Instituto de Computacao UFF

Departamento de Ciéncia da Computacao

Otton Teixeira da Silveira Filho

Estrutura de dados: listas

Manipulando listas

Vetores como listas

Matrizes como lista de listas

Determinacao do maior elemento de uma lista
Ordenando uma lista:

Ordenacéao por Selecao

Ordenacéo Bolha

Uma estrutura de dados é uma determinada configuracao de nossa
Informacao de modo a podemos acessar e modificar esta informacao
da forma mais conveniente para um determinado fim ou determinada

aplicacao

Em Python existem uma boa variedade de estruturas de dados pre-
definidas

Inicialmente trataremos de listas que serao apresentadas como se
fossem de conteudo homogéneo, ou seja, todos de um mesmo tipo.

Mostraremos mais possibilidades a medida que evoluirmos

Uma lista (list) em Python € uma sequéncia ou colecao ordenada de
valores. Cada valor na lista € identificado por um indice

O valores que formam uma lista sao chamados elementos
O primeiro elemento da lista tem indice O

Podemos consultar a lista de tras para frente. Neste caso o indice do
ultimo elemento da lista € -1

« Alista pode ser de qualquer tipo, incluindo uma lista

 Podemos ter uma lista especial denominada lista vazia

« Alista € mutavel, ou seja, pode ter seus valores alterados

 Uma lista é identificada pelos elementos colocados entre 0s

caracteres [e |, separados por virgula

» Podemos atribuir a uma lista um identificador

Exemplo:

listal = [1, 2, 3, 4]

lista2 = [‘a’, ‘b’, ‘C]

lista3 = [“Chico*, “Toninho*, “Zeca“, “Zico”, “Tom”]

Criando e acessando listas e elementos de listas

Exemplo de lista

Criacao e impressao

def main():

listal = [1, 2, 3, 4]

listaz = ['a°’ ' 'b' o', 'd']

lista? = ["Chico", "Toninho", "Zeca", "Zico", "Tom"]
print("Conteudo da lista 1", listal)

print("Conteudo da lista 2", lista2)

print("Conteudo da lista 3", lista3)

print("Elemento @ da lista 1: ", listall@l)
print("Elemento 1 da lista 2: ", lista2[1])}
print("Elemento 4 da lista 3: ", lista3[4])
print("Ultimo elemento da lista 2: ", lista3[-11)

print("Penultimo elemento da lista 3:

main()

", lista3[-2]1)

Podemos criar uma lista dinamicamente, ou seja, criamos uma lista e
acrescentarmos elementos a mesma.

Exemplo:
lista =[1, 2, 3, 4]
lista.append(4)

Desta maneira incluiremos o valor colocado entre parénteses ao final
da lista

*append é denominado método, conceito de programacéao orientada
a objetos o qual discutiremos superficialmente neste curso

Criando e acessando listas e elementos de listas e adicionando

Nnovos elementos

Exemplo de lista
Criacao e impressao
Uso do append

def main():

listal = [1, 2, 3, 4]

listaz = ["a"', 'b', 'c", "d']

lista3 = ["Chico", "Toninho", "Zeca", "Zico",
print{"Conteudo da lista 1", listal)
print{"Conteudo da lista 2", lista2)
print("Conteudo da lista 3", lista3)
listal.append(4)

lista2.append("z")

lista3.append("Zica")

print{"Conteudo da lista 1 apos acrescimo "
print("Conteudo da lista 2 apos acrescimo "
print{"Conteudo da lista 3 apos acrescimo "

main()

"Tom"]

listal)
listaz)
lista3)

Existem outras maneiras de manipular elementos de uma lista como
saber a localizacdo de um elemento
eliminar um determinado elemento,

Etc.

Veremos isto mais a frente

Outra maneira de criar uma lista € especificando quantos elementos
ela tera inicialmente e qual sera o conteudo inicial da mesma.

Exemplo:
lista =['a’] * 10

Criara uma lista de inicialmente dez elementos, cada um deles tendo
como conteudo o caracter a

Repare em mais uma sobrecarga do operador *

Vimos isto brevemente no programa tipos.py

Podemos usar as listas para criar o que chamamos na matematica
de vetores, lembrando que a lista € uma forma de armazenamento
da informacéo e n&o o vetor matematico

Um exemplo

Crie um programa Python que gere um vetor como uma lista de int
de até 10 elementos com suas componentes iguais ao quadrado dos
indices. Ao final do processo, imprima o vetor calculado.

Exemplo de lista
Usando como wvetor

def main()}:
lista = []
n = int(input("Entre com um numero de valor maximo 18 "}}

if n =18 :
print(" 0 wvalor dado e' maior que 18"}

else :
for 1 in range(®, n + 1):
lista.append(i * i)

print("0s wvalores sao :", lista)

main()

Podemos escrever este programa de outra forma

Exemplo de lista
Usando como wvetor

def main():

n = int(input("Entre com um numero de valor maximo 18 "))

ifn =18
print(" 0 valor dado e' maior gue 18"}

else :
lista = [8] * (n + 1)

for 1 in rangel(®, n + 1):
listalil =1 * 1

print("0s valores sao :", lista)

maini)

Apresentemos 0 uso de listas de listas para representarmos matrizes
matematicas.

Apresentemos 0 uso de listas de listas para representarmos matrizes

Facamos a apresentacao por um exemplo. Geremos uma matriz 3 X
3 preenchida com o valor 1:

matriz_de_uns =]

for i in range(3) :
matriz_de_uns.append([1] * 3)

Exemplo de lista
Usando como wvetor

def main():
matriz_de uns = []

for 1 in range(3):
matriz de uns.append([1] * 3)

print{matriz_de uns)

main()

Observe que a impresséao é bem deselegante mas deixa claro que
trabalnamos com uma lista de listas

Podemos imprimir a matriz acessando elemento por elemento

Exemplo de lista
Usando como wvetor

def main():
matriz de uns = []

for 1 in range(3):
matriz_de uns.append([1] * 3)

for i in range(3):
for j in range(3):
print{matriz de uns[i][j])

main()

Continua felo...

Veremos outras possibilidades no proximo exemplo

Outro exemplo

Crie um programa em Python que gere uma matriz mat de int 3 x 3
de forma que ao final teremos o equivalente a matriz matematica
abaixo

N b~
oo U1 N
O Y W

Ao final do processo imprima a matriz.

k Exemplo de lista
Usando como wvetor

def main():

mat = []
cont =1

for 1 in range(3):
mat.append([8] * 3)

for 1 in range(3):
for j in range(3):
mat[1]1[j] = cont
cont = cont + 1

for 1 in range(3):
for j in range(3):
printimat[i1[j1)

maini)

Observe que a saida nao € o que esperariamos da apresentacao de
uma matriz.

Para o computador isto ndo tem a menor importancia (de fato,
computador ndo se importa com nada. Ele s6 segue o que 0
programador especificou)

NOs € que necessitamos de ordem para compreender 0 que ocorre a
nossa volta.

Outro exemplo — outra versao

Crie um programa FORTRAN que gere uma matriz mat de dois
indices de INTEGER de até 3 em cada indice de forma que ao final
teremos o equivalente a matriz matematica abaixo

NN
co Ul N

O Y W

Ao final do processo imprima a matriz no formato acima.

B Exemplo de lista
Usando como wvetor

def main():

for 1 in range(3):
mat.append([8] * 3)

for 1 in range(3):
for j in range(3):
mat[i]1[j] = cont
cont = cont + 1

for 1 in range(3):
print(mat[i])

main()

Embora isto funcione, € mais interessante usar os modulos numpy e
scipy para quando gueremos trabalhar com matrizes, vetores e
desejamos fazer operacoes tipicas de algebra linear

Continuaremos desta forma neste curso

E fato que as informacdes estruturadas, ou seja, convenientemente
organizadas, simplificam varios procedimentos.

Lembrem-se do codigo de exercicio no qual era pedido achar o maior
de trés numeros int?

Maior de trés numeros int

Determina o maior valor de tres wvalores int dados

def main():

a = int{input{"Entre com um valor : "))
b = int{input(”"Entre com outro um valor : "))
c = int(input("Entre com mais um valor : "))
ifa=h:
ifa=oc:
print("0 maior valor e' :", a)
else :
print("0 maior valor e' :", c)
elif b > ¢ :
print("0 maior valor e' :", b}
else :
print("0 maior valor e' :", c)

Facamos a versao vetorial para n elementos com o seguinte
algoritmo:

Dado um vetor vet com n valores int

Faca que o primeiro elemento do vetor seja atribuido a variavel
maior

Teste este valor com a segunda componente do vetor. Caso ela seja
maior que a da variavel maior, atribua este valor a variavel maior,
caso nao, teste a proxima componente do vetor até a ultima
componente.

Facamos um exemplo para esclarecer a questao de
acharmos o maior elemento de um vetor.

Dado o vetor

|
w

<i
1

AN RKMRE

e com o indice | comecando de zero.

I
o

<i
I

AN RMNRE

1) maior < -3

2) 1=1, maior < 1, portanto, maior < 1
3) I = 2, maior < 4, portanto, maior < 4
4) i = 3, maior > 2, portanto, nada ¢ feito

5) i = 4, maior = 4, portanto, nada é feito

Programa que determina o maior valor de um vetor dado

def

main():

vet = [B8] * 5

vet[8]
vet[1]
vet[2]
vet[3]
vet[4]

3

Il I
R

maior = vet[8]

for 1 in range(1,5):
if wet[i] = maior :

print{"0 maior elemento do vetor

main()

maior

vet[i]

Esta versdo € bem simples e funcional.

Esta versdo € bem simples e funcional.

Ela também nos faz refletir sobre o Custo Computacional.

Quantas operacodes sao feitas para obtermos o resultado que
desejamos?

Esta versdo € bem simples e funcional.

Ela também nos faz refletir sobre o Custo Computacional.

Quantas operacodes sao feitas para obtermos o resultado que
desejamos?

Observe que aqui com um vetor com 5 elementos fizemos 4
comparacgoes.

Se fosse n elementos seriam n-1 comparacoes.

Fazer uma versao para determinar o menor elemento basta mudar o
teste feito dentro do laco de repeticao

Aprimoremos este programa.

Criemos um outro codigo no qual possamos entrar com os valores do
vetor via teclado, imprimir o vetor dado e ao final imprimamos o maior
valor do vetor.

Programa que determina o maior valor de um wvetor dado

def main():
vet = [1

n = int{input{("Entre com o numero de elementos: "))

for 1 in range{n):
vet.append(int(input("Entre com um elemento: ")))

maior = vet[8]

for 1 in range(l,n):
if vet[i] = maior : maior = vet[i]
print("0 maior elemento do wvetor = ", maior)

main()

Vamos a algo mais complexo:

Faca um programa que ordene de forma crescente um vetor de int.

Vamos a algo mais complexo:

Faca um programa que ordene de forma crescente um vetor de int.

Imprimir trés valores em ordem deu um certo trabalho.

Imprimir trés valores dados

em ordem crescente

Imprime tres numeros dados

def main():

a = int{input("Entre com
b = int(input("Entre com
€ = int(input("Entre com
if a=b :
if b =c :
print({a,b,c)
else :
ifa<c:
print({a,c,b)
else :
printi{c,a,b)
else
ifb=c
ifa=c:

printib.a.c}
else :
print(b,c,a)

p}inttc.b,a]

2m

um
um
um

ordem crescente

numero : "
numero @ "
numero : "

g g -

g g -

Mas antes de seguir em frente, vejamos uma maneira de ler varias
variaveis com um unico input

Imprime tres numeros dados em ordem crescente

ree def main():
a, b, ¢ = input{"Entre com tres wvalores int separados por espago em branco: "}.split(" '}

a, b, ¢ = int(a), int(b), int(c)

ifa=>b:
if b =c :
printi{a,b,c)
else :
ifa=c:
print({a,c,b)
else :
print({c,a,b)

if a=< ¢ :
print(b,a,c)
else :
print({b,c,a)
else :
print{c,b,a)
main()

O .split(*) usara o espaco em branco como separador entre as
entradas de forma a identificar uma variavel da outra

Vocé pode usar qualquer caracter como separador

* Observe ainda que a linha do input() esta desagradavelmente grande
0 que dificulta a legibilidade

Retornemos...

Vamos a algo mais complexo:

Faca um programa que ordene de forma crescente um vetor de int.

Fazer com trés foi um tanto complicado. E n valores?

A dificuldade que tivemos esta em que uma abordagem
aparentemente direta nem sempre € boa

Formas mais organizadas de resolver um problema estuda mais

profundamente o problema e tenta criar um ou mais algoritmos mais
convenientes para resolucao do mesmo

Apresentemos um algoritmo baseado no gue ja vimos

O Algoritmo de Selecao

Esquematizemos...

Vetor inicial (5, 1, 3, 8, 4)

Procure o menor valor do vetor (j& sabemos fazer isto) e troque este valor com o primeiro valor
(1,5, 3, 8, 4)

Procure o menor valor do vetor a partir da segunda posicao e troque este valor com o valor
gue se encontra na segunda posicao

(1, 3,5, 8,4)

Procure o menor valor a partir da terceira posicao e troque este valor com o valor que se
encontra na terceira posicao

(1, 3,5, 4, 8)

Procure o menor valor a partir da quarta posicao e trogue este valor com o valor que se
encontra na quarta posicao

(1, 3,4,5, 8)

* Observe que podemos aproveitar o codigo que foi escrito para
determinar o maior elemento (ou 0 menor elemento)

* Observe que podemos aproveitar o codigo que foi escrito para
determinar o maior elemento (ou 0 menor elemento)

 Observe ainda que nao interessa o menor valor mas onde ele se
encontra

Ordenacao por selecao

def main():

vet = [B] * 5

vet[0]
vet[1]
vet[2]
vet[3]
vet[4]

= N =y

for 1 in range(®,5):
i menor = 1

for j in range(i + 1, 5):
it vet[i menor] = vet[j]

aux = vet[i menor]
vet[i menor] = vetl[j]
vet[j] = aux

print("Vetor ordenado", wvet)

maini()

Qual o custo computacional deste algoritmo?

Qual o custo computacional deste algoritmo?

Observe que para 5 elementos procuramos fazemos 4 comparacoes
para achar o primeiro valor, 3 comparacoes para achar o segundo
valor, 2 para o terceiro e 1 para o quarto valor.

Qual o custo computacional deste algoritmo?

Observe que para 5 elementos procuramos fazemos 4 comparacoes
para achar o primeiro valor, 3 comparacoes para achar o segundo
valor, 2 para o terceiro e 1 para o quarto valor.

 Numero total de comparacbes: 4+3+2+1 =10

Qual o custo computacional deste algoritmo?

Observe que para 5 elementos procuramos fazemos 4 comparacoes
para achar o primeiro valor, 3 comparacoes para achar o segundo
valor, 2 para o terceiro e 1 para o quarto valor.

 Numero total de comparacbes: 4+3+2+1 =10
Se fosse n valores teriamosn-1+n-2+n—-3+...+2+1
Sabemosquel+2+3+4+..+n-2+n-1+n = n(n+1)/2 logo

« Se fossem n valores teriamos n(n-1)/2 comparacoes

« E um algoritmo de facil compreens&o

« E um algoritmo bem ruim (esta entre os piores!) pois se o vetor ja
estiver ordenado ele fara o mesmo numero de comparacoes

 Quando o numero de operacoes € proporcional ao numero de
elementos ao quadrado, que € como este caso, diremos que o0 custo
computacional é quadratico ou O(nz2).

Vamos a algo mais complexo:

Faca um programa que ordene um vetor dado usando o algoritmo da
Bolha.

Melhor deixar claro o que € o Algoritmo da Bolha com um exemplo

Vetor inicial (5, 1, 3, 8, 4)

Compare os dois termos contiguos. Se estiverem fora de ordem, troque-os
(1,5, 3,8, 4)

Compare o segundo com o terceiro. Se estiverem fora de ordem, troque-o0s
(1, 3,5,8 ,4)

Compare o terceiro com o quarto. Se estiverem fora de ordem, trogue-o0s
(1, 3,5, 8, 4)

Compare co terceiro com o quinto. Se estiverem fora de ordem, troque-os
(1, 3,5, 4,8)

Se tiver acontecido alguma troca, repita o0 processo

Vetor parcialmente ordenado (1, 3, 5, 4, 8)

Compare os dois termos contiguos. Se estiverem fora de ordem, troque-os
(1, 3,5, 4, 8)

Compare o segundo com o terceiro. Se estiverem fora de ordem, troque-o0s
(1,3,5,4,8)

Compare o terceiro com o quarto. Se estiverem fora de ordem, trogue-o0s
(1, 3,4,5, 8)

Compare co terceiro com o quinto. Se estiverem fora de ordem, troque-os
(1,3,4,5, 8)

Se tiver acontecido alguma troca, repita o0 processo

Vetor parcialmente ordenado (1, 3, 4, 5, 8)

Compare os dois termos contiguos. Se estiverem fora de ordem, troque-os
(1, 3,4,5, 8)

Compare o segundo com o terceiro. Se estiverem fora de ordem, troque-o0s
(1,3,4,5,8)

Compare o terceiro com o quarto. Se estiverem fora de ordem, trogue-o0s
(1, 3,4,5, 8)

Compare co terceiro com o quinto. Se estiverem fora de ordem, troque-os
(1,3,4,5, 8)

Nao havendo trocas, pare.

« Este algoritmo € de compreensado um pouco mais dificil que o de
Selecao

« Nao é dificil mostrar que no pior caso (quando o vetor esta em ordem
decrescente) o custo € n(n-1)/2

« E facil de ver que se o vetor estiver ordenado, o niimero de
comparacoes én -1

Este algoritmo é de compreensao um pouco mais dificil que o de
Selecao

Nao e dificil mostrar que no pior caso (quando o vetor esta em ordem
decrescente) o custo € n(n-1)/2

E facil de ver que se o vetor estiver ordenado, o niimero de
comparacoes én -1

Este € um algoritmo sensivel a ordenacao do vetor

Mas também nao € um algoritmo eficiente

Ordenacao Bolha

def main():
vet = [B8] * 5

vet[0]
vet[1]
vet[2]
vet[3]
vet[4]

]
=N N N |

trocou = True

while trocou
trocou = False
for 1 in range(4):
1 wet[i + 1] = vet[1i]

aux = vet[il]
vet[i] = vet[i + 1]
vet[i + 1] = aux
trocou = True

print("vetor ordenado", wvet)

main()

Repare o uso do while com a condicao de “detectar* quando houve
troca e 0 uso do algoritmo de troca de duas variaveis que ja usamos
antes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

