

Programação de
Computadores

Instituto de Computação UFF
Departamento de Ciência da Computação

Otton Teixeira da Silveira Filho

Conteúdo

● Estrutura de dados: listas

● Manipulando listas

● Vetores como listas

● Matrizes como lista de listas

● Determinação do maior elemento de uma lista

● Ordenando uma lista:

Ordenação por Seleção

Ordenação Bolha

Estrutura de dados

Uma estrutura de dados é uma determinada configuração de nossa
informação de modo a podemos acessar e modificar esta informação
da forma mais conveniente para um determinado fim ou determinada
aplicação

Estrutura de dados

Em Python existem uma boa variedade de estruturas de dados pré-
definidas

Inicialmente trataremos de listas que serão apresentadas como se
fossem de conteúdo homogêneo, ou seja, todos de um mesmo tipo.

Mostraremos mais possibilidades a medida que evoluirmos

Lista

● Uma lista (list) em Python é uma sequência ou coleção ordenada de
valores. Cada valor na lista é identificado por um índice

● O valores que formam uma lista são chamados elementos

● O primeiro elemento da lista tem índice 0

● Podemos consultar a lista de trás para frente. Neste caso o índice do
último elemento da lista é -1

Lista

● A lista pode ser de qualquer tipo, incluindo uma lista

● Podemos ter uma lista especial denominada lista vazia

● A lista é mutável, ou seja, pode ter seus valores alterados

Lista

● Uma lista é identificada pelos elementos colocados entre os
caracteres [e], separados por vírgula

● Podemos atribuir a uma lista um identificador

Exemplo:

lista1 = [1, 2, 3, 4]

lista2 = [‘a‘, ‘b‘, ‘c‘]

lista3 = [“Chico“, “Toninho“, “Zeca“, “Zico”, “Tom”]

Exemplo de listas

Criando e acessando listas e elementos de listas

Lista

Podemos criar uma lista dinamicamente, ou seja, criamos uma lista e
 acrescentarmos elementos a mesma.

Exemplo:

lista = [1, 2, 3, 4]

lista.append(4)

Desta maneira incluiremos o valor colocado entre parênteses ao final
da lista

* append é denominado método, conceito de programação orientada
à objetos o qual discutiremos superficialmente neste curso

Exemplo de listas

Criando e acessando listas e elementos de listas e adicionando
novos elementos

Lista

Existem outras maneiras de manipular elementos de uma lista como

● saber a localização de um elemento

● eliminar um determinado elemento,

● Etc.

Veremos isto mais a frente

Lista

Outra maneira de criar uma lista é especificando quantos elementos
ela terá inicialmente e qual será o conteúdo inicial da mesma.

Exemplo:

lista = [‘a‘] * 10

Criará uma lista de inicialmente dez elementos, cada um deles tendo
como conteúdo o caracter a

Lista

Repare em mais uma sobrecarga do operador *

Vimos isto brevemente no programa tipos.py

Lista

Podemos usar as listas para criar o que chamamos na matemática
de vetores, lembrando que a lista é uma forma de armazenamento
da informação e não o vetor matemático

Listas e vetores

Um exemplo

Crie um programa Python que gere um vetor como uma lista de int
de até 10 elementos com suas componentes iguais ao quadrado dos
índices. Ao final do processo, imprima o vetor calculado.

Listas e vetores

Listas e vetores

Podemos escrever este programa de outra forma

Listas e vetores

Matrizes: listas de listas

Apresentemos o uso de listas de listas para representarmos matrizes
matemáticas.

Matrizes: listas de listas

Apresentemos o uso de listas de listas para representarmos matrizes

Façamos a apresentação por um exemplo. Geremos uma matriz 3 x
3 preenchida com o valor 1:

matriz_de_uns = []

for i in range(3) :
 matriz_de_uns.append([1] * 3)

Matrizes

Matrizes: listas de listas

Observe que a impressão é bem deselegante mas deixa claro que
trabalhamos com uma lista de listas

Podemos imprimir a matriz acessando elemento por elemento

Matrizes: listas de listas

Matrizes: listas de listas

Continua feio...

Veremos outras possibilidades no próximo exemplo

Matrizes: listas de listas

Outro exemplo

Crie um programa em Python que gere uma matriz mat de int 3 x 3
de forma que ao final teremos o equivalente à matriz matemática
abaixo

 Ao final do processo imprima a matriz.

(
1 2 3
4 5 6
7 8 9)

Matrizes

Estrutura de dados

Observe que a saída não é o que esperaríamos da apresentação de
uma matriz.

Para o computador isto não tem a menor importância (de fato,
computador não se importa com nada. Ele só segue o que o
programador especificou)

Nós é que necessitamos de ordem para compreender o que ocorre a
nossa volta.

Estrutura de dados

Outro exemplo – outra versão

Crie um programa FORTRAN que gere uma matriz mat de dois
índices de INTEGER de até 3 em cada índice de forma que ao final
teremos o equivalente à matriz matemática abaixo

 Ao final do processo imprima a matriz no formato acima.

(
1 2 3
4 5 6
7 8 9)

Matrizes

Matrizes: listas de listas

Embora isto funcione, é mais interessante usar os módulos numpy e
scipy para quando queremos trabalhar com matrizes, vetores e
desejamos fazer operações típicas de álgebra linear

Continuaremos desta forma neste curso

Determinar o maior
elemento de um vetor

É fato que as informações estruturadas, ou seja, convenientemente
organizadas, simplificam vários procedimentos.

Lembrem-se do código de exercício no qual era pedido achar o maior
de três números int?

Determinar o maior
elemento de três valores

Maior de três números int

Determinar o maior
elemento de um vetor

Façamos a versão vetorial para n elementos com o seguinte
algoritmo:

● Dado um vetor vet com n valores int

● Faça que o primeiro elemento do vetor seja atribuído à variável
maior

● Teste este valor com a segunda componente do vetor. Caso ela seja
maior que a da variável maior, atribua este valor à variável maior,
caso não, teste a próxima componente do vetor até a última
componente.

Exemplo

Façamos um exemplo para esclarecer a questão de
acharmos o maior elemento de um vetor.

Dado o vetor

e com o índice i começando de zero.

v⃗=(
−3

1
4
2
4

)

Exemplo

1) maior ← -3

2) i = 1, maior < 1, portanto, maior ← 1

3) i = 2, maior < 4, portanto, maior ← 4

4) i = 3, maior > 2, portanto, nada é feito

5) i = 4, maior = 4, portanto, nada é feito

v⃗=(
−3

1
4
2
4

)

Determinar o maior
elemento de um vetor

Custo computacional

Esta versão é bem simples e funcional.

Custo computacional

Esta versão é bem simples e funcional.

Ela também nos faz refletir sobre o Custo Computacional.

Quantas operações são feitas para obtermos o resultado que
desejamos?

Custo computacional

Esta versão é bem simples e funcional.

Ela também nos faz refletir sobre o Custo Computacional.

Quantas operações são feitas para obtermos o resultado que
desejamos?

Observe que aqui com um vetor com 5 elementos fizemos 4
comparações.

Se fosse n elementos seriam n-1 comparações.

Determinar o menor
elemento de um vetor

Fazer uma versão para determinar o menor elemento basta mudar o
teste feito dentro do laço de repetição

Exercício

Aprimoremos este programa:

Criemos um outro código no qual possamos entrar com os valores do
vetor via teclado, imprimir o vetor dado e ao final imprimamos o maior
valor do vetor.

Exercício

Ordenação

Vamos a algo mais complexo:

Faça um programa que ordene de forma crescente um vetor de int.

Ordenação

Vamos a algo mais complexo:

Faça um programa que ordene de forma crescente um vetor de int.

Imprimir três valores em ordem deu um certo trabalho.

Ordenação

Imprimir três valores dados

 em ordem crescente

Mais sobre print()

Mas antes de seguir em frente, vejamos uma maneira de ler várias
variáveis com um único input

Mais sobre print()

...

Mais sobre print()

O .split(‘ ‘) usará o espaço em branco como separador entre as
entradas de forma a identificar uma variável da outra

Você pode usar qualquer caracter como separador

● Observe ainda que a linha do input() está desagradavelmente grande
o que dificulta a legibilidade

Ordenação

Retornemos...

Vamos a algo mais complexo:

Faça um programa que ordene de forma crescente um vetor de int.

Fazer com três foi um tanto complicado. E n valores?

Ordenação

A dificuldade que tivemos está em que uma abordagem
aparentemente direta nem sempre é boa

Formas mais organizadas de resolver um problema estuda mais
profundamente o problema e tenta criar um ou mais algoritmos mais
convenientes para resolução do mesmo

Algoritmo de Seleção

Apresentemos um algoritmo baseado no que já vimos

 O Algoritmo de Seleção

Esquematizemos...

Ordenação por Seleção

Vetor inicial (5, 1, 3, 8, 4)

● Procure o menor valor do vetor (já sabemos fazer isto) e troque este valor com o primeiro valor

 (1, 5, 3, 8, 4)

● Procure o menor valor do vetor a partir da segunda posição e troque este valor com o valor
que se encontra na segunda posição

(1, 3, 5, 8, 4)

● Procure o menor valor a partir da terceira posição e troque este valor com o valor que se
encontra na terceira posição

(1, 3, 5, 4, 8)

● Procure o menor valor a partir da quarta posição e troque este valor com o valor que se
encontra na quarta posição

(1, 3, 4, 5, 8)

Ordenação por Seleção

● Observe que podemos aproveitar o código que foi escrito para
determinar o maior elemento (ou o menor elemento)

Ordenação por Seleção

● Observe que podemos aproveitar o código que foi escrito para
determinar o maior elemento (ou o menor elemento)

● Observe ainda que não interessa o menor valor mas onde ele se
encontra

Ordenação por Seleção

...

Custo computacional

Qual o custo computacional deste algoritmo?

Custo computacional

Qual o custo computacional deste algoritmo?

Observe que para 5 elementos procuramos fazemos 4 comparações
para achar o primeiro valor, 3 comparações para achar o segundo
valor, 2 para o terceiro e 1 para o quarto valor.

Custo computacional

Qual o custo computacional deste algoritmo?

Observe que para 5 elementos procuramos fazemos 4 comparações
para achar o primeiro valor, 3 comparações para achar o segundo
valor, 2 para o terceiro e 1 para o quarto valor.

● Número total de comparações: 4 + 3 + 2 + 1 = 10

Custo computacional

Qual o custo computacional deste algoritmo?

Observe que para 5 elementos procuramos fazemos 4 comparações
para achar o primeiro valor, 3 comparações para achar o segundo
valor, 2 para o terceiro e 1 para o quarto valor.

● Número total de comparações: 4 + 3 + 2 + 1 = 10

Se fosse n valores teríamos n -1 + n -2 + n – 3 + … + 2 + 1

Sabemos que 1 + 2 + 3 + 4 + … + n-2+n-1+n = n(n+1)/2 logo

● Se fossem n valores teríamos n(n-1)/2 comparações

Custo computacional

● É um algoritmo de fácil compreensão

● É um algoritmo bem ruim (está entre os piores!) pois se o vetor já
estiver ordenado ele fará o mesmo número de comparações

● Quando o número de operações é proporcional ao número de
elementos ao quadrado, que é como este caso, diremos que o custo
computacional é quadrático ou O(n2).

Algoritmo da Bolha

Vamos a algo mais complexo:

Faça um programa que ordene um vetor dado usando o algoritmo da
Bolha.

Algoritmo da Bolha

Melhor deixar claro o que é o Algoritmo da Bolha com um exemplo

Ordenação por Bolha

Vetor inicial (5, 1, 3, 8, 4)

● Compare os dois termos contíguos. Se estiverem fora de ordem, troque-os

(1, 5, 3, 8, 4)

● Compare o segundo com o terceiro. Se estiverem fora de ordem, troque-os

(1, 3, 5,8 ,4)

● Compare o terceiro com o quarto. Se estiverem fora de ordem, troque-os

 (1, 3, 5, 8, 4)

● Compare co terceiro com o quinto. Se estiverem fora de ordem, troque-os

(1, 3, 5, 4, 8)

● Se tiver acontecido alguma troca, repita o processo

Ordenação por Bolha

Vetor parcialmente ordenado (1, 3, 5, 4, 8)

● Compare os dois termos contíguos. Se estiverem fora de ordem, troque-os

(1, 3, 5, 4, 8)

● Compare o segundo com o terceiro. Se estiverem fora de ordem, troque-os

(1, 3, 5, 4 ,8)

● Compare o terceiro com o quarto. Se estiverem fora de ordem, troque-os

 (1, 3, 4, 5, 8)

● Compare co terceiro com o quinto. Se estiverem fora de ordem, troque-os

(1, 3, 4, 5, 8)

● Se tiver acontecido alguma troca, repita o processo

Ordenação por Bolha

Vetor parcialmente ordenado (1, 3, 4, 5, 8)

● Compare os dois termos contíguos. Se estiverem fora de ordem, troque-os

(1, 3, 4, 5, 8)

● Compare o segundo com o terceiro. Se estiverem fora de ordem, troque-os

(1, 3, 4, 5 ,8)

● Compare o terceiro com o quarto. Se estiverem fora de ordem, troque-os

 (1, 3, 4, 5, 8)

● Compare co terceiro com o quinto. Se estiverem fora de ordem, troque-os

(1, 3, 4, 5, 8)

● Não havendo trocas, pare.

Custo computacional

● Este algoritmo é de compreensão um pouco mais difícil que o de
Seleção

● Não é difícil mostrar que no pior caso (quando o vetor está em ordem
decrescente) o custo é n(n-1)/2

● É fácil de ver que se o vetor estiver ordenado, o número de
comparações é n - 1

Custo computacional

● Este algoritmo é de compreensão um pouco mais difícil que o de
Seleção

● Não é difícil mostrar que no pior caso (quando o vetor está em ordem
decrescente) o custo é n(n-1)/2

● É fácil de ver que se o vetor estiver ordenado, o número de
comparações é n - 1

● Este é um algoritmo sensível à ordenação do vetor

● Mas também não é um algoritmo eficiente

Ordenação por Bolha

Ordenação por Bolha

Repare o uso do while com a condição de “detectar“ quando houve
troca e o uso do algoritmo de troca de duas variáveis que já usamos
antes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

