
Version Control in Distributed Software Development: a Systematic Mapping Study

Catarina Costa1,2
1Statistics and Mathematics Center

Federal University of Acre
Rio Branco - AC, Brazil

catarina@ufac.br

Leonardo Murta2
2Computing Institute

Fluminense Federal University
Niterói - RJ, Brazil
leomurta@ic.uff.br

Abstract— Along the last decade, many companies started
using Distributed Software Development (DSD). The
distribution of the software development teams over the globe
has become almost a rule in large companies. However, in this
context, new problems arise, which mainly involve the physical
and temporal distance among the participants. Some studies
show that deploying a version control system to alleviate this
problem is a big challenge for distributed teams. This paper
presents a systematic mapping study about works about
version control that focus on DSD. We found 29 studies related
to DSD version control, published between 2002 and 2012.
Using the systematically extracted data from these works, we
present challenges, tools, and other solutions proposed to
version control in DSD. These results can support practitioners
and researchers to better understand and overcome the
challenges related do DSD version control, and devise more
effective solutions to improve version control in a distributed
setting.

Keywords- version control; distributed software development;
configuration management; systematic mapping study.

I. INTRODUCTION
The Software Engineering process has been subject to

some globalization-related changes. IT experts all over the
world have witnessed the growth of Distributed Software
Development (DSD) along with its increasing popularity,
which is defined by Carmel [1] as “a software development
model whose software development team is physically
apart”.

Countries like India, Brazil, and Ireland, among others,
offer excellent resources and fiscal incentives to develop
software [2]. DSD gained momentum as it proposed
spectacular benefits, such as work cost reduction, skilled
development team, flexibility to allow in-house staffing, and
quickly adaptation to volatile business needs [3].

However, it also attracted attention due to the complexity
and challenges related to globally distributed development
teams. Some studies reported that the DSD scenario enlarges
ordinary software development obstacles and adds more
challenges such as time zone, geographical, and socio-
cultural differences [1], [3], [4], [5], [6], [7].

As managing the consistency and concurrency among
project artifacts is an issue, Configuration Management
(CM) earns special attention [2], [4], [7], [8]. CM intends to
control the software evolution, especially with the help of
Version Control Systems (VCS). It not only aids evolution

control, but also supports parallel development, which is a
usual situation in DSD environments.

CM can provide infrastructure for any type of project,
whether co-located or distributed. However, the geographical
distance heightens the challenges faced by any development
team, such as communication among team members, full
understanding of the project, and system integration. This
scenario makes the work almost infeasible without a CM
tool, such as Subversion, Git, or Mercurial. Although some
of these and other VCS support parallel development, most
of them were not specifically designed to deal with the DSD
idiosyncrasies.

VCS allow engineers to work on software artifacts
independently and with reduced planning and coordination
because they automatically merge changes made in those
artifacts and detect conflicting modifications. However, they
do not detect conflicts until the engineers check-in changes,
at which point unnecessary e�ort may have already occurred,
for example. Furthermore, conflicts may be more di�cult
and time-consuming to resolve at this later stage [9]

In addition, some CM tools have features that make them
more or less prepared to deal with the DSD characteristics.
Tools like CVS and Subversion adopt a centralized topology.
Both follow the client-server model, use a single central
server that hosts the project’s metadata, and provide to
developers a limited amount of data that represent specific
versions. On the other hand, Git and Mercurial adopt a
distributed topology. They operate in a peer-to-peer manner.
Every copy of a project contains all the project’s history and
metadata [10].

An important topic to be considered is which topology is
more widely used and/or proposed by developers and
researchers in the context of DSD, aside from the most
utilized VCS tool. According to O’Sullivan [10], if agility,
innovation, and remote work are essential for a certain
project, distributed VCS are more capable of meeting this
project’s requirements. On the other hand, for organizations
concerned with data security, centralized VCS are definitely
more appropriate.

Only a few primary and secondary researches on the
subject have been conducted. Fauzi et al. [7] reinforce this
limitation by stating that there are not many experimental
works on the subject, and that the lack of coordination and
group awareness (i.e., clarity about who work on what)
intensifies the difficulties of controlling distributed projects.
Moreover, they highlight the need of more studies on CM
applied to the DSD context.

2013 IEEE 8th International Conference on Global Software Engineering

978-0-7695-5057-2/13 $26.00 © 2013 IEEE

DOI 10.1109/ICGSE.2013.19

90

Therefore, the goal of this work is to investigate and
gather knowledge on researches related to version control in
the context of DSD by performing a systematic mapping
study. We focus on investigating whether distributed teams
use automatic tools and which commercial and academic
solutions are applied in this scenario, as well as their
features.

A systematic mapping study aims to evaluate and
interpret all available knowledge relevant to a particular
research question or topic by using a rigorous, auditable, and
reproducible method [11], [12]. Furthermore, it aims at
synthesizing and divulging research results, identifying
missing or incomplete parts of the research, and determining
the need of a complete systematic review [11], [12]. The
guidelines provided by [12] and [13] are followed in this
work.

This systematic mapping aimed at answering one main
research question and four secondary research questions:

• RQ: How is Version Control performed in

Distributed Software Development?
o RQ1: Which are the tools used for

supporting version control in DSD?
o RQ2: Which are the challenges related to

Version Control in DSD?
o RQ3: Which strategies, techniques,

models, and processes are used to support
version control in DSD?

o RQ4: How was the described research
evaluated?

Altogether, 13 challenges, 7 tools, and 5 approaches were

collected from 29 studies published between 2002 and 2012.
The main contribution is a set of challenges, tools, and other
solutions proposed for Version Control in DSD Projects. The
selected studies show that practices, models, and tools to
support Version Control in DSD projects are still few in the
literature. Although many studies show interesting results on
collaborative development, most of them do not mention
distributed team. Few studies actually focus on versioning in
DSD. Only these studies were considered in this research.
This reflects that the research on this topic is still in its early
stages and requires maturation.

This work is organized as follows. Section II presents the
research methodology, whose steps are defined in the
research protocol for systematic mapping. Section III shows
collected data with general information about the selected
studies. Section IV describes the systematic mapping results.
Section V presents concluding remarks, along with result
analysis and main contributions.

II. RESEARCH METHODOLOGY
This section presents the research method of systematic

mapping study. This study was conducted from June to
December 2012 and was extended in May 2013.

A. Research Steps
In accordance to the recommendations of [8], [12], and

[13], the research was conducted through the following
steps:

1) Planning the Review
• Identification of the need for a review
• Specifying the research question(s)
• Developing a review protocol

2) Conducting the Review
• Identification of Studies
• Selection of Studies
• Data extraction
• Data synthesis

3) Reporting the Review
• Specifying dissemination mechanisms
• Formatting the main report

B. Search Terms
The search terms are built in three steps: structuration of

research questions in terms of PICOC [13] (Population,
Intervention, Comparison, Outcome, and Context) in order to
identify keywords, identification of synonyms for each of the
keywords, and build the search string based on the
combination of the key terms and their synonyms, using the
OR and AND operators.

Comparison and Context are not relevant in this work,
since this mapping aims at conceiving an overview of the
subject through an exploratory study. The result of this
process is presented in TABLE I.

TABLE I SEARCH TERMS

Population (“Global software development” OR
“Global software engineering” OR
“Global software teams” OR
“Collaborative software development”
OR “Collaborative software
engineering” OR “Distributed work” OR
“Distributed development” OR
“Distributed teams” OR
“Geographically distributed software”
OR Offshore OR Offshoring OR
“Dispersed teams” OR “Dispersed
Locations” OR “Multi-site
development”)

Intervention AND (“Configuration management” OR
“Version control” OR Versioning OR
“System integration” OR "Integrating
the code”)

Outcome AND (Tool OR Software OR Program
OR System OR Model OR Process OR
Framework OR Method OR Technique
OR Approach)

91

C. Search Source
Some criteria, were taken under consideration to select

the search engine. The search engines adopted in this
mapping fulfilled the following requirements:

• They are capable of using logical expressions or a
similar mechanism.

• They allow full-length searches or searches only in
specific fields of the works.

• They are available in the researcher’s institution.
• They cover the research area of interest in this

mapping: computer science.
According to these requirements, we used IEEEXplore

and Scopus as search engines.
In addition to the use of search engines, we also

performed snowballing [14], [15] in this mapping.
Snowballing is an evidence-based software engineering
technique for finding relevant works based on the studies
references (backward snowballing) and on works that
actually mention the selected studies (forward snowballing).
Google Scholar1 was adopted to support this process.

D. Exclusion Criteria
Studies were discarded according to the following

exclusion criteria:
• [EC1] Studies that do not contain information on

Version Control in Distributed Software
Development;

• [EC2] Studies that are neither freely available for
download;

• [EC3] Publications that describe and/or contain
keynote speeches, tutorials and courses.

E. Study Selection Process
The selection process was developed in four steps:
• Step 1: Initially, searches were performed and a list

containing all the papers found was saved. This
process was completed with the aid of the Zotero
tool2.

• Step 2: The researcher conducted an analysis of
papers’ titles, abstracts and keywords, ruling out the
ones that met the exclusion criteria, and, thus,
completing the First Filtration.

• Step 3: The researcher conducted the reading of the
introduction and conclusion of all papers that went
through the First Filtration, leaving out the ones that
met at least one of the exclusion criteria, and, thus,
performing the Second Filtration.

• Step 4: Finally, all papers have been entirely read
and the ones that went through the former filtrations,
but met any of the exclusion criteria at this point,
were disregarded, thus, completing the Third
Filtration.

The selection process utilizing the snowballing method
was conducted in a similar way, starting from Step 2. After
identifying the studies, the reading of their titles, abstracts

1 http://scholar.google.com/intl/en/scholar/about.html

2 http://www.zotero.org/

and keywords from the references, related studies, and most
recent works referencing these studies, was performed.
Moreover, clearly irrelevant references were immediately
discarded.

F. Data Extraction and Mapping
Zotero was used in the management of the studies found.

Data extraction forms were implemented using text editor to
record information about how the studies answered the
research questions. The extracted information from all the
articles was: title, publishing year, full reference, and source.
Also, discarded publications were marked with ‘EC#’, where
is the number of the exclusion criteria. The selected ones
were marked with ‘OK’.

Both quantitative and qualitative analyses were
performed over the collected data. The quantitative analysis
consists of the quantity of publications returned in the
searches and filters. The qualitative analyses were regarding
research questions.

III. COLLECTED DATA
This section outlines general information about the

selected studies, such as year of publication, the research
method, and the country of origin..

A. Number and Source of Studies
Step 1 (Section II.E) retrieved 102 studies from the

search engines listed in Section II.C, but, among these, 17
studies were retrieved from both search engines, summing up
85 individual studies. After performing the document
selection procedure described in Step 2 (First Filtration) 44
relevant articles were selected. In the Second Filtration,
described in the Step 3, 23 relevant articles were selected.

Finally, the Third Filtration selected 11 relevant articles.
Among those excluded studies, 12 were excluded by [EC3],
61 by [EC1] and only 1 by [EC2]. The distribution of these
articles among the search engines is shown in Figure 1.

Figure 1 Number and Source of Studies

The backward snowballing method was applied to the 11
selected results. Forty-two studies were analyzed and 32 of

92

them passed the First Filtration. In the Second Filtration,
with the reading of the studies’ introductions, only 8 studies
were selected. Finally, after the complete reading of the
works, just one article met the [EC1] exclusion criterion and
was ruled out. Therefore, 7 articles were selected by the
backward snowballing method.

The 11 studies selected by the search in the research
libraries listed in Section II.C were also used in the
application of the forward snowballing method. In this
process, 146 studies were retrieved. Among these results, 9
studies were considered potentially relevant, passing through
the First Filtration. After that, 4 studies were regarded as
relevant, thus, passing through the Second and third
Filtrations.

After this, the backward snowballing method was applied
again over the 11 new studies. One hundred and fifty-nine
were analyzed and 19 of them passed the First Filtration.
After the Second and third Filtrations, only one study was
selected. In the forward snowballing method, 146 studies
were retrieved and 24 were considered potentially relevant.
After the Second and third Filtrations, only 6 studies were
regarded as relevant.

The Figure 2 presents the results from the application of
the snowballing methods. The technique showed itself
effective, since it obtained in the first iteration the same
number of articles as the search in the research libraries did:
11 results. In the second iteration, 7 new studies were
obtained.

Figure 2 Snowballing methods

B. Temporal View of the Selected Publications
Although the search was not sorted by year, all the results

selected were published within 2002 and 2012, which shows
this topic has been gaining momentum lately. Besides, 25 of
them (86%) were published after 2006, which coincides with
the raising of new conferences on the theme, including the
ICGSE.

Figure 3 Distribution and Temporal relationship between the Studies

Figure 3 shows the selected studies’ distribution over
time. Moreover, the relationship among the selected studies
can be observed. The papers [S10] and [S28], two mapping
study, have most outgoing arrows: 6 and 5, respectively. The
paper [S18], a study about Palantír tool, is referenced by five
studies, including [S7], [S13], [S11] and [S22] from the
same author.

C. Data Sources
Conference proceedings provided 21 studies (72%) and 7

studies (24%) came from journals. Noteworthy, one of the
works included in this research is a Doctorate Degree
dissertation. TABLE II shows the list of conferences and
journals, that published papers included in the research.

TABLE II CONFERENCES AND JOURNALS

Type of
Publication

List of Publishing
Places

Amount of
Studies %

Conference

ICGSE (6), ICSE (3),
SIGCSE (2), COMPSAC (2),
APSEC, DiSD, ERCIM,
FSE, ICCGI,
ICPADS,SoSEA, STEW

21 72%

Journal

ACM Transaction on
Software Engineering and
Methodology (2); Software:
Practice and Experience (2);
Computing Research
Repository; Empirical
Software Engineering;
Journal of Visual Languages
& Computing

7 24%

Dissertation PhD Thesis, University of
California, Irvine, 2008 1 4%

93

Among those from conference proceedings, 6 are from
ICGSE, 3 are from ICSE and the remaining 12 come from 10
different events. Seven papers retrieved from journals are
from different sources.

D. Authors
The mapping counted 62 authors in the 29 selected

studies. TABLE III presents the authors of studies about CM
in DSD and the occurrences of each researcher as author of
papers. This information’s can help the identification of
research groups interested in the subject.

TABLE III AUTHORS

#Papers Authors
5 Andrea De Lucia, Anita Sarma, Fausto Fasano
4 André van der Hoek, Genoveffa Tortora
3 Rocco Oliveto

2 Bernd Bruegge, Christian Pendleton, Jan
Magnusson, Lars Bendix, Timo Wolf

1 All the others.

E. Countries
The researches originated from 16 countries, as shown in

the Figure 4. The greatest number of selected papers are
from USA, Italy and Germany.

Figure 4 Countries of institutions of research’s authors

IV. RESULTS
This section presents answers for each research question.

A. RQ1 – Which are the tools used for supporting version
control in DSD?
This question aimed at identifying which tools are used

as support to DSD projects. A search on general information
of the tools was performed, including topology and type of
collaboration.

TABLE IV ACADEMIC TOOLS SUPPORT

Tool Description Evidence
(S1-S22)

Palantír

Palantír is a configuration management
workspace awareness tool that provides
developers with insight into other
workspaces. Palantír itself is not a
configuration management system and
does not provide any traditional
configuration management functionality
such as artifact storage, workspace
management, differencing and merging, or
locking. Topology: Centralized
Collaboration: Optimistic and Pessimistic

S6, S13,
S14, S26,
S27, S28

ADAMS

ADAMS (ADvanced Artefact Management
System) is an artefact-based process support
system. ADAMS enables software
engineers to create and store traceability
links between artefacts. ADAMS supports
the branching and merging of artifacts.
Topology: Centralized
Collaboration: Optimistic and Pessimistic

S11, S21,
S22

SYSIPHUS

SYSIPHUS is a distributed environment
providing a uniform framework for system
models, collaboration artifacts, and
organizational models. In SYSIPHUS,
system models, collaboration artifacts, and
organizational models are given equal
emphasis and live in a single, shared
repository. Topology: Centralized
Collaboration: Not mentioned

S1, S17

STEVE and
ADAMS

STEVE has been integrated in ADAMS to
provide synchronous and asynchronous
collaborative modeling functionalities. In
particular, it allows developers to access and
modify the same UML diagram at the same
time, thus allowing distributed team
members to discuss and model the system
directly within ADAMS.
Topology: Centralized
Collaboration: Optimistic and Pessimistic

S4

CoDesign

CoDesign is a collaborative software
modeling environment that supports system
design in geographically distributed work
settings. CoDesign’s main contribution is an
extensible con�ict detection framework for
collaborative modeling.
Topology: Centralized
Collaboration: Not mentioned

S12

Syde

Syde is a tool infrastructure to reestablish
team awareness by sharing change and
con�ict information across developer’s
workspaces. Syde provides information of
who is changing which parts of the system in
real time - synchronous development. Syde
is an extensible client-server application,
where clients are Eclipse plug-ins that both
capture changes and show change
information as visual cues.
Topology: Centralized
Collaboration: Not mentioned

S16

CASI

CASI is a tool that informs developers about
the changes that are taking place in a
software project and the source code entities
influenced by them.
Topology: Centralized
Collaboration: Not mentioned

S28

94

Seven academic proposals to support version control
were identified. TABLE IV summarizes the tools. The first
column shows the proposed tools for Version Control in
DSD projects. The second column presents a brief
description of the tools. The third one presents the selected
studies that support the tool.

Palantír and ADAMS were the most cited tools. ADAMS
was referred by 3 studies as an individual tool, and integrated
with STEVE, a collaborative modeling interface, by one
additional study. Palantír was also described by 5
complementary papers: a short paper in 2002, a tool in a full
paper in 2003, 2008 and 2012, and a dissertation in 2008.
Furthermore, it was listed in a mapping study in 2012. This
tool’s main purpose is to introduce awareness in existing
configuration management system.

Another tool that appears in more than one publication
was SYSIPHUS, whose main purpose is also to provide
support to collaborative modeling. CoDesign and Syde are
proposed to support Version Control in DSD projects.
Additionally, CoDesign is focused on model versioning,
Syde has its attention on source code, and CASI focus in
indirect conflict.

All the tools were classified as centralized, that is,
following the client-server model. ADAMS and Palantír
were the only tools that present a description of the
collaboration type they offer. A pessimistic approach to
manage concurrency is adopted in ADAMS. However, it
supports the branching and merging of artifacts.

Among the commonly adopted tools by the industry, 7
were referred to in the studies. Git, Jazz, Mercurial, Darcs,
Perforce, Clearcase and Subversion (TABLE V) were
described as version control tools focused on aiding DSD.
Git, Jazz and Mercurial were utilized in three academic
distributed projects, in which students were supposed to
collaborate remotely.

TABLE V INDUSTRIAL TOOLS SUPPORT

Tool Description Evidence
(S1-S22)

Git Git is a distributed version control
system, noted for its speed.
Topology: Distributed
Collaboration: Optimistic

S28, S29

Jazz Source
Control

A platform for collaborative development
created by IBM. Teams can choose to
replicate changes to separate RTC
Servers to allow for source code to be
mastered in multiple locations for
availability purposes.
Topology: Centralized and Distributed
Collaboration: Optimistic and
Pessimistic

S5

Jazz and
FriendFeed

The Jazz client extension with a Java
wrapper of the FriendFeed API, a real-
time feed aggregator that consolidates
the updates from a number of social
networking websites.
Topology: Centralized
Collaboration: Optimistic and
Pessimistic

S25

Mercurial Mercurial is a distributed version control
system, noted for its well-balanced
command set.
Topology: Distributed
Collaboration: Optimistic

S20

Darcs Darcs is a distributed version control
system.
Topology: Distributed
Collaboration: Optimistic

S28

Perforce Teams at any location can transparently
version their work as part of a
collaborative workflow.
Topology: Distributed
Collaboration: Optimistic and
Pessimistic

S28

Rational
Clearcase

Clearcase is the market leader software
configuration management solution that
provides version control. ClearCase
MultiSite enables file access across
remote sites.
Topology: Centralized and Distributed
Collaboration: Optimistic and
Pessimistic

S28

Subversion Subversion is currently the most popular
centralized open source version control
system.
Topology: Centralized
Collaboration: Optimistic and
Pessimistic

S28

B. RQ2 – Which are the challenges related to Version
Control in DSD?
This question motivated the investigation of the

challenges that DSD projects face when it comes to Version
Control. Thirteen challenges on this matter were gathered.
The challenges in the Version Control of DSD projects are
summarized in TABLE VI. The first column shows the
categories of challenges constructed from the data extracted
from the evidences that are presented in the second column.
The frequencies show the number of occurrences of each
category. Each occurrence was given the same weight, thus,
the frequencies merely reflect how many times a given
category was identified in different studies, not how
important it may be.

One important finding is that the first challenge listed
was cited by half of the selected studies. Fourteen studies
mentioned that dispersed software teams do not get
information on what other teams are doing. For [S13],
current CM systems promote workspaces that isolate
developers from each other.

Another challenge, mentioned by nine studies, was the
conflict detection delay. For [S16], only when a developer
checks in his changes, will his colleagues have access to
them and only when his colleagues synchronize their code
with the repository, will they become aware of new changes.

Visualizing the traceability links between requirements
was mentioned by 5 studies as a version control challenge in
DSD projects. Software artifact traceability is the ability to
describe and follow the life of an artifact (requirements,
code, tests, models, reports, plans, etc.) developed during the
software lifecycle [S22].

95

Working in different CM environments was a challenge
cited by 3 studies. The decision to keep distinct CM
environments for each team brought together several
consequences [S15]. Communication delay was considered
problematic in 2 studies. Projects with globally distributed
members have to cope with communication delay due to
physical distance to the server [S7].

TABLE VI CHALLENGES DETECTED

Challenge (C1-C13) Evidence
(S1-S22)

C1. Dispersed software teams do not get
information about what other teams are doing
(Frequency: 11)

S3, S6, S10,
S17, S13,
S14, S16,
S18, S19,
S21, S22,
S25, S26,

S27

C2. Non-real-time collaboration, since con�icts are only
detected when the engineers “check-in” their changes
(Frequency: 7)

S2, S6, S12,
S16, S18,
S21, S22,
S24, S27

C3. It can be very dif�cult to visualize the traceability
link between requirements.
 (Frequency: 5)

S1, S10, S18,
S21, S22

C4. Working in different CM environments
(Frequency: 3)

S3, S10, S15

C5. Dependency and Delay due to physical distance to
the serve, mainly in centralized topology
(Frequency: 2)

S3, S7

C6. Control over a distributed environment: Working
distributed, there is always a risk that the development
environment starts to diverge among the sites.
(Frequency: 1)

S3

C7. When working distributed, there is a risk that
different sites handles access control differently
(Frequency: 1)

S3

C8. In centralized topology, changes on �les get only
backed up if another developer updates them into his
repository.
(Frequency: 1)

S7

C9. Not enough preparation time taken to set up CM
infrastructure
(Frequency: 1)

S8

C10. Provide the same information repeatedly to
different tools: a developer makes changes to the source
code and files a bug report in the issue tracking system.
Additionally he might need to inform other developers
about them.
(Frequency: 1)

S9

C11. Artifacts with different versions and content at each
site
(Frequency: 1)

S10

C12. Many current version control systems are
focused on textual (i.e., source code) documents
(Frequency: 1)

S11

C13. Dependency between the developed modules
(Frequency: 1)

S15

Some other important challenges were reported as well,
but they were only mentioned in one study. Problems like
not enough preparation time taken to set up the CM
infrastructure, different versions of artifacts and each site,
and dependency between the modules developed.

C. RQ3 – Which strategies, techniques, models and
processes are used to support in version control in
DSD?
This section presents the models and frameworks

proposed in the literature to support Version Control in DSD
projects. The first column shows the approach proposed to
Version Control in DSD projects. The second column shows
the approaches’ concepts. The third column presents the
evidence on the selected studies.

TABLE VII PROPOSED APPROACHES

Approach Description Evidence
(S1-S22)

RepoGuard RepoGuard is a framework for
integration of development tools with
source code repositories. RepoGuard is
written in the Python programming
language, which allows for easy
integration of other tools. The following
version control systems are currently
supported: Subversion, Git, and Perforce.

S9

Peer-to-peer
version control

The decentralized peer-to-peer version
control system is built on top of the p2p-
framework FreePastry, which implements
the Pastry overlay routing and
maintenance.

S7

Conceptual
Framework

based on
components

Framework for the evolution of software
models in a collaborative modeling
environment. It is built on BDI agent
architecture framework which aims to
maintain the consistency of project
models and real-time conflict solving,
given the changes made simultaneously
by various devisor.

S2

OSCAR

OSCAR is an architecture for a
distributed repository system to manage
active artefacts. OSCAR defines active
artefacts as two major components: the
meta-data that describes their properties
and the content (source code etc.). The
four key modules within this architecture
are: presentation, indexing, storage,
metrics.

S23

Change
Support Model

Change Support Model for distributed
collaborative work is an approach that
constructs an information repository to
precisely re�ect the state of work. It
manages the states of artifacts/products
made through collaborative work and the
states of decisions made through
communications. The information
repository allows detection of
inconsistencies and uncertainties.

S24

Two frameworks and approachs, and one architecture to

Version Control in DSD projects were identified. A
framework for integration of development tools with source

96

code repositories was proposed, as well as a framework
based on agents to control changes. Furthermore, one
decentralized peer-to-peer version control system was
identified, an architecture and a model that supports changes
ins distributed repository.

D. RQ4 – How was the described research evaluated?
This question’s purpose was to determine how the

selected works were evaluated. Among 29 selected studies,
most of them (9 studies) are university reports and were
evaluated by undergraduate and MS students. Seven studies
use examples, other 4 were not evaluated the proposal, and 3
articles are experience reports and experimental studies.
Other 2 articles are systematic mapping. Only one study was
evaluated combining both industry report and university
report, as shown in Figure 5.

Figure 5 Research Evaluated

V. CONCLUSIONS
This section presents the final considerations and the

discussions about the results. Furthermore discusses
limitations of this research and further research.

A. Discussion about the Results
DSD is generally recognized as being much more

challenging than traditional co-located development.
Articles mentioned in this study ensure that the distributed
environment heightens the challenges faced in traditional
software development. In this context, CM has a critical role.
The Version Control is used in all subsequent phases of
software planning and developing. Development, testing,
deployment, and installation are done based on the software
configuration [1].

In the distributed environment, a greater effort is required
to guarantee that all the people involved have a perception of
the evolution of their work, and that the conflicts are
resolved. Moreover, the people involved need to be sure that
they are working on the last version of the project artifacts,
and that there is no room for inconsistency in the project. It

is highly important that there is an aiding tool to version
control that keeps the artifacts consistency and improves the
work coordination.

An interesting reflection is made on [16], when the
authors say that “CM was put into the world exactly to
handle certain aspects of distribution on traditional projects”.
They say that rarely requirement engineers, designers,
testers, and programmers are sitting at the same place at the
same time.

Nevertheless, there are only a few works on the topic that
evidences what changes exactly in the Version Control for
DSD projects, what the challenges related to the distributed
environment are, and what are the proposed solutions to
mitigate these challenges in this scenario.

This research’s main question was “How is Version
Control performed in Distributed Software Development”. It
was asked in order to verify if the same tools used in
traditional software development are also used in the
distributed environment and whether they offer or not the
needed support.

In this sense, this work’s main contributions consists in a
mapping of the challenges and solution proposals to support
version control in the distributed development scenario:

#1: Academic tools to support Version Control in

DSD projects
This research evidenced that researchers are concerned

about allowing for a better perception of the work that is
being developed by other remote team members, such as
constant conflict verification when it comes to Version
Control in DSD. Another spotted concern is present in the
project design phase, especially the evolutions of UML
models.

Seven academic tools have been identified (ADAMS,
Palantír, SYSIPHUS, ADAMS+STEVE, CoDesign and
Syde, CASI) and all of them are based in the client-server
model. Whereas ADAMS, SYSIPHUS, ADAMS+STEVE,
and CoDesign are mainly focused on collaborative modeling
support, CASI, Palantír e Syde are focused on source code.

#2: Industrial Tools to support Version Control in

DSD projects
Seven version control tools that are popular in

conventional software development were indicated by two
selected studies. The authors used the Git, Jazz and
Mercurial tools in academic projects at which students
worked in a distributed scenario.

Just a few studies identified in this research evinced the
utilization of traditional co-located VCS. However, one
cannot state that these tools are not used at all, but it is fact
that their use is not frequently reported in the literature.

#3: Obstacles detected by the searches regarding

Version Control in DSD
Thirteen challenges related to Version Constrol in DSD

projects have been identified, some of which were mentioned
more times than other by the selected studies, as dispersed
software teams do not get information on what other teams
are doing and the conflict detection delay.

97

The challenges that were mentioned several times are
also the ones that are the targets of the proposed aiding tools.
Palantír, for instance, aims at providing a wider perception of
the work that is being developed in different workspaces.

#4: Few works evaluated in industrial environments

and experimental studies
Most of the selected studies’ proposals were tested solely

in academic environments or merely represent simple use
examples. This shows that is need a greater exchange
between the academy and industry so that both can benefit
from it. With this proximity, thus, academics can level up the
maturity of their researches and propose more appropriate
solutions to the needs of software companies.

B. Limitations
The main limitations and threats to the validity of this

study lie in the fact that the mapping process was performed
by only one researcher. This threat is considered acceptable
by [14] for doctoral students that make use of this method.
According to the text, it is sufficient that the thesis advisor
engages in the protocol review and perform parts of the
review himself.

In addition, from the 11 studies selected from the
research libraries, the backward snowballing and forward
snowballing were used only twice. The first application of
the snowballing method resulted in 11 new studies. The
second application of the snowballing method resulted in 7
new studies. Although continuing to apply this technique in
these 7 new studies is expected from this research, it has not
yet been possible due to time restrictions.

C. Further Research
The previously discussed limitations offer clear paths to

further research. The utilization of the snowballing method
in the 7 new studies can enrich the information collected so
far on Version Conrol in DSD projects, with the
empowerment of the evidence on the challenges and already
listed solutions, as well as new proposals.

Besides, given the limited number of industrial reports,
the conduction of a survey in software companies with
distributed projects to identify how they perform the version
control may display clearer conclusions on how Version
Control is performed in Distributed Software Development.

ACKNOWLEDGMENT
The authors would like to thank CAPES, CNPq, and

FAPERJ for the financial support.

REFERENCES
[1] E. Carmel, Global software teams: collaborating across borders

and time zones. Upper Saddle River, NJ, USA: Prentice Hall PTR,
1999.

 [2] L. Pilatti, J. L. N. Audy, and R. Prikladnicki, “Software
configuration management over a global software development
environment: lessons learned from a case study,” in Proceedings of
the 2006 international workshop on Global software development
for the practitioner, New York, NY, USA, 2006, pp. 45–50..

[3] S. ul Haq, “Issues in Global Software Development: A Critical
Review,” Journal of Software Engineering and Applications, vol.
04, no. 10, pp. 590–595, 2011

[4] M. Jiménez, M. Piattini, and A. Vizcaíno, “Challenges and
Improvements in Distributed Software Development: A Systematic
Review,” Advances in Software Engineering, vol. 2009, pp. 1–14,
2009.

[5] J. C. Binder, Global Project Management: Communication,
Collaboration and Management Across Borders. Gower
Publishing, Ltd., 2007.

[6] B. Bruegge, A. D. Lucia, F. Fasano, and G. Tortora, “Supporting
Distributed Software Development with fine-grained Artefact
Management,” in Global Software Engineering, 2006. ICGSE ’06.
International Conference on, 2006, pp. 213 –222.

[7] S. S. M. Fauzi, P. L. Bannerman, and M. Staples, “Software
Configuration Management in Global Software Development: A
Systematic Map,” in Software Engineering Conference (APSEC),
2010 17th Asia Pacific, 2010, pp. 404 –413.

[8] F. Q. B. da Silva, C. Costa, A. C. C. França, and R. Prikladinicki,
“Challenges and Solutions in Distributed Software Development
Project Management: A Systematic Literature Review,” in 2010 5th
IEEE International Conference on Global Software Engineering
(ICGSE), 2010, pp. 87 –96.

[9] J. young Bang, D. Popescu, G. Edwards, N. Medvidovic, N.
Kulkarni, G. M. Rama, and S. Padmanabhuni, “CoDesign: a highly
extensible collaborative software modeling framework,” in 2010
ACM/IEEE 32nd International Conference on Software
Engineering, 2010, vol. 2, pp. 243 –246.

[10] B. O’sullivan, “Making sense of revision-control systems,”
Communications of the ACM, vol. 52, no. 9, pp. 56–62, 2009.

[11] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham, “Using
mapping studies in software engineering,” in Proceedings of PPIG,
2008, pp. 195–204.

[12] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering,” in 12th International
Conference on Evaluation and Assessment in Software
Engineering, 2008, pp. 71–80.

[13] B. A. Kitchenham and S. Charters, “Guidelines for performing
Systematic Literature Reviews in Software Engineering,” Keele
University and University of Durham, EBSE Technical Report
Version 2.3, 2007.

[14] J. Webster and R. T. Watson, “Analyzing the Past to Prepare for
the Future: Writting a Literature Review,” 2002.

[15] S. Jalali and C. Wohlin, “Systematic literature studies: database
searches vs. backward snowballing,” in Proceedings of the ACM-
IEEE international symposium on Empirical software engineering
and measurement, New York, NY, USA, 2012, pp. 29–38.

[16] L. Bendix, J. Magnusson, and C. Pendleton, “Configuration
Management Support for Distributed Software Development,”
presented at the Proceedings of the Second International Software
Technology Exchange Workshop, Kista, Sweden, 2012.

SELECTED STUDIES
[S1] Berenbach and T. Wolf, “A unified requirements model; integrating

features, use cases, requirements, requirements analysis and hazard
analysis,” in Global Software Engineering, 2007. ICGSE 2007.
Second IEEE International Conference on, 2007, pp. 197 –203.

[S2] H. K. Dam and A. Ghose, “An agent-based framework for distributed
collaborative model evolution,” in Proceedings of the 12th
International Workshop on Principles of Software Evolution and the
7th annual ERCIM Workshop on Software Evolution, New York,
NY, USA, 2011, pp. 121–130.

[S3] L. Bendix, J. Magnusson, and C. Pendleton, “Configuration
Management Stories from the Distributed Software Development
Trenches,” in 2012 IEEE Seventh International Conference on Global
Software Engineering (ICGSE), 2012, pp. 51 –55.

[S4] A. De Lucia, F. Fasano, G. Scanniello, and G. Tortora, “Enhancing
collaborative synchronous UML modelling with fine-grained

98

versioning of software artefacts,” Journal of Visual Languages &
Computing, vol. 18, no. 5, pp. 492–503, Oct. 2007.

[S5] A. Meneely and L. Williams, “On preparing students for distributed
software development with a synchronous, collaborative development
platform,” in Proceedings of the 40th ACM technical symposium on
Computer science education, New York, NY, USA, 2009, pp. 529–
533.

[S6] A. Sarma and A. van der Hoek, “Palantir: coordinating distributed
workspaces,” in Computer Software and Applications Conference,
2002. COMPSAC 2002. Proceedings. 26th Annual International,
2002, pp. 1093 – 1097.

[S7] P. Mukherjee, C. Leng, W. W. Terpstra, and A. Schurr, “Peer-to-Peer
Based Version Control,” in Parallel and Distributed Systems, 2008.
ICPADS ’08. 14th IEEE International Conference on, 2008, pp. 829
–834.

[S8] R. Kommeren and P. Parviainen, “Philips experiences in global
distributed software development,” Empirical Software Engineering,
vol. 12, no. 6, pp. 647–660, 2007.

[S9] M. Legenhausen, S. Pielicke, J. Ruhmkorf, H. Wendel, and A.
Schreiber, “RepoGuard: A Framework for Integration of
Development Tools with Source Code Repositories,” in Global
Software Engineering, 2009. ICGSE 2009. Fourth IEEE International
Conference on, 2009, pp. 328 –331.

[S10] S. S. M. Fauzi, P. L. Bannerman, and M. Staples, “Software
Configuration Management in Global Software Development: A
Systematic Map,” in Software Engineering Conference (APSEC),
2010 17th Asia Pacific, 2010, pp. 404 –413..

[S11] B. Bruegge, A. D. Lucia, F. Fasano, and G. Tortora, “Supporting
Distributed Software Development with fine-grained Artefact
Management,” in Global Software Engineering, 2006. ICGSE ’06.
International Conference on, 2006, pp. 213 –222.

[S12] J. young Bang, D. Popescu, G. Edwards, N. Medvidovic, N.
Kulkarni, G. M. Rama, and S. Padmanabhuni, “CoDesign: a highly
extensible collaborative software modeling framework,” in 2010
ACM/IEEE 32nd International Conference on Software Engineering,
2010, vol. 2, pp. 243 –246.

[S13] A. Sarma, “Palantír: Enhancing Configuration Management Systems
with Workspace Awareness to Detect and Resolve Emerging
Conflicts,” UNIVERSITY OF CALIFORNIA, Irvine, CA, 2008.

[S14] A. Sarma, Z. Noroozi, and A. van der Hoek, “Palantir: raising
awareness among configuration management workspaces,” in 25th
International Conference on Software Engineering, 2003.
Proceedings, 2003, pp. 444 – 454.

[S15] L. Pilatti, J. L. N. Audy, and R. Prikladnicki, “Software
configuration management over a global software development
environment: lessons learned from a case study,” in Proceedings of
the 2006 international workshop on Global software development for
the practitioner, New York, NY, USA, 2006, pp. 45–50.

[S16] L. Hattori and M. Lanza, “Syde: a tool for collaborative software
development,” in 2010 ACM/IEEE 32nd International Conference on
Software Engineering, 2010, vol. 2, pp. 235 –238.

[S17] B. Bruegge, A. H. Dutoit, and T. Wolf, “Sysiphus: Enabling informal
collaboration in global software development,” in Global Software
Engineering, 2006. ICGSE’06. International Conference on, 2006, pp.
139–148.

[S18] A. De Lucia, F. Fasano, R. Francese, and R. Oliveto, “Traceability
Management in ADAMS,” in Proceedings of the International
Workshop on Distributed Software Development, 2005.

[S19] L. Bendix, J. Magnusson, and C. Pendleton, “Configuration
Management Support for Distributed Software Development,”
presented at the Proceedings of the Second International Software
Technology Exchange Workshop, Kista, Sweden, 2012.

[S20] D. Rocco and W. Lloyd, “Distributed version control in the
classroom,” in Proceedings of the 42nd ACM technical symposium
on Computer science education, New York, NY, USA, 2011, pp.
637–642.

[S21] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Fine-grained
management of software artefacts: the ADAMS system,” Software:
Practice and Experience, vol. 40, no. 11, pp. 1007–1034, 2010.

[S22] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering
traceability links in software artifact management systems using
information retrieval methods,” ACM Trans. Softw. Eng. Methodol.,
vol. 16, no. 4, Sep. 2007.

[S23] C. Boldyreff, D. Nutter, and S. Rank, “Active artefact management
for distributed software engineering,” in Computer Software and
Applications Conference, 2002. COMPSAC 2002. Proceedings. 26th
Annual International, 2002, pp. 1081–1086.

[S24] P. T. T. Huyen and K. Ochimizu, “A Change Support Model for
Distributed Collaborative Work,” CoRR, 2012.

[S25] F. Calefato, D. Gendarmi, and F. Lanubile, “Embedding social
networking information into jazz to foster group awareness within
distributed teams,” in Proceedings of the 2nd international workshop
on Social software engineering and applications, New York, NY,
USA, 2009, pp. 23–28.

[S26] A. Sarma, D. Redmiles, and A. van der Hoek, “Empirical evidence of
the benefits of workspace awareness in software configuration
management,” in Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering,
New York, NY, USA, 2008, pp. 113–123.

[S27] A. Sarma, D. F. Redmiles, and A. Van der Hoek, “Palantir: Early
detection of development conflicts arising from parallel code
changes,” Software Engineering, IEEE Transactions on, vol. 38, no.
4, pp. 889–908, 2012.

[S28] J. Portillo-Rodríguez, A. Vizcaíno, M. Piattini, and S. Beecham,
“Tools used in Global Software Engineering: A systematic mapping
review,” Information and Software Technology, vol. 54, no. 7, pp.
663–685, Jul. 2012.

[S29] X. Zhiguang, “Using Git to Manage Capstone Software Projects,” in
The Seventh International Multi-Conference on Computing in the
Global Information Technology, Venice, Italy, 2012, p. 159 to 164.

99

