
URPDM2010

Improving performance of algorithms for the covering tour problem
by applying reduction rules

Luciene Cristina Soares Motta, lmotta@ic.uff.br
Luiz Satoru Ochi, satoru@ic.uff.br

Loana Tito Nogueira, loana@ic.uff.br
Instituto de Computação - Universidade Federal Fluminense

Rua Passo da Pátria 156 - Bl E - São Domingos - Niterói, RJ - Brazil - Zip Code: 24210-240

ABSTRACT. Given an undirected graph G = (V ∪W,E), where V ∪W is the vertex set and
E is the edge set, the COVERING TOUR PROBLEM (CTP) consists of determining a minimum
length cycle over a subset of V which contains all vertices of T ⊆ V , and every vertex of W is
covered by the tour. This work presents a new integer linear programming formulation, a new re-
duction rule and new heuristic algorithms for the CTP. Computational results show the impact of
the reduction rules in the proposed algorithms and the robustness of the heuristics to solve the CTP.

KEYWORDS. Covering Tour Problem, Reduction Rules, Heuristic Algorithms.

1 INTRODUCTION
Introduced by Current (Current, 1981), the COVERING TOUR PROBLEM (CTP) is defined on an
undirected graph G = (V ∪W,E), where V ∪W = {1, ..., n} is the vertex set and E = {(i, j) |
i, j ∈ V ∪W, i < j} is the edge set. The vertex s = 1 is the source node, V is the set of vertices
that can be visited, T ⊆ V is the set of vertices that must be visited (s ∈ T), and W is the set
of vertices that must be covered. A distance matrix C = (cij) satisfying the triangle inequality is
defined on E. The CTP consists of determining a minimum length tour over a subset of V which
contains all vertices of T , and every vertex ofW is covered by the tour, i.e., it lies within a distance
d ≥ 0 from a vertex of the tour.

Very few papers about the CTP have been published. Current and Holland (Current and Rolland,
1994) presented a two-objective version of the CTP as well as a heuristic algorithm to produce a
set of efficient solutions to this problem. Gendreau et al. (Gendreau, Laporte, and Semet, 1997)
proposed a Integer Linear Programming (ILP) model, a heuristic, a branch-and-cut algorithm and
a set of four rules to reduce sets W and V . Motta (Motta, 2001) presented a generalized version
of the CTP, namely the GENERALIZED COVERING TOUR PROBLEM (GCTP), and proposed a
set of reduction rules, heuristic algorithms and a ILP based formulation for the GCTP. Maniezzo
et al. (Maniezzo, Baldacci, Boschetti, and Zamboni, 2005) developed three scatter-search algo-
rithms, a new ILP model and a novel rule to reduce the set W . Brito (Brito, 2005) developed a
lagrangian heuristic, a new reduction rule and heuristic algorithms for the CTP. A multi-objective
evolutionary approach combined with a branch-and-cut algorithm was proposed in (Jozefowiez,
Semet, and Talbi, 2007) to solve another CTP generalization, namely the BI-OBJECT COVER-
ING TOUR PROBLEM. A combination of solution approaches for the TRAVELING SALESMAN

PROBLEM (TSP) and SET COVERING PROBLEM (SCP), as well as two Ant Colony Systems
algorithms, were presented in (Kubik, 2007) to solve the CTP.

The CTP is NP-Hard since it reduces to the TSP when d = 0 and every vertex of W coincides
with a vertex of V . Applications can be found in many areas, such as logistics, transportation,
telecommunication network design, location, vehicle routing, etc.

1

URPDM2010

2 APPROACHES FOR THE CTP

In this section we present a mathematical formulation for the CTP, a new set of rules composed
by a new rule and other three from the literature and two new GRASP algorithms.

2.1 Mathematical formulation

Based on the mathematical formulation presented in (Motta, 2001) for GCTP, this paper proposes a
new ILP model for the CTP. The constraints of the formulation that follows have been adjusted to
not allow the vertices of W belong to the solution, since the feasible solutions of the CTP contains
only vertices of V. Let s = 1 be the source node and let yk, k ∈ V , be a (0−1) binary variable such
that yk = 1 if and only if vertex k is in the tour. For all k ∈ T , yk = 1. Define xij , i, j ∈ V and
i 6= j as another binary variable, where xij = 1 if and only if edge {i, j} is in the tour. Consider a
matrix ∆ = (δlk), where δlk = 1 if and only if l ∈ W is covered by k ∈ V (i.e., dlk ≤ d), and let
Sl = {k ∈ V | δlk = 1} for every l ∈ W . Define zij ∈ Z+ as the flow variable associated to the
arc (i, j). The ILP model F is as follows.

minimize
∑
{i,j}∈E

cijxij (1)

subject to: ∑
k∈Sl

yk ≥ 1 ∀l ∈ W (2)∑
i<k

xik +
∑
k<j

xkj = 2yk ∀k ∈ V (3)

∑
j∈V

zkj =
∑
i∈V

zik + yk ∀k ∈ V − {s} (4)

∑
j∈V

zsj = 1 (5)

∑
j∈V

zjs =
∑
j∈V

yj (6)

xij ≤ zij ∀i, j ∈ V (7)

xij ≥
(

zij

|V |+ 1

)
∀i, j ∈ V (8)

yk = 1 ∀k ∈ T (9)
yk ∈ {0, 1} ∀k ∈ V (10)
xij ∈ {0, 1} ∀{i, j} ∈ E (11)
zij ∈ Z+ ∀i, j ∈ V (12)

The objective function (1) minimizes the sum of the travel costs. Constraints (2) ensure that ev-
ery vertex of W set is covered by the tour and constraints (3) enforce the degree of each vertex.
Constraints (4), (5) and (6) avoid the existence of subtours. Constraints (7) and (8) estabilish a
relationship between the flow variable zij and the decision variable xij . Constraints (9) enforce
that every vertex of T belongs to the tour. Finally, constraints (10), (11) and (12) represent the
integrality requirements.

The proposed formulation F was implemented using the solver CPLEX 11.2 and the results for 68
CTP instances were reported in the Section 3.

2

URPDM2010

2.2 Reduction Rules
Reduction rules are employed in order to reduce the solution space and, therefore, improve the
algorithm performance of many combinatorial optimization problems. Six reduction rules were
proposed in the literature ((Gendreau, Laporte, and Semet, 1997), (Maniezzo, Baldacci, Boschetti,
and Zamboni, 2005) and (Brito, 2005)) for the CTP. However, three of them are not valid since, in
some cases, it produces feasible solutions to the reduced graph which are at the same time infeasi-
ble to the original one. Thus, we present the following set of valid rules that reduce V \T and W .
This set is composed by the rule (iii), which is presented in the current work, and by rules (i), (ii)
and (iv) which were respectively proposed in (Brito, 2005), (Maniezzo, Baldacci, Boschetti, and
Zamboni, 2005) and (Gendreau, Laporte, and Semet, 1997).

(i) If j ∈ V \T is the only one that δij = 1, i ∈ W ⇒ transform j into a vertex of T ;
(ii) If exists a vertex j ∈ T with δij = 1, i ∈ W ⇒ remove i from W ;
(iii) If exists i, j ∈ W , j 6= i with δik ≥ δjk, ∀k ∈ V \T ⇒ remove vertex i ∈ W ;
(iv) If δji = 0, ∀j ∈ W ⇒ remove vertex i from V \T .

To maximize the reductions, the correspondent rules should be applied in the sequence in which
they were described. The impact of these reduction rules in exact and heuristic algorithms to solve
CTP are described in Section 3.

2.3 GRASP Algorithms
In this section we present two new algorithms (GRASP1 and GRASP2) for the CTP which are
based on the GRASP (Greedy Randomized Adaptive Search Procedures) metaheuristic (Resende
and Feo, 1995). The pseudocode of the GRASP1 heuristic is ilustrated in the Algorithm 1.

Algorithm 1 GRASP1(γ(), maxIterations, α)
1: Initialize(AddList, solution, incumbentSolution);
2: for k = 1, ...,maxIterations do
3: solution = ConstructionCTP(γ(), α);
4: solution = Filtering(solution);
5: solution = LocalSearchCTP(solution);
6: Update incumbentSolution(solution,incumbentSolution);
7: end for
8: return incumbentSolution;

The parameters of GRASP1 are: the maximum number of iterations to be performed (maxItera-
tions), the value of the parameter α which restricts the list of vertices to be inserted into the partial
solution and the function γ(i) : V → ℵ∗, defined as follow: γ(i) = (|V ∪W |−τ(Ψ+|W |)) if i ∈ T
and γ(i) = (|V ∪W | − τ ×Ψ) otherwise, where τ > 0 and Ψ is the number of uncovered vertices
j ∈ W that i covers. Each GRASP1 iteration consists in constructing a randomized greedy solution
(line 3), followed by a filtering process (line 4) and a local search (line 5). The Filtering() function
starts the successive removal process choosing a vertex t ∈ T at random and, from this vertex t, the
procedure covers the entire route trying to remove redundant vertices. The construction procedure
(line 3) starts from a list (AddList) containing all vertices i ∈ V . The AddList is ordered based on
the value of the benefit γ(i). At each iteration, a vertex j is randomly selected from the restricted
version of AddList according to the value of α ∈ [0, 1]. The vertex j is then added to the partial
solution according the well-known Cheapest Insertion Criterion (CIC). If the current route remains
unfeasible after inserting vertex j, AddList is updated and the process is repeated until the current
route becomes a feasible solution.

3

URPDM2010

The pseudocode in Algorithm 2 illustrates the local search procedure used in GRASP1. This ap-
proach is based on the Variable Neighborhood Search (VNS) metaheuristic (Hansen and Mladen-
ovic, 2003), which combines deterministic and stochastic changes of neighborhood.

Algorithm 2 LocalSearchCTP(initialSolution, stoppingCriterion, neighborhoodStructure)
1: Let kmax the number of neighborhoods structures;
2: incumbentSolution = initialSolution;
3: while (stoppingCriterion) do
4: k = 1 ; {Current neighborhood}
5: while (k ≤ kmax) do
6: neighbor = findRandNeighbor(initialSolution, k); {Shaking}
7: currentSolution = innerSearch(neighbor); {Local Search}
8: {Move or not}
9: if (f (currentSolution) < f (incumbentSolution)) then

10: incumbentSolution = currentSolution;
11: initialSolution = currentSolution;
12: k = 1;
13: else
14: k = k + 1;
15: end if
16: end while
17: end while
18: incumbentSolution = 2Opt(incumbentSolution);
19: return incumbentSolution;

The parameters of the LocalSearchCTP procedure are: the stoppingCriterion, considered here as
the maximum number of iterations or maximum number of iterations between two improvements
and the neighborhoodStructure, which is described next.

1-DropAdd (N1) - One vertex i ∈ V is removed from the current solution. If this removal implies
in an infiesible solution, a sucessive insertion process is started according to the following cases:
(a) If i ∈ T , then i is re-inserted in the current solution using the CIC.
(b) If i ∈ V \T , a vertex j ∈ V \T is randomly selected from Sl − {i}, where l ∈ W is the vertex
who became uncovered. If Sl − {i} = ∅ the vertex i is re-inserted in the current solution utilizing
the CIC. This process is repeated until a feasible solution is found.
2-DropAdd (N2) - This neighborhood is similar to the previous one, except that 2 vertices are
removed before eventually starting the insertion process.
3-DropAdd (N3) - In this case, 3 vertices are removed before eventually starting the insertion
process.

In order to avoid cycling, a random solution (neighbor) is generated in the k-th neigborhood of
initialSolution (line 6). The innerSearch() is performed by means of a Variable Neighborhood
Descent (VND) (Hansen and Mladenovic, 2003) procedure utilizing the neighborhood structures
defined by neighborhoodStructure. A 2-opt procedure is applied at the end of the LocalSeatchCTP
algorithm (line 18) with a view to further improve the quality of the incubent solution.

The second heuristic proposed (GRASP2) differs from GRASP1 since it incorporates a learning
mechanism in the construction phase. In this case, instead of fixing the value of the parameter α,
at each iteration a value of α is selected at random from a discrete set of possible values. The
selection of this parameter is guided by the solution values found during the previous iteration
and the probabilities associated with the choice of each value are initially equal to pi = 1/q,

4

URPDM2010

i = 1, ...,m and φ = α1, ..., αm. Let z∗ be the incumbent solution and let Ai be the average
value of all solutions found using α = αi i = 1, ...,m. The selection probabilities are periodically
reevaluated by considering pi = qi/

∑
j=1..m qi, with qi = z∗/Ai, for i = 1, ...,m. The value of qi

will be larger for those αi associated to the best average solutions. Therefore, the larger the qi the
greater is the adequacy of the parameter αi.

3 COMPUTACIONAL RESULTS AND CONCLUSIONS

To the best of our knowledge, there are no test instances for the CTP available in the literature.
Hence, 68 instances were randomly generated as follows: the vertex set was obtained by generating
|V |+ |W | points in the [0, 640]× [0, 480] rectangle, according to a uniform distribution. The sets T
and W were defined taking the first |T | and |W | points respectively, and V \ T was defined as the
set of remaining points. The distance matrix was computed as the Euclidean distance between these
points. The cover distance d was determined as d = max{min{cij | i ∈ W e j ∈ V, ∀i 6= j}}.
This expression ensures that each vertex of V covers at least one vertex of W .

All algorithms were coded in C++ (g++ compiler, version 4.2.4) and executed in a Intel T2250
Dual Core 1,73GHz, 2GB of RAM DDR2 (533MHz), running GNU/Linux Ubuntu environment
(2.6.24-19-generic]1-smp kernel). Experimental tests were performed for normalsize instances
(GIII), specifically n={15, 20, 25, 30, 35, 40, 50, 60}. For each n, the T ,W and V \T sets were cre-
ated considering the following combinations: (|T |, |W |) = (b0, 2nc, b0, 2nc), (b0, 2nc, b0, 6nc),
(b0, 3nc, b0, 4nc), (b0, 33nc, b0, 33nc), (b0, 5nc, b0, 5nc), (b0, 6nc, b0, 2nc), and |V \ T | =
n − (|T | + |W |). For larger instances (GIV), experimental tests were performed for n={100,
200, 300, 500, 700}, considering the following combinations: (|T |, |W |) = (b0, 2nc, b0, 6nc),
(b0, 33nc, b0, 33nc), (b0, 5nc, b0, 5nc), (b0, 6nc, b0, 2nc), and |V \ T | = n− (|T |+ |W |). These
68 instances are availabe at http://labic.ic.uff.br/AutoIndex/.

Computational experiments show that significant improvements can be achieved using the set of
reduction rules proposed. In the experiments, the graphs of the group GIII had their total number
of vertices averagely reduced by 58.70%, while the graphs from GIV were averagely reduced by
56.52%. It was observed that 45% of GIII instances obtained a total reduction over the group
average, while in GIV were 58.3% of instances.

Table 1. Average reduction of CTP graphs

Group of instances % reduction of |W |+ |V | % increase of |T | % reduction of |W | % reduction of |V \T |

GIII 58.70% 18.95% 98.54% 96.45%

GIV 56.52% 1.62% 98.66% 68.56%

In the Table 1, it can be observed that the use of the new rule (iii) associated with rule (ii) was
responsible for an average total reduction for W set of 98.54% for GIII and 98.66% for GIV. The
increase in the number of T vertices due to application of the rule (i), where it was observed that
35.4% of GIII instances showed an increase in the cardinality of this set above the group average.
The instances from GIV that had the increase by 12.12% and 10% were ctp200 66 66 68 and
ctp500 100 300 100, respectively.

The proposed formulation F was implemented using the solver CPLEX 11.2 and the following
results were found: for the 48 graphs from GIII, all the optimal solutions were found, considering
both original and reduced graphs. However, the average time spent for original graphs was 4167.97
seconds, while for the reduced ones the average time was 27.92 seconds. For the 20 graphs of the

5

URPDM2010

group GIV, 7 optimal solutions were found and 1 Upper Bound (UB) with a gap of 8.52% when
the reduced graphs were considered, while 1 optimal solution and 4 UB with an average gap of
12.29% was found when considering the original graphs. A time limit of 18000 seconds was set as
a parameter for all executions of the group GIV.

In the computational experiments performed with the proposed heuristics, both GRASP1 and
GRASP2 were found capable of obtaining all the 48 known optimum solutions for the group GIII
considering the original and reduced graphs. When considering the instances of the group GIV, the
GRASP1 found 5 of the 7 known optimum solutions and it was not capable of improving any UB,
while the GRASP2 found all the 7 optimum solutions and it managed to improve one UB. For all
the 20 reduced graphs of the group GIV, the GRASP2 obtained superior average results in 54,2%
and equaled the solutions of another 37,5% when compared to the GRASP1. With respect to the
computational times, GRASP1 was consistently faster than GRASP2. It has been observed that the
first was, in average, 8% faster than the second.

This work presented a set of reduction rules, a mathematical formulation and two GRASP heuris-
tics for the CTP. The results have shown that these rules can be useful when associated to exact
methods, obtaining optimality for a greater number of instances. The heuristic which had incor-
porated a learning mechanism in the construction phase (GRASP2) outperformed, in average, the
one that used the basic construction framework presented in (Resende and Feo, 1995) (GRASP1).
Both GRASP1 as GRASP2 incorporate greediness and randomization in the construction phase,
i.e. builds a feasible solution combining greedines and randomization. The local search phase uses
an algorithm based on VNS metaheuristic, wich combines deterministic and stochastic approaches.
Exhaustive computational experiments were performed with the proposed heuristics and, despite
having random components, the results from these have always been close to the best obtained
solutions for each of the 68 instances tested, which proves the robustness of these heuristics to
solve the CTP.

REFERENCES

Brito, L. R., 2005. Novas propostas para o problema de recobrimento de rotas. Tese de Doutorado,
COPPE, Universidade Federal do Rio de Janeiro.

Current, J., 1981. Multiobjective design of transportation networks. Ph.D. thesis, The Johns Hop-
kins University.

Current, J., Rolland, E., November 1994. Efficient algorithms for solving the shortest covering
path problem. Transp. Science 28 (4), 317–327.

Gendreau, M., Laporte, G., Semet, F., 1997. The covering tour problem. Op. Res. 45, 568–576.
Hansen, P., Mladenovic, N., 2003. Handbook of Metaheuristics. Kluwer Academic Publishers.
Jozefowiez, N., Semet, F., Talbi, E., 2007. The bi-objective covering tour problem. Computers &

Op. Research Volume (7), 1929–1942.
Kubik, P., 2007. Heuristic solutins approaches for the covering tour problem. Ph.D. thesis, Institut

Fur Betriebswirtschaftslehre, Universitat Wien.
Maniezzo, V., Baldacci, R., Boschetti, M., Zamboni, M., 2005. Metaheuristic Optimization via

Memory and Evolution. Springer, Ch. Scatter Search Methods for the Covering Tour Problem.
Motta, L. C. S., 2001. Novas abordagens para o problema de recobrimento de rotas. Master’s thesis,

Instituto de Computao, Universidade Federal Fluminense, Brazil.
Resende, M. G. C., Feo, T. A., 1995. Greedy randomized adaptative search procedures. Journal of

Global Optimization, 1–27.

6

