. Laporte. The Vehicle Routing Problem. In Annotated Bibliogra-
phies in Combinatorial Optimization, M. Dell’Amico, F. Maffioli and
S. Martello, eds., J. Wiley & Sons, Chichester, 1997.

G. Laporte and Y. Norbert. A Branch and Bound Algorithm for the
Capacitated Vehicle Routing Problem. Operations Research Spektrum,
5:77-85, 1983.

G. Laporte and Y. Norbert. Exact Algorithms for the Vehicle Routing
Problem. In Surveys in Combinatorial Optimization, Annals of Discrete
Mathematics, 31, S. Martello, G. Laporte, M. Minoux and C. Ribeiro,
eds., North-Holland, Amsterdam, 1987.

G. Laporte, Y. Norbert and M. Desrochers. Optimal Routing Un-
der Capacity and Distance Restrictions. Operations Research, 33:1050—
1073, 1985.

G. Laporte and I. H. Osman. Routing Problems: a Bibliography. In
Freight Transportation, Annals of Discrete Mathematics, 61, G. La-
porte and M. Gendreau, eds., North-Holland, Amsterdam, 1995.

24

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys,
eds. The Traveling Salesman Problem. J. Wiley & Sons, Chichester,
1985.

S. Lin and B.W. Kerningham. An effective heuristic for the traveling
salesman problem. Operations Research, 21:498-516, 1973.

A. Lucena. Ezact Solution Approaches for the Vehicle Routing Problem.
Ph.D. Thesis, Imperial College, University of London, 1986.

A. Lucena. Steiner Problem in Graphs: Lagrangean Relaxation and
Cutting-Planes. COAL Bulletin, Mathematical Programming Society,
21:2-8, 1992.

A. Lucena. Tight bounds for the Steiner problem in graphs. In Pro-
ceedings of NETFLOWY3, pages 147-154, 1993.

C. Martinhon. Lagrangian Relaxation with the Generation of Valid
Inequalities Applied to the Vehicle Routing Problem, in Portuguese.
PhD Thesis, COPPE, Federal University of Rio de Janeiro, 1998.

D.L. Miller. A matching based exact algorithm for capacitated vehicle
routing problems. ORSA Journal on Computing, 7:1-9, 1995.

A. Mingozzi, N. Christofides, E. Hadjiconstantinou. An Exact Algo-
rithm for the Vehicle Routing Problem Based on the Set Partitioning
Formulation. Technical Report, Department of Mathematics, Univer-
sity of Bologna, 1994.

M. de Moraes Palmeira, A. Lucena, and O. Porto. A relax and cut algo-
rithm for quadratic knapsack problem. relatorio técnico, Laboratorio de
Métodos Quantitativos, Departamento de Administragio, Universidade
Federal do Rio de Janeiro, 1999.

M. Padberg and G. Rinaldi. A Branch-and-Cut Algorithm for the
Resolution of Large-Scale Travelling Salesman Problems. STAM Review,
33:60-100, 1991.

T.K. Ralphs, W.R. Pulleyblank, and L.E. Trotter, Jr. On Capacitated
Vehicle Routing. CCOP Research Report, TR 98-7, Cornell University,
1998.

G. Reinelt. TSPLIB - A Traveling Salesman Problem Library. ORSA
Journal on Computing, 3:376-384, 1991.

D. Ryan, C. Hjorring and F. Glover. Extensions of the Petal Method
for Vehicle Routeing. Journal of the Operational Research Society, vol.
44, 3:289-296, 1993.

25

[51] L. A. Wolsey. Column Generation Algorithms. In Integer Program-
ming, chapter 11, John Wiley & Sons, Chichester, 1998.

26

Table 1: Lower bounds at the root node: Fisher’s [21] instances

Problem cap | nbv | Fisher (S) (SC) (SCM) | LC&W UB

c51.dat(a) 160) 507.09 | 513.51 | 514.17 | 514.21 | 543.35 | 524.61*
c76.dat(a) 140 10 755.5 766.07 | 762.58 | 764.09 | 868.63 | 835.26
c101.dat(a) 200 8 785.86 | 792.47 | 788.75 | 791.84 | 850.02 | 826.14
c150.dat(a) 200 12 | 932.68 | 953.66 | 945.55 | 952.60 | 1083.61 | 1028.42
c200.dat(a) 200 16 | 1096.72 | 1150.23 | 1128.64 | 1138.81 | 1368.61 | 1291.45
cl0lb.dat(a) | 200 10 | 817.77 | 817.56 | 817.57 | 816.68 | 819.56 | 819.56*
cl21.dat 200 7 — 1003.86 | 1010.91 | 1007.25 | 1044.9 | 1042.11
f45.dat 2010 4 720.76 | 723.37 | 722.03 | 721.84 | 723.54 | 723.54*
f72.dat 30000 | 4 237.76 | 238.65 | 238.19 | 238.64 | 247.78 | 241.97*
f135.dat 2210 7 | 1133.73 | 1154.45 | 1147.39 | 1134.18 | 1174.85 | 1163.6

Table 2: CPU times (seconds) at the root node: Fisher’s [21] instances

Problem (S) | (SC) | (SCM)
chl.dat(a) 155 | 125 216
c76.dat(a) | 363 | 400 | 633
c101.dat(a) | 1040 | 1114 | 2816
c151.dat(a) | 3934 | 4129 | 21449
c200.dat(a) | 9592 | 9934 | 67009

c101b.dat(a) | 418 | 546 | 2243

cl21.dat 2719 | 3558 | 12161

f45.dat 117 107 206
f722.dat 750 803 856
f135.dat 4347 | 5189 | 15503

27

Table 3: Branch and Bound

Problem | cap | nbv | LB(root) | LC&W | CPU time (secs) | nb nodes | optimal
A-n32-k5 | 100 5 779.17 784 211 97 784
A-nd6-k7 | 100 7 904.08 923 4612 626 914
att48.vrp | 15 4 39075 40553 112192 4854 40002
c51.vrp 160 5 510.9 533 37676 3691 521
cl01b.dat | 200 | 10 819.01 822 14537 291 820
ch18.dat 10 2 741 741 44 1 741
eil7.vrp 3 2 114 114 0.01 1 114
eil2l.vrp | 6000 | 4 374.51 375 1.56 1 375
eil23.vrp | 4500 | 3 569 569 16.3 1 569
eil30.vrp | 4500 | 3 508.4 534 37864 10281 534
eil33.vrp | 8000 | 4 828.4 837 479.3 114 835
f45.dat 2010 4 721.2 724 824.3 110 724
mchl6a 55 5 322.06 333 34 86 333
mch16b 90 3 267.19 277 30 78 277
mch21a o8 6 426.01 430 11 16 430
mch21b 85 4 345.92 358 52 80 358
mch22 | 4000 | 6 479.08 495 430 422 495
mch26 48 8 606 606 4 1 606
mlm24 100 5 906.58 908 21 12 908
rhgl4.dat 10) 60.2 62 4 7 62

28

